
1

On Lattice Protein Structure Prediction Revisited
Ivan Dotu Manuel Cebrián Pascal Van Hentenryck Peter Clote

Abstract—Protein structure prediction is regarded as a highly challenging problem both for the biology and for the computational
communities. Many approaches have been developed in the recent years, moving to increasingly complex lattice models or even
off-lattice models. This paper presents a Large Neighborhood Search (LNS) to find the native state for the Hydrophobic-Polar (HP)
model on the Face Centered Cubic (FCC) lattice or, in other words, a self-avoiding walk on the FCC lattice having a maximum number
of H-H contacts. The algorithm starts with a tabu-search algorithm, whose solution is then improved by a combination of constraint
programming and LNS. This hybrid algorithm improves earlier approaches in the literature over several well-known instances and
demonstrates the potential of constraint-programming approaches for ab initio methods.

Index Terms—Protein Structure, Constraint Programming, Local Search.

F

1 INTRODUCTION

In 1973, Nobel laureat C.B. Anfinsen [?] denatured the 124
residue protein, bovine ribonuclease A, by the addition of
urea. Upon removal of the denaturant, the ribonuclease, an
enzyme, was determined to be fully functional, thus attesting
the successful reformation of functional 3-dimensional struc-
ture. Since no chaperone molecules were present, Anfinsen’s
experiment was interpreted to mean that the native state of
some roteins1 is its minimum free energy conformation, and
hence that protein structure determination is a computational
problem which can in principle be solved by applying a
combinatorial search strategy to an appropriate energy model.

Protein structure prediction is historically one of the oldest,
most important, yet stubbornly recalcitrant problems of bioin-
formatics. Solution of this problem would have an enormous
impact on medicine and the pharmaceutical industry, since
successful tertiary structure prediction, given only the amino
acid sequence information, would allow the computational
screening of potential drug targets. In particular, there is
currently much research on computational docking of drugs
(small chemical ligands) to a protein surface (such as a G-
coupled protein receptor, the most common drug target).2

Indeed, it has been stated that: “Prediction of protein structure

• Ivan Dotu Pascal Van Hentenryck are with the Department of Computer
Science, Brown University, Box 1910, Providence, RI 02912.

• Manuel Cebrián is at the Human Dynamics Group, The Media Laboratory,
Massachusetts Institute of Technology, Cambridge MA 02139.

• Peter Clote is with the Biology Department, Boston College, Chestnut
Hill, MA 02467, and is Digiteo Chair, Laboratoire d’Informatique (LIX),
Ecole Polytechnique and Laboratoire de Recherche en Informatique (LRI),
Université Paris-Sud XI.

1. Although most computational structure prediction methods equate the
native state with the minimum free energy structure, the situation is more
complicated, since some proteins fold cotranslationally, as in the P22 tailspike
protein [?], while other proteins may have two or more low energy metastable
structures, as in the prion protein [?].

2. Starting from the X-ray structure of HIV-1 protease with peptidomimetic
inhibitors, Lam et al. [?] used computer-aided drug design tools and first
principles in order to engineer a novel cyclic HIV-protease inhibitor.

in silico has thus been the ‘holy grail’ of computational
biologists for many years” [?]. Despite the quantity of work
on this problem over the past 30 years, and despite the
variety of methods developed for structure prediction, no truly
accurate ab initio methods exist to predict the 3-dimensional
structure from amino acid sequence. Indeed, Helles (2008)
[?] benchmarked the accuracy of 18 ab initio methods, whose
average normalized root mean square deviation ranged from
11.17 Å to 3.48 Å, while Dalton and Jackson (2007) [?]
similarly benchmarked five well-known homology modeling
programs and three common sequence-structure alignment
programs. In contrast, computational drug screening requires
atomic scale accuracy, since the size of a single water molecule
is about 1.4 Å.

In this paper, we describe a combination of constraint
programming and Large Neighborhood Search (LNS) to de-
termine close-to-optimal conformations for the Lau-Dill HP-
model on the face-centered cubic lattice. Before describing our
contribution, we first present an overview of computational
methods for protein structure prediction. In general, methods
are classified as homology (comparative) modeling, threading,
lattice model, and ab initio. Protein structure prediction is
an immense field that cannot be adequately surveyed in
this introduction. Numerous books (e.g., [?]) and excellent
reviews, (e.g., [?]) are available. Nevertheless, to situate the
contribution of our work within the broader scope of protein
structure prediction, we briefly describe each of the methods
– homology, threading, ab initio – before focusing on lattice
models.

In homology modeling, the amino acid sequence of a novel
protein P is aligned against sequences of proteins Q, whose
tertiary structure is available in the Protein Data Bank (PDB)
[?]. Regions of P aligned to regions of Q are assumed to
have the same fold, while non-aligned regions are modeled
by interconnecting loops. Examples of comparative modeling
software are SWISS-MODEL, developed by M. Peitsch, T.
Schwede et al., and recently described in [?], as well as
MODELER developed by the Šali Lab [?]. Comparative
modeling relies on the assumption that evolutionarily related
(homologous) proteins retain high sequence identity and adopt

2

the same fold.
Threading [?], [?], though known to be NP-complete [?],

is a promising de novo protein structure approach, which
relies on threading portions ai, . . . , aj of the amino acid
sequence a1, . . . , an onto a fragment library, which latter con-
sists of frequently adopted partial folds. Pseudo-energy (aka
knowledge-based potential) is computed from the frequency
of occurrence of certain folds with certain types of amino
acid sequence. Impressive results have been obtained with
the Skolnick Lab program I-TASSER [?] with web server
[?], which yielded the best-ranked structure predictions in
the blind test CASP-7 (Critical Assessment of Techniques for
Protein Structure Prediction) in 2006. Success of threading
hinges on two things: energetics, i.e., that the PDB is relatively
saturated and contains occurrences of almost all protein folds,
and search strategy, i.e., usually Monte-Carlo or some type of
branch-and-bound algorithm. According to a study of Zhang
and Skolnick [?], the PDB is currently sufficiently saturated to
permit adequate threading approaches, albeit with insufficient
accuracy for the requirements of computational drug design.3

Despite advances in comparative modeling and threading,
there is an interest in ab initio protein structure prediction,
since this is the only method that attempts to understand
protein folding from basic principles, i.e., by applying a search
strategy with (generally) a physics-based energy function.
Moreover, only ab initio methods can be applied for proteins
having no homology with proteins of known structure. In
molecular dynamics (MD), protein structure is predicted by
iteratively solving Newton’s equations for all pairs of atoms
(possibly including solvent) using mean force potentials, that
generally include pairwise (non-contact) terms for Lennard-
Jones, electrostatic, hydrogen bonding, etc. Well-known MD
software CHARMM [?] and Amber [?], as well as variant
Molsoft ICM [?], the latter employing internal coordinates
(dihedral angle space) and local optimization, are used to
simulate protein docking, protein-ligand interactions, etc. since
molecular dynamics generally is too slow to allow ab initio
folding of any but the smallest proteins. Other ab initio
methods include the Baker Lab program Rosetta [?], bench-
marked in [?] with comparable accuracy as the Skolnick Lab
program I-TASSER [?]. Search strategies of ab initio methods
include molecular dynamics simulation, Metropolis Monte-
Carlo (Rosetta [?]), Monte-Carlo with replica exchange (I-
TASSER [?]), branch-and-bound (ASTROFOLD [?]), integer
linear programming (ASTROFOLD [?]), Monte-Carlo with
simulated annealing, evolutionary algorithms, and genetic al-
gorithms.

2 PROBLEM FORMALIZATION

A lattice is a discrete integer approximation to a vector space,
formally defined to be the set of integral linear combinations
of a finite set of vectors in Zn; i.e.,

L =

{
k∑

i=1

ai~vi : ai ∈ Z

}
(1)

3. According to [?], using the TASSER algorithm, “in 408 cases the best
of the top five full-length models has a RMSD < 6.5 Ångstroms.”

Fig. 1: Lattices used in protein structure modeling. (a) Points (x, y, z)
in cubic lattice, satisfying 0 ≤ x, y, z ≤ 1. (b) Points (x, y, z) in FCC
lattice, satisfying 0 ≤ x, y, z ≤ 2. (c) Points (x, y, z) in tetrahedral
lattice, satisfying 0 ≤ x, y, z ≤ 1. (d) Points (x, y, z) in 210 (knight’s
move) lattice, satisfying 0 ≤ x, y, z ≤ 2.

where ~v1, . . . , ~vk ∈ Zn. If k is the minimum value for which
(??) holds, then ~v1, . . . , ~vk form a basis, and k is said to be
the dimension (also called coordination or contact number)
of L. Two lattice points p, q ∈ L are said to be in contact if
q = p + ~vi for some vector ~vi in the basis of L. Historically,
many different lattices have been considered, some of which
are depicted in Figure ??: (i) the 2-dimensional square
lattice with n = 2, coordination number 4, and basis vectors
(0, 1), (1, 0); (ii) the 2-dimensional triangular (aka hexagonal)
lattice with n = 2, coordination number 6, and basis vectors
(1, 0), (−1, 0),(0, 1), (0,−1), (1, 1), (−1,−1); (iii) the
3-dimensional cubic lattice with n = 3, coordination number
6, and basis vectors (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(0, 0, 1), (0, 0,−1); (iv) the 3-dimensional face-centered
cubic (FCC) lattice with n = 3, coordination number 12,
and basis vectors (1, 1, 0), (−1,−1, 0), (−1, 1, 0), (1,−1, 0),
(0, 1, 1), (0, 1,−1), (1, 0, 1), (1, 0,−1), (0,−1, 1), (−1, 0, 1),
(0,−1,−1), (−1, 0,−1); (v) the tetrahedral lattice with n = 3,
coordination number 12, and basis vectors (1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1), (1,−1, 0), (−1, 1, 0),
(1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1) ; (vi) the 210
lattice [?] with n = 3, coordination number 24, and whose
basis vectors (−1,−2, 0), (−1, 2, 0), (1,−2, 0), (1, 2, 0),
(−1, 0,−2), (−1, 0, 2), (1, 0,−2), (1, 0, 2), (−2,−1, 0),
(2,−1, 0), (−2, 1, 0), (2, 1, 0), (0,−1,−2), (0,−1, 2),
(0, 1,−2), (0, 1, 2), (−2, 0,−1), (2, 0,−1), (−2, 0, 1),
(2, 0, 1), (0,−2,−1), (0, 2,−1), (0,−2, 1), (0, 2, 1) resemble
the move of a knight in chess. For more details on properties
of these and other lattices, see the book by Conway and
Sloane [?]. In this paper, we consider the face-centered cubic
(FCC) lattice which is generated by the following 12 basis

3

vectors (identified with compass directions [?]):

N : (1, 1, 0) S : (−1,−1, 0) W : (−1, 1, 0)
E : (1,−1, 0) NW+ : (0, 1, 1) NW− : (0, 1,−1)
NE+ : (1, 0, 1) NE− : (1, 0,− 1) SE+ : (0,−1, 1)
SW+ : (−1, 0, 1) SE− : (0,−1,−1) SW− : (−1, 0,−1).

It follows that the FCC lattice consists of all integer points
(x, y, z), such that (x + y + z) mod 2 = 0, and that lattice
points p = (x, y, z) and q = (x′, y′, z′) are in contact, denoted
by co(p, q), if (x − x′) + (y − y′) + (z − z′) mod 2 ≡ 0,
|x − x′| ≤ 1, |y − y′| ≤ 1, and |z − z′| ≤ 1. We will
sometimes state that lattice points p, q are at unit distance,
when we formally mean that they are in contact. Since the
distance between two successive alpha-carbon atoms is on
average 3.8Å with a standard deviation of 0.04Å, a reasonable
coarse-grain approach is to model an n-residue protein by a
self-avoiding walk p1, . . . , pn on a lattice.

Many groups have employed the cubic model, despite the
well-known parity problem, i.e., that if p1, . . . , pn is a self-
avoiding walk on the cubic lattice, then pi and pj cannot
be in contact for any two indices i, j of the same parity
(both odd or both even). Covell and Jernigan [?] have shown
that the FCC lattice, proven to admit the tightest packing
of spheres [?], is the most appropriate 3-dimensional lattice
for fitting protein Cα-atoms as a self-avoiding walk, and
that root mean square deviation (rms) values are smaller
for the FCC lattice than for the cubic, body-centered cubic
and tetrahedral lattices. Here rms between two Cα-traces
(p1, p2, . . . , pn) and (q1, q2, . . . , qn), where pi, qi ∈ R3, is

given by
√Pn

i=1(pi−qi)2

n .
In 1972, Lau and Dill [?] proposed the hydrophobic-

hydrophilic (HP) model, which provides a coarse approxima-
tion to the most important force responsible for the hydropho-
bic collapse which has been experimentally observed in protein
folding. Amino acids are classified into either hydrophobic
(e.g. Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, Val) or hydrophilic
(e.g. Arg, Asn, Asp, Cys, Glu, Gln, His, Lys, Ser, Thr,
Tyr) residues.4 In the HP-model, there is an energy of −1
contributed by any two non-consecutive hydrophobic residues
that are in contact on the lattice. For this reason, the HP-model
is said to have a contact potential, depicted in the left panel
of Figure ??, where ‘H’ designates hydrophobic, while ‘P’
designates polar (i.e., hydrophilic). To account for electrostatic
forces involving negatively charged residues (Asp, Glu) and
positively charged residues (Arg, His, Lys), the HP-model has
been extended to the HPNX-model, with hydrophobic (H),
positively charged (P), negatively charged (N) and neutral
hydrophilic (X) terms. The right panel of Figure ?? depicts
the HPNX-potential used in [?].

Though Lau and Dill [?] originally considered only the
2-dimensional square lattice, their model allowed the formu-
lation of the following simply stated combinatorial problem.
For a given lattice and an arbitary HP-sequence, determine a
self-avoiding walk on the lattice having minimum energy, i.e.,
a minimum energy lattice conformation. This problem was
shown to be NP-complete for the 2-dimensional square lattice

4. This classification follows Rasmol [?], although other classifications are
possible; indeed, proline is often considered hydrophilic.

H P
H -1 0
P 0 0

H P N X
H -4 0 0 0
P 0 +1 -1 0
N 0 -1 +1 0
X 0 0 0 0

Fig. 2: Energy for HP- and HPNX-model.

by Crescenzi et al. [?] and for the 3-dimensional cubic lattice
by Berger and Leighton [?]. Recent work of Khodabakhshi et
al. [?] considers the inverse folding problem for a variant of
the HP-model5 on the 3D hexagonal prism lattice.

While most work on lattice models concerns the HP-
model, or closely related HPNX-model, other energy potentials
for lattice models have been considered. Solvent accessible
surface area (ASA), first introduced by Lee and Richards [?],
has given rise to several measures, whose optimization can be
carried out within a lattice model framework [?], for example
contact order [?]. In [?], [?], Šali et al. considered a 27-mer
with normally distributed hydrophobic contact potential having
mean of −2 and standard deviation of −1, hence likely to
fold into the 3× 3× 3 compact cube. Šali et al. measured the
average time required to reach the native state, formally the
mean first passage time (MFPT), for a 27-mer to reach the
minimum energy conformation on the compact cube, using a
Monte Carlo simulation of protein folding on the cubic lattice.
The authors claimed to have solved the Levinthal paradox by
showing that thermodynamics suffices to drive a protein to
rapidly find its native state.

3 RELATED WORK

3.1 Approaches to the HP Model

We first survey some search strategies for the HP-model. In
[?], [?], Yue and Dill describe a constrained hydrophobic
core construction (CHCC), which they apply in a branch-
and-bound exhaustive search to construct self-avoiding walks
in the cubic lattice having the maximum possible number
of H-H contacts (native state). Subsequently, in [?], Yue
and Dill applied “constraint-based exhaustive search” in their
Geocore branch-and-bound method involving discretized di-
hedral angles, in order to determine the minimum energy
conformation(s) of several small proteins including crambin.
Since the number of conformations for an n-mer on the 3-
dimensional cubic lattice is estimated to be approximately 4.5n

[?], it has been argued [?] that the HP model is a reasonable
model in which to investigate the Levinthal paradox. In [?],
Unger and Moult described a genetic algorithm for the HP-
model on the 2-dimensional square lattice, where pointwise
mutation corresponds to a conformation pivot move. This
approach was extended in Backofen, Will, and Clote [?] to
a genetic algorithm on the FCC lattice, in order to quantify
hydrophobicity in protein folding. As previously mentioned,

5. In [?], Khodabakhshi et al. consider the HPC-model, where residues are
classified as non-cysteine hydrophobic (H), hydrophilic (P), or cysteine (C).
Since disulfide bonds are covalent bonds between sulfur atoms of cysteine
residues, the HPC model allows one to model proteins containing disulfide
bonds. The DiANNA web server [?], [?] predicts the disulfide bond topology
of an input amino acid sequence, by using a novel architecture neural network.

4

Khodabakhshi et al. [?] developed an algorithm for inverse
folding for the HPC-model on the 3D hexagonal prism lattice.

In [?], [?], [?], [?], Backofen and Will implemented the
CHCC approach of Yue and Dill [?] using a modern con-
straint programming language (Oz), where symmetries were
excluded, and both the cubic and FCC lattice were considered.
In this fashion, Backofen and Will were able to provide an
exact solution for small HP- and HPNX-sequences beyond
the reach of earlier exhaustive methods. In [?], [?], Will
precomputed hydrophobic cores, maximally compact face-
centered cubic self-avoiding walks of (only) hydrophobic
residues. By threading an HP-sequence onto hydrophobic
cores, the optimum conformation can always be found, given
sufficient (possibly exponential) computation time, provided
the hydrophobic core has been precomputed.

Dal Palu et al. [?] use secondary structure and disulfide
bonds formulated as constraints using constraint logic pro-
gramming over finite domains to compute a predicted structure
on the face-centered cubic lattice. They describe tests ranging
from the 12 residue fragment (PDB code 1LE0) with RMSD
of 2.8 Å achieved in 1.3 seconds, to the 63 residue protein
(PDB code 1YPA) with RMSD of 17.1 Å in 10 hours. Further
optimization was performed after the alpha-carbon trace was
replaced by an all-atom model (presumably using well-known
Holm-Sander method [?]), thus achieving an all-atom predic-
tion of the 63 residue protein (PDB code 1YPA) with RMSD
of 9.2 Å within 116.9 hours computation time. This study
suggests that protein structure prediction might best proceed
in a hierarchical fashion, first taking into account secondary
structure on a coarse-grain lattice model and subsequently
performing all-atom refinement.

3.2 Beyond the HP Model

The HP-model can be viewed as a coarse approximation
of more complex contact potentials. In [?], Miyazawa and
Jernigan introduced two kinds of contact potential matrices,
i.e., 20 × 20 matrices that determine a residue-dependent
energy potential to be applied in the case that two residues
are in contact (either on the lattice, or within a fixed threshold
such as 7 Å from each other). Pokarowski et al. [?] analyzed
29 contact matrices and showed that in essence all known
contact potentials are one of the two types that Miyazawa
and Jernigan [?] had previously introduced. Type 1 contact
potential is given by the formula e(i, j) = h(i) + h(j), where
1 ≤ i ≤ 20 ranges over the 20 amino acids and h is a residue-
type dependent factor that is highly correlated with frequency
of occurrence of a given amino acid type in a non-redundant
collection of proteins. Type 2 contact potential is given by
the formula e(i, j) = c0 − h(i)h(j) + q(i)q(j), where c0

is a constant, h is highly correlated with the Kyte-Doolittle
hydrophobicity scale [?], and a residue-type dependent factor
q is highly correlated with isoelectric points pI. The “knight’s
move” 210 lattice was used by Skolnick and Kolinski [?] to
fold the 99-residue beta protein, apoplastocyanin, to within 2
Å of its crystal structure with PDB accession code 2PCY.

4 LOCAL SEARCH APPROACHES
This section introduces 2 different local search techniques that
have been developed in order to compute FCC self-avoiding
walks containing a near optimal number of unit distance
H-H contacts. These techniques have been implemented as
independent tools but also as part of a hybrid technique
introduced in the following sections.

4.1 Tabu Search
4.1.1 The Model
This section presents our model for protein structure predic-
tion. The model associates a decision variable vi with every
amino acid’s position on the lattice. In other words, given a
sequence of amino acids S such that ‖S‖ = n, the variable vi

takes its value in Z3 and represents the x, y, and z coordinates
of the ith amino acid of S in the lattice. These variables must
satisfy the following constraints:

• Self-Avoiding constraint: For all i 6= j: vi 6= vj .
• FCC Lattice Constraints: The sum of the coordinates of

each point must be even.
• Adjacency: Two consecutive elements i and i + 1 must

be neighbors in the lattice, i.e. in contact or at unit
distance (as mentioned before, on the FCC, this means at
Euclidean distance

√
2).

These are all hard constraints. They will hold initially and be
preserved across local moves. In the following, we use σ to
denote a complete assignment of the variables vi that satisfies
all the constraints.

4.1.2 The Fitness Function
The HP-model for protein structure prediction features an
energy function which is rather poor in guiding the search
towards high-quality solutions. Indeed, the number of H-H
contacts only increases (decreases) when the algorithm posi-
tions (separates) two H amino acids at (from) unit distance;
any other does not change the energy. As a result, a local-
search algorithm based on such an objective will mostly
perform a random walk.

To address this issue, our algorithm introduces a fitness
function to guide the algorithm effectively. Define distance
between two amino acids as d(i, j)2 = (xi−xj)2+(yi−yj)2+
(zi − zj)2, i.e., the square of the Euclidean distance between
the ith and the jth amino acids in the current conformation of
a sequence S of length n. Now consider the deviation from the
unit distance (to the power of 2) to be dv(i, j) = d(i, j)2− 2.
Our fitness function (or cost) is:

f(σ) =
n∑

i,j:i+1<j

(dv(i, j))k × (si = H, sj = H)

where the sum is over i, j such that i + 1 < j and k ≥ 1 is
a parameter of the algorithm. In particular, larger values of k
give more weight to unit distances. Observe that these values
are only defined when i and j correspond to H-type amino
acids. The fitness function f is thus a measure of the deviation
from the unit distance for every pair of (non consecutive) H-
type amino acids. Therefore, in order to maximize the number
of HH contacts, we need to minimize f .

5

Fig. 3: Initial structure for the instance S4, an H-P sequence taken
from [?, p. 130].

One may view f as a guide towards a compact structure
where H-amino acids are close together, thus yielding several
HH contacts. It is clear that, in order to achieve unit distance
between H-type amino acids, they need to be close to each
other. The impact of this fitness function will be better under-
stood in the Experimental Results section. Note that f(σ∗) = 0
means that all pairs of H-type amino acids are at unit distance
in σ∗.

4.1.3 The Self-avoiding Constraint

One of the constraints requires that all amino acid positions on
the lattice be different. Representing this constraint explicitly
is very costly and slows down the search considerably. Instead,
the algorithm maintains the constraint implicitly. Each time a
local move is performed on vi, the algorithm only checks those
amino acids vj (j 6= i) whose norm is equal to ||vi||, since
vi = vj ⇒ ||vi|| = |vj ||. The constraint check is performed in
O(1) expected time, since the number of amino acids with the
same norm is very low, even in the latest stages of the search
process when the molecule is densely packed.

4.1.4 The Neighborhood

In this work, we allowed only one-monomer moves, in which
only a single monomer changes position between two suc-
cessive conformations. Our benchmarks suggest that a one-
monomer move set suffices for good results on the FCC
lattice, although since this is not the case for the CC lattice,
for which Šali et al. [?] considered crankshaft (2-monomer)
moves as well. If p1, . . . , pn denote current positions of
monomers 1, . . . , n, then define the neighborhood N(i) of the
ith monomer as the set P of points p such that d(p, pi)2 =
2 , p ∈ P . A neighborhood move of the ith monomer of a
tentative solution σ is defined to be a point in

S(σ, i) = {p ∈ Z3 | p ∈ N(i− 1) ∧ p ∈ N(i + 1)}

The neighborhood of σ can then be defined as

N (σ) = {(i, p) | 0 < i < n ∧ p ∈ S(σ, i)}.

1. PSPLS(S)
2. forall i ∈ S
3. tabu[i]← {};
4. σ ← initial configuration;
5. σ∗ ← σ;
6. l← 0;
7. s← 0;
8. while l ≤ maxIt do
9. select (i, p) ∈ N (σ)

minimizing f(σ[vi ← p]);
10. τ ← RANDOM([4,n/2]); tabu tenure time
11. tabu[i]←

tabu[i] ∪ {move(i, p, σ)};
12. σ ← σ[v1 ← p];
13. if f(σ) < f(σ∗) then
14. σ∗ ← σ;
15. s← 0;
16. else if s > maxStable then
17. σ ←random configuration;
18. s← 0;
19. forall i ∈ S do
20. tabu[i] = {};
21. else
22. s++;
23. l++;

Fig. 4: The Local Search Algorithm.

4.1.5 A Randomized Initialization
The initial solution has a significant impact on the quality
and the speed of the local search algorithm. Given our one-
monomer neighborhood and our fitness function, it is impor-
tant to generate a feasible and compact initial solution with
some HH contacts. The initialization iterates the following
steps while there are amino acids to place.

1) Repeat a random number of times
a) Repeat Forward for a random number of steps.
b) Move Left.
c) Repeat Backward for a random number of steps.

2) Move Up.
3) Switch moves with their opposites (e.g., Forward be-

comes Backward and Left becomes Right).
An initial configuration for the “S4” instance is depicted in
Figure ??.

4.1.6 The Tabu-Search Algorithm
We are now ready to present the basic local search algorithm.
The algorithm, depicted in Figure ??, a tabu search with a
restarting component. Lines 2-7 perform the initializations. In
particular, the tabu list is initialized in lines 2-3, the initial
solution is generated in line 4, while lines 6 and 7 initialize
the iteration counter k, and the stability counter s. The initial
configuration σ is obtained in the manner explained above.
The best solution found so far σ∗ is initialized to σ.

The tabu list is distributed across the amino acids and
maintains a set of moves. A move is formally defined as

move(i, p, σ) = p− σ(vi−1)

where σ(vi−1) denotes the position of amino acid i − 1 in
assignment σ and p is the new position for amino acid i.

6

Note that the subtraction of vi−1 from p yields one of the
basic vectors previously defined (N,S,W,E, ...). The tabu tenure
is randomly selected between 4 and half the length of the
sequence.

The core of the algorithm is given in lines 8-23, where
local moves are iterated for a number of iterations. The local
move is selected in line 9. Here, we use σ[vi ← p] to denote
the solution obtained by changing the value of vi to p in σ.
The key idea is to select the best move in the neighborhood
which is not tabu (meaning it has been previously performed)
or which improves the best solution. The tabu list is updated
in line 11, and the new tentative solution is computed in line
12. Lines 13-15 update the best solution, while lines 16-20
specify the restarting component.

The restarting component simply reinitializes the search
from a random configuration whenever the best solution found
so far has not been improved upon for maxStable iterations.
Note that the stability counter s is incremented in line 22 and
reset to zero in line 15 (when a new best solution is found)
and in line 18 (when the search is restarted).

4.2 Tabu Search Over Two Neighborhoods
The second technique shares all the model related aspects of
the previous one but it differentiates between two types of
neighborhood:

1) The Neighborhood of the H (Hydrophobic) amino acids.
2) The Neighborhood of the P (Polar) amino acids.
The neighborhood of H amino acids is explored in the

same fashion as the unique neighborhood was explored in
the previous tabu search algorithm explained above. On the
other hand, the P neighborhood is explored randomly, i.e., a
random move within this neighborhood is selected at each
iteration. Let us name PSPL(H,numIter) as the effect of
the previously explained tabu algorithm on neighborhood H
for numIter iterations and similarly PSPL(H,numIter) to
that of the neighborhood P. This new “meta” tabu search can
be detailed as follows:

1) Do PSPL(H, inf) until fitness does not improve
2) Do PSPL(P, r)
3) Do PSPL(H, p)
4) Go to step 1
The main idea is to restrict tabu search to a neighborhood

where all the amino acids are Hydrophobic until the fitness
function cannot be improved any further. At this point we
randomly move Polar amino acids (which do not have any
impact on the fitness) r times as a diversification mechanism.
After that, we explore the H neighborhood again but we allow
the fitness function to oscillate for the first p iterations. The
values of r and p are usually dependent on the length of the
sequence.

4.3 A new initialization
We have also introduced a new method to find an initial
solution. It simply consists of performing complete search
using the Constraint Programming model detailed in the
following section along with a greedy heuristic to evaluate

ordering (choose first the value that maximizes the number of
HH contacts).

We perform a limited optimization and return the best
configuration found after a certain number of failures.

5 LARGE NEIGHBORHOOD SEARCH

Structure prediction is a highly complex combinatorial opti-
mization problem. As a result, constraint programming search
may spend considerable time in suboptimal regions of the
search space. To remedy this limitation, our algorithm uses the
idea of large neighborhood search (LNS) [?] which focuses on
reoptimizing subparts of a solution.

Here we describe 3 different Large Neighborhood Search
(LNS) approaches that utilize the previously described Local
Search techniques and a constraint programming (CP) model
that is detailed below.

5.1 The CP Model
The CP model receives as input a sequence of binary values
Hi (0 ≤ i < n) denoting whether amino acid i is hydrophobic
(Hi = 1). Its output associates each amino acid i with a point
(xi, yi, zi) in the FCC lattice. Recall that the FCC lattice is the
closure of 12 vectors V = {v0, . . . , v11} defined as follows:

v0 = {1, 1, 0} v1 = {−1,−1, 0} v2 = {−1, 1, 0}
v3 = {1,−1, 0} v4 = {1, 0, 1} v5 = {−1, 0,−1}
v6 = {−1, 0, 1} v7 = {1, 0,−1} v8 = {0, 1, 1}
v9 = {0,−1,−1} v10 = {0,−1, 1} v11 = {0, 1,−1}.

5.2 Decision Variables
Although the output maps each amino acid i into a FCC lattice
point, the model uses move vectors as decision variables.
These vectors (mx

i ,my
i ,mz

i) specify how to move from point
i − 1 to point i in the self-avoiding walk. The use of move
variables greatly simplifies the modeling: Self-avoidance is
maintained through the lattice points, but move vectors along
with a lexicographical variable ordering allow us to implicitly
check chain connection and drastically reduces the search
space.

5.3 The Domain Constraints
Each move variable (mx

i ,my
i ,mz

i) has a finite domain con-
sisting of the FCC lattice vectors {v0, . . . , v11}, that is

(mx
i ,my

i ,mz
i) ∈ {v0, . . . , v11}.

Each coordinate xi, yi, and zi in the 3D point (xi, yi, zi)
associated with amino acid i has a finite domain 0..2n.

5.4 The Lattice Constraints
The lattice constraints link the move variables and the points
in the FCC lattice. They are specified as follows:

∀ 0 < i < n : xi = xi−1+mx
i & yi = yi−1+my

i & zi = zi−1+mz
i .

The model also uses the redundant constraints (xi + yi +
zi) mod 2 = 0 which are implied by the FCC lattice. In
addition, the initial point is fixed.

7

5.5 The Self-Avoiding Walk Constraints
To express that all amino acids are assigned different points
in the FCC lattice, the model uses a constraint

abs(
∑

k∈i..j

mx
k) + abs(

∑
k∈i..j

my
k) + abs(

∑
k∈i..j

mz
k) 6= 0

for each pair (i, j) of amino acids, ensuring the moves from
the position of amino acid i do not place j at the same position
as i. Indeed, the two points (xi, yi, zi) and (xj , yj , zj) are at
the same position if each of the sums in the above expression
is zero.

5.6 The Objective Function
The objective function maximizes the number of contacts
between hydrophobic amino acids

∑
i,j|i+1<j(dij = 2) ×

Hi ×Hj where dij denotes the square of Euclidean distance
between amino acids i and j. Since the minimal distance in
the FCC lattice is

√
2, the condition dij = 2 holds when there

exists a contact between amino acids i and j.

5.7 The Search Procedure
The search procedure assigns positions to the amino acids
in sequence by selecting moves in their domains. The only
heuristic choice thus concerns which moves to select. In
the course of this research, a number of move selection
heuristics were evaluated. Besides the traditional lexicographic
and random value selections, the heuristics included

1) Minimizing the distance to the origin: Choosing the
move minimizing the distance of the corresponding
amino acid to the origin.

2) Minimizing the distance to the centroid: Choosing
the move minimizing the distance of the corresponding
amino acid to the centroid.

3) Maximizing density: Choosing the move maximizing
the density of the structure.

4) Maximizing hydrophobic density: Choosing the move
that maximizing the density of the structure consisting
only of the hydrophobic amino acids.

The centroid of the conformation is defined as
(1

n

∑n−1
i=0 xi,

1
n

∑n−1
i=0 yi,

1
n

∑n−1
i=0 zi). Most of the dedicated

heuristics bring significant improvements in performance,
although those minimizing the distance to the origin and
the centroid seem to be most effective. Our implementation
randomly selects one of the four heuristics.

5.8 Strengthening the Model During Search
We now describe a number of tightenings of the model which
are applied during search. Their main benefit is to strengthen
the bound on the objective function.

5.8.1 Linking FCC Moves and Distance Constraints
In the model described so far, the distance between two amino
acids ignores the fact that the points are placed on the FCC
lattice. The model may be improved by deriving the fact
that two amino acids are necessarily placed at a distance
greater than

√
2 and thus cannot be in contact. Such derived

information directly improves the bound on the objective
function.

However computing the possible distances between two
amino acids is quite complex in general. As a result, our
constraint-programming algorithm only generates relevant dis-
tances each time a new amino acid is positioned. More
precisely, assuming that amino acid i has just been positioned
on the FCC lattice, the algorithm determines which unassigned
amino acids cannot be in contact with already placed amino
acids (only for H-type amino acids). The key idea is to
compute the shortest path spij in the FCC lattice between
amino acid i and an already placed amino acid j: It then
follows that unassigned amino acids i + 1, . . . , i + spij − 2
cannot be in contact with j. Formally, after placing amino
acid i, the model is augmented with the constraints

∀0 ≤ j ≤ i− 2, i + 1 ≤ l ≤ i + spij − 2 : djl > 2

which ensures that amino acids j and l cannot be in contact.

5.8.2 Bounding the Number of Contacts
The expression of the objective function also does not take into
account how the amino acids are placed in the FCC lattice.
As a result, it typically gives weak bounds on the objective
value. This section shows how to bound the objective value at
a search node more effectively.

The key idea to bound the objective value is to compute
the maximum number of contacts for each unassigned amino
acid independently, thus ignoring their interactions through the
self-avoiding walk. Consider a node of search tree where the
sequence can be partitioned into the concatenation A :: U ,
where A (assigned) is the subsequence of already positioned
amino acids in which i is the last assigned, and where U
(unassigned) contains the remaining unassigned amino acids
(also, we only consider a ∈ A|Ha == 1 and k ∈ U |Hk ==
1). The objective function can then be bounded by

obj ≤ contact(A)+∑
k∈U

min(maxContact(k), bcontact(k, A) + fcontact(k, U))

where contact(A) denotes the number of contacts in sub-
sequence A, bcontact(k, A) bounds the number of contacts
of an amino acid k ∈ U with those amino acids in A, and
fcontact(k, U) bounds the number of contacts of k with those
amino acids in U occurring later in the sequence. The contacts
of each amino acid k ∈ U , maxContact(k), are bounded by
10, since a point in the FCC lattice has 12 neighbors and
there cannot be any contact between two successive amino
acid in the sequence. However, if k == n− 1, i.e., if k is the
last amino acid of the sequence then maxContact(k) == 11,
since that k has no successor amino acid.

To bound the contact of amino acid k with A, the idea is to
consider the neighbors of each amino acid a ∈ A and to find
the one maximizing the contacts with k, i.e.,

bcontact(k, A) = maxa∈A bcontact(k, a, A)
bcontact(k, a, A) = #{j ∈ A | j ∈ N(a) ∧ j ∈ R(k, a)}.

where N(a) denotes the neighbors of amino acid a and
R(k, a) denotes the amino acid in A reachable from k, i.e.,

8

1. LNS PSP(σ)
2. limit← limit0
3. fraction← fraction0

4. for m iterations do
5. uniform select i ∈ 1..n− 1
6. size← n · fraction
7. j ← i + size
8. 〈σ∗, explored〉 = CPSolve(σ, i..j, limit)
9. if σ∗ 6= ⊥ then
10. σ ← σ∗

11. limit← limit0
12. fraction← fraction0

13. else if explored then
14. fraction← fraction + ∆fraction
15. else
16. limit← limit + ∆limit
17. return σ

Fig. 5: LNS for Protein Structure Prediction (limit0=500 failures,
fraction0 = 3

100
, ∆fraction = 1

1000
and ∆limit=100 failures).

R(k, A) = {a ∈ A | spai ≤ (k − i) + 1}. Recall that i
is the last amino acid assigned. Finally, to bound the number
of contacts of k with those amino acids occurring later in the
sequence, we use

fcontact(k, U) =
∑

l∈U :l≥k+2

Hl

to count the number of hydrophobic amino acids occurring
later in U that can be in contact with k. This bound can be
computed in time O(n2) and is quite tight when the number
of amino acids in U is reasonably small.

5.9 Sequence Reoptimized LNS
Given a feasible walk σ, the idea is to solve the structure
prediction problem for a subsequence of the original sequence,
assuming that the remaining amino acids are positioned like in
σ. More precisely, given an interval i..j, an LNS optimization
step consists of solving the original model with the additional
constraints

∀ k : 0 ≤ k < i : xk = σ(xk) ∧ yk = σ(yk) ∧ zk = σ(zk)

∀ k : j < k < n : xk = σ(xk) ∧ yk = σ(yk) ∧ zk = σ(zk)

where σ(x) denotes the value of variable x in solution σ.
The complete LNS algorithm is depicted in Figure ??.

It receives as input a high-quality solution produced by the
tabu-search algorithm described in [?] and uses a subrou-
tine CPSolve(σ, i..j, l) which solves augmented models using
constraint programming and terminates after at most limit
failures had occurred or when the entire search space has been
explored. It returns a pair 〈σ∗, explored〉, where σ∗ is either
a new best solution or ⊥ if no such solution was found, and
explored is a boolean which is true when the entire search
space has been explored for the augmented model. Lines 2–3
initialize two parameters: the limit on the number of failures
and the fraction of the subsequence to (re)-position on the

FCC lattice. Line 8 is the call to the constraint-programming
solver. After this call there are three possibilities. First, that the
search is successful: then the best solution is updated and the
parameters are re-initialized (lines 9–12). Second, the search
space has been explored entirely with no improvement; the
fraction of the sequence to re-position is increased at a certain
rate ∆fraction (lines 13–14). Finally, CPSolve reached limit
without an improvement: the number of failures is increased
in ∆limit to give it more time to succeed in the next trial
(lines 15–16).

5.10 Multiple Sequence Reoptimized LNS
This is a slight modification of the previously defined LNS
algorithm. It re-optimizes a solution iteratively but instead of
fixing several amino acids and solving a subsequence, it solves
several subsequences at the same time. In general, given a
set of intervals I defined by Imi...Imj , for a given interval
Im ∈ I , an LNS optimization step consists of solving the
original model with the additional constraints

∀ k /∈ I : xk = σ(xk) ∧ yk = σ(yk) ∧ zk = σ(zk)

where k ∈ I means than Imi > k > Imj for some interval
Im ∈ I . The algorithm starts with one interval and it increases
the number of intervals in successive runs.

5.11 3D Structure Reoptimized LNS
This second modification concerns fixing all the amino acids
except for a set of 3D positions instead of subsequences. Given
a set of 3D boxes B around an amino acid position from a
feasible walk σ the LNS algorithm solves the original model
adding the constraints

∀ k :/∈ B : xk = σ(xk) ∧ yk = σ(yk) ∧ zk = σ(zk)

where k ∈ B means than point (σ(xk), σ(yk), σ(zk)) ∈ Bm
for some box Bm ∈ B. The algorithm starts with one box
and it increases the number of boxes in successive runs.

6 EXPERIMENTAL RESULTS
All sequences used in the benchmarking studies as well as
additional scripts, program outputs, etc. can be found at http:
//bioinformatics.bc.edu/clotelab/FCCproteinStructure/. Results
from Tables ?? and ?? were obtained by a COMET [?], [?]
implementation of the LS and LNS algorithms, run on a
single core of a 60 Intel based, dual-core, dual processor,
Dell Poweredge 1855 blade server located in the Computer
Science Department of Brown University. Each blade of the
server had 8 Gygabytes of memory and 300 Gygabytes local
disk. Results from Table ?? were performed on a cluster of
Dell Power Edge 1950 4-core Intel E5430 processors with 2.66
GHz and 16 Gb of RAM, located in the Biology Department of
Boston College. For tests at both Brown University and Boston
College, PBS/Torque was used to batch the runs; however, no
algorithmic parallelism, and each run used only one core.

LS based algorithms were run with a limit of 10,000
iterations. The LN-2N algorithm uses the Randomized Initial-
ization initialization described in subsection 4.1 of this paper.

9

Hybrid Large Neighborhood Search (LNS-) based algorithms
were run (after 10,000 iterations of Local Search) for 10
minutes on the “Harvard Instances” and for 30 minutes on
the rest. Exact computation times for LS and LNS depended
on sequence length and are given in Table ??; however, total
computation time per sequence was at most approximately 35
minutes.

6.1 The Harvard Instances
Reference [?] contains a comparison of several methods to
fold 10 different proteins, called the “Harvard instances”, on
the cubic lattice. The cubic lattice has been heavily studied as
pointed out in the introduction, but the FCC lattice has been
shown to admit the tightest packing of spheres [?], indicating
that it allows for more complex 3D structures. The first results
for these instances on the FCC lattice were presented in [?],
[?] and confirmed that the FCC lattice allows for structures
with much lower energy than the cubic lattice.

Tables ?? and ?? depict the results of the LS and our
Hybrid LNS algorithms. Note that the values shown in the
table correspond to the number of HH contacts. The LNS
step improves all solutions in less than 30 minutes. Since
no complete search algorithms have been applied to these
instances on the FCC lattice, the energy of the optimal
structure is not known. However, given the consistency in the
energies of all the sequences (which all have 48 amino acids
and 24 hydrophobic amino acids), it is likely the case that
these results are near-optimal.

6.2 Other Instances
The S and R instances, taken from [?], The only FCC foldings
available in the literature are the S instances S1-S4, taken from
page 130 of Will’s dissertation [?], and the R instances R1-
R3, taken from Table 1 of [?]. S. Will kindly supplied us with
five additional instances F90 and three additional instances
F180. Tables ?? and ?? compare the number of H-H contacts
computed by each variant of algorithm presented in this paper,
for the Harvard instances and the S,R,F90 and F180 instances.
Table ?? indicates the number of residues, or sequence length
(Len), the number of H residues (numH), as well as the
maximum and average number of contacts found. Run time
was fixed at a maximum of approximately 35 minutes, where
Table ?? indicates the number of seconds used by the initial
local search (LS) strategy, followed by the number of minutes
used by (the variant) of large neighborhood search. Our results
demonstrate that LNS significantly improves on the local
search algorithm, with improvements ranging from 1.7% to
13%. The largest improvements occur on the R instances,
which is tue to the lower quality of local search for these
instances. Results for the S instances are within 4.5% of the
optimal solution, while our algorithm is within 16.3% of the
optimal solutions on the R instances.

Table ?? presents the nonconvergence rate for Will’s hy-
drophobic core threading algorithm, HPstruct, for random-
izations of the F90 and F180 instances with a run time bound
of 30 minutes. In order to produce additional test instances
that are similar to those provided us by S. Will, we we

doubled the length of the F90 instances by concatenating a
copy of the same sequence. Subsequently, for each of the 5
F90, 5 F90-doubled and 3 F180 sequences, we generated 10
randomized sequences having the same diresidues, by running
our implementation of the Altschul-Erikson diresidue shuffle
algorithm [?] using our code described in [?]. (Randomization
code and all sequences are available at http://bioinformatics.bc.
edu/clotelab/FCCproteinStructure/.) For each instance class,
Table ?? indicates the number of sequences tested, their length
and the failure rate of HPstruct with 30 minute time bound.6

Within the 30 minute time bound, we had approximate solu-
tions using LS+LNS; due to space restrictions, these results
are available at our web site. Finally, Figure ?? depicts a 3D
view of the best configuration found for S2 for some of the
algorithms presented as well as the native state.

It is also important to stress how the optimal solutions were
obtained in [?]. Will’s algorithm solves a substantially different
problem than we consider, namely, the problem of threading
a HP-sequence onto hydrophobic cores from a collection of
(off-line) precomputed H cores. Unlike the Yue-Dill CHCC
method [?], [?], which computes H cores on the fly, the faster
program, HPstruct, requires precomputed complete set of
hydrophobic cores for each given number of H residues. While
the Yue-Dill CHCC approach is slower than HPstruct, it can
always (in principle) determine an optimal structure, provided
computation time is unbounded (decades or eons). In contrast,
Will’s HPstruct can fail due to the unavailability of a
precomputed optimal H core.

There is a fundamental conceptual difference between
the algorithm(s), LS+LNS, presented in this paper and the
hydrophobic-core constraint-programming methods of Yue and
Dill [?], [?] and Will and Backofen [?], [?]. This difference
can best be described using the concepts of Monte-Carlo and
Las Vegas probabilistic algorithms from theoretical computer
science [?]. Monte-Carlo algorithms always converge, but
have a (small) probability of error in the solution proposed;
in contrast, Las Vegas algorithms always return the correct
solution, but have a (small) probability of not converging. By
analogy, our approach (LS+LNS) is akin to a Monte-Carlo
method, in that an approximate solution is always returned. In
contrast, hydrophobic-core constraint programming is akin to
a Las Vegas method, in that any solution returned is an exact
(optimal) solution; however, in many cases, the hydrophobic-
core method fails to return any answer. Table 6.1 on page 129
of [?, p. 129] states that the threading algorithm only solves
50% of the instances with an H core of size 100 within 15
minutes. This is corroborated by Table ??, where it is shown
that the failure rate of HPstruct can be almost 80% for
length 180 sequences, and 100% for length 360 sequences,

6. As well, we doubled the length of the F180 sequences, resulting in total
length of 360, by concatenating a copy of the same sequence. Subsequently,
for each of the 3 F180-doubled sequences, we generated 10 randomized
sequences using our implementation of the Altschul-Erikson algorithm. Al-
though we obtained approximation solutions using local search (LS) alone,
large neighborhood search (LNS) required too much memory when run on
length 360 sequences using the Boston College cluster. However, in all
these cases, Will’s program HPstruct was unable to compute the optimal
conformation using the H core for 200 hydrophobic residues, kindly sent to
us by S. Will.

10

Seq. Native E. Len numH LS LS-G LS-2N LS-2N-G Time
H1 69 48 24 65 (57.50) 51 (47.17) 68 (64.70) 68 (64.61) 75 s
H2 69 48 24 64 (56.59) 55 (46.79) 69 (64.32) 68 (62.51) 75 s
H3 72 48 24 66 (56.69) 58 (54.38) 68 (62.08) 67 (62.51) 75 s
H4 71 48 24 65 (58.08) 56 (49.26) 67 (63.15) 68 (63.10) 75 s
H5 70 48 24 64 (57.01) 57 (42.95) 67 (63.38) 68 (63.79) 75 s
H6 70 48 24 63 (56.52) 40 (34.35) 69 (63.38) 68 (64.91) 75 s
H7 70 48 24 63 (58.15) 49 (41.10) 68 (63.36) 67 (63.75) 75 s
H8 69 48 24 63 (55.31) 54 (50.27) 67 (62.20) 66 (62.56) 75 s
H9 71 48 24 67 (58.91) 54 (46.77) 69 (64.90) 69 (64.40) 75 s
H10 68 48 24 64 (57.47) 45 (30.03) 67 (63.96) 67 (63.61) 75 s
S1 357 135 100 296 (271.03) 276 (270.99) 343 (320.55) 345 (323.81) 300 s
S2 360 151 100 304 (268.43) 250 (244.23) 339 (318.30) 339 (316.60) 300 s
S3 367 162 100 293 (259.55) 234 (228.71) 332 (310.02) 337 (306.03) 300 s
S4 370 164 100 294 (263.73) 226 (222.99) 337 (307.77) 329 (300.92) 300 s
R1 384 200 100 287 (240.85) 212 (205.58) 292 (254.69) 291 (264.53) 500 s
R2 383 200 100 290 (239.12) 209 (205.60) 294 (262.74) 296 (267.75) 500 s
R3 385 200 100 260 (230.57) 228 (212.12) 305 (260.70) 299 (267.05) 500 s
F90 1 168 91 50 143 (125.75) 104 (102.97) 154 (142.25) 153 (142.77) 180 s
F90 2 168 91 50 142 (123.68) 117 (112.05) 156 (141.45) 157 (141.89) 180 s
F90 3 167 91 50 138 (121.80) 110 (101.7) 157 (143.79) 159 (145.24) 180 s
F90 4 168 91 50 144 (124.35) 94 (92.74) 162 (144.17) 158 (139.26) 180 s
F90 5 167 91 50 138 (121.59) 110 (107.65) 157 (143.32) 154 (145.00) 180 s
F180 1 ? 180 100 244 (204.28) 201 (188.06) 261 (232.30) 265 (240.88) 300 s
F180 2 ? 180 100 240 (222.40) 228 (211.07) 279 (255.24) 278 (254.11) 300 s
F180 3 378 180 100 256 (227.69) 195 (191.91) 292 (262.86) 287 (261.55) 300 s

TABLE 1: Largest number of contacts found for each Local Search (LS) based algorithm showing the average contacts over 100 runs in
parenthesis. Sequence length and number of hydrophobic residues dictated the time used for local search: (i) Harvard instances: 75 sec. LS;
(ii) S: 300 sec. LS; (iii) R: 500 sec. LS; (iv) F90: 180 sec. LS; (v) F180: 300 sec. Boldface font indicates the largest value found. Native
E. (i.e. native energy) is the optimal number of contacts, LS is Tabu Search (i.e. local search) with randomized initialization, LS-G is Tabu
Search with the new initialization, LS-2N is Two Neighborhoods Tabu Search with randomized initialization, LS-2N-G is Two Neighborhoods
Tabu Search with the new initialization. The Harvard instances H1-H10 are taken from [?], the S instances S1-S4 from page 130 of Will’s
dissertation [?], the R instances R1-R3 from Table 1 of [?], and the F90 and F180 instances were provided to us by S. Will, who kindly
provided us with precomputed hydrophobic cores and executable code for his hydrophobic core threading software, HPstruct, to permit
testing. In all cases, native energy is computed using HPstruct, described in [?], [?], although the web server could only converge for the
Harvard instances. For instances F180 1, F180 2, Will’s program HPstruct did not converge within 35 minutes.

allowing for 30 minutes of computation. (In case of 100%
failure, the cause is due to the unavailability of H cores for
200 H residues.) On small problem instances, as illustrated in
Tables ??,??, Will’s method is in almost all cases the method
of choice, providing a rapid computation of the exact solution.
In contrast, for larger instances, as illustrated in Table ??, there
are serious problems of convergence of the threading algorithm
– either the algorithm did not converge within 30 minutes or
there were no precomputed hydrophobic cores necessary for
the initialization of the threading algorithm.

From Tables ??,??, it can be seen how the local search
achieves initial solutions which are then quickly improved by
the LNS. Running LNS for a longer time improves, in general,
the average number of contacts obtained, with a gradual
limit on improvement. Figure ?? depicts the improvement of
solutions of LN-2D plus LNS-3D algorithm over time. The
algorithm exhibits a steep ascent, followed by a more moderate
increase, and then another steep ascent. Note that Will’s
HPstruct program relies heavily on the energy model and its
use of precomputed hydrophobic cores, thus perhaps making
it difficult to generalize to other energy models. In contrast,
our algorithm could be modified to handle dihedral angles and
a different energy model. Indeed, preliminary results indicate
that our method can be applied to problems such as RNA
structure prediction with certain modifications.

7 CONCLUSIONS AND FUTURE WORK

This paper presented variants of a LS+LNS algorithm for
finding high-quality self avoiding walks for the Hydrophobic-
Polar (HP) energy model on the Face Centered Cubic (FCC)
lattice. The algorithm relies on a local search initial solution
which is then improved by a constraint-programming LNS
strategy. Benchmarking studies7 show the value of our ap-
proach, compared with the hydrophobic core threading ap-
proach of S. Will. For problem instances for which a suitable,
precomputed hydrophobic core exists and for which Will’s
algorithm converges within a required time, Will’s method is
clearly optimal. In contrast, our method immediately furnishes
useful approximations by local search, which then improve
with additional computational time by the repeated application
of large neighborhood search. Results of this paper show that
the hybridization of local search and constraint programming
has great potential for application to the highly combinatorial
problem of structure prediction, in a manner that can be
viewed as complementary to hydrophobic core threading over
precomputed cores.

The goal of this paper is to apply constraint programming
(CP) to compute approximations for solutions to instances
of the problem of protein structure prediction for the HP-

7. Full sequence information and predicted structures for the randomiza-
tions obtained using the Altschul-Erikson algorithm [?], [?] can be found at
http://bioinformatics.bc.edu/clotelab/FCCproteinStructure/.

11

Seq. Native E. LNS-MULT LNS-3D Time
H1 69 *69 (66.77) *69 (67.68) 75 s + 10 m
H2 69 *69 (66.60) *69 (66.73) 75 s + 10 m
H3 72 *72 (68.02) 71 (68.06) 75 s + 10 m
H4 71 *71 (67.31) *71 (67.61) 75 s + 10 m
H5 70 *70 (66.98) *70 (67.04) 75 s + 10 m
H6 70 *70 (67.49) *70 (67.43) 75 s + 10 m
H7 70 *70 (66.55) 69 (66.68) 75 s + 10 m
H8 69 *69 (65.80) *69 (65.81) 75 s + 10 m
H9 71 *71 (67.95) *71 (67.92) 75 s + 10 m
H10 68 *68 (65.76) *68 (65.67) 75 s + 10 m
S1 357 349 (332.37) *351 (336.74) 300 s + 30 m
S2 360 349 (328.98) *353 (334.17) 300 s + 30 m
S3 367 351 (323.77) *353 (329.80) 300 s + 30 m
S4 370 346 (323.98) *354 (334.22) 300 s + 30 m
R1 384 313 (287.98) *330 (305.54) 500 s + 30 m
R2 383 331 (289.83) *333 (308.31) 500 s + 30 m
R3 385 325 (288.49) *334 (307.76) 500 s + 30 m
F90 1 168 164 (156.83) *165 (157.39) 180 s + 30 m
F90 2 168 *163 (155.05) *163 (155.81) 180 s + 30 m
F90 3 167 *163 (156.23) *163 (157.20) 180 s + 30 m
F90 4 168 *164 (156.20) 163 (156.54) 180 s + 30 m
F90 5 167 163 (155.77) *164 (157.46) 180 s + 30 m
F180 1 ? 289 (264.06) *293 (269.07) 300 s + 30 m
F180 2 ? 302 (280.84) *312 (287.21) 300 s + 30 m
F180 3 378 306 (286.78) *313 (295.31) 300 s + 30 m

TABLE 2: Greatest number of contacts found for each Hybrid Large Neighborhood Search based algorithm showing the average contacts
over 100 runs in parenthesis. Boldface indicates the highest value found. Asterisks indicate highest number of contacts overall. Native E.
is the optimal number of contacts, LNS-MULT is Multiple Sequence Reoptimized LNS and LNS-3D is 3D Structure Reoptimized LNS.
Computation times are as follows: (i) Harvard instances: 75 sec. LS + 10 min. LNS; (ii) S: 300 sec. + 30 min. of LNS; (iii) R: 500 sec. +
30 min. LNS; (iv) F90: 180 sec. LS + 30 min. LNS; (v) F180: 300 sec. + 30 min. LNS.

model on the FCC lattice.8 Experimental results are meant
only to benchmark the LNS algorithm. Our long term interest
is the application of local search and CP to real biomolecular
structure prediction. Bradley et al. [?] argue that protein
structure prediction consists of two aspects: (1) a good search
strategy (2) adequate fragment library. Skolnick and others
have argued that due to the Structural Genome Initiative (high-
throughput X-ray diffraction studies of proteins having less
than 30% homology to any existent proteins), the fragment
library is essentially currently adequate. While most search
strategies (including that of Bradley, Misura and Baker) are
Monte Carle (possibly with simulated annealing, possibly with
replica exchange), our goal is to develop algorithms such as
LNS that ultimately will play a role in biomolecular structure
prediction. This is the long-term justification of the current
work.

Our current work in progress explores more complex en-
ergy models and off-lattice setups. Preliminary results show
that changing the energy (i.e., adding weights to contacts)
can be achieved with minimal modification and with similar
performance. The algorithm can be adapted to RNA structure
prediction, which we are currently exploring and validating
from a biological standpoint.

8. Structure prediction for the HP-model on the cubic lattice is known to
be NP-complete [?], although this appears to be yet unproved for the FCC
lattice.

Seq. Num seq Len Failure rate
F90 50 90 10%
F90-doubled 50 180 78%
F180 30 180 50%

TABLE 3: Nonconvergence rate for Will’s hydrophobic core thread-
ing algorithm, for randomizations of the F90 and F180 instances
with a run time bound of 30 minutes. To produce longer instances,
we doubled the length of the F90 instances by concatenating a copy
of the same sequence. For each of 5 F90, 5 F90-doubled, and 3 F180
sequences, we produced 10 randomized sequences having the same
diresidues, by running our implementation of the Altschul-Erikson
diresidue shuffle algorithm [?] using our code described in [?]. For
each instance class, the table displays the number of sequences tested,
their length and the failure rate of HPstruct with 30 minute time
bound. Tests were performed on a cluster of Dell Power Edge 1950
4-core Intel E5430 processors with 2.66 GHz and 16 Gb of RAM.
(PBS/Torque was used to batch the runs; however, no algorithmic
parallelism was used, and each run used only one core.) Number of
H-H contacts obtained by our method within 30 minute time bound
can be found at our web site, cited in Section ??.

ACKNOWLEDGEMENTS

Sebastian Will’s publicly available web server http://cpsp.
informatik.uni-freiburg.de:8080/StructJSP.jsp was used to de-
termine the optimal number of H-H contacts for the Harvard
instances H1-H10. We would like to thank Sebastian Will
for providing us with additional problem instances S, R,
F90, and F180, and especially for providing us precomputed
hydrophobic cores and the executable code for his program
HPstruct that allowed us to perform benchmarking stud-

12

(a) LS (304 contacts) (b) LS-2N (339 contacts) (c) LNS-MULT (351 contacts)

(d) LNS-3D (353 contacts) (e) Native Configuration (360 contacts)

Fig. 6: Lowest Energy Configurations for Instance S2. Native is the Optimal Configuration.

ies. Sequence data used in the benchmarking tests is avail-
able at http://bioinformatics.bc.edu/clotelab/SUPPLEMENTS/
HPsequencesForProteinsPaper/. Finally, we would like to
thank the reviewers for their helpful comments.

Ivan Dotú is supported by a “Fundacion Caja Madrid”
grant and Manuel Cebrián by grant TSI 2005-08255-C07-
06 of the Spanish Ministry of Education and Science. Peter
Clote is partially supported by a Chaire d’Excellence from
Digiteo Foundation and by NSF grants DBI-0543506 and
DMS-0817971. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] R.A. Abagyan, M.M. Totrov, and D.A. Kuznetsov. ICM: a new method

for structure modeling and design: Applications to docking and structure
prediction from the distorted native conformation. J. Comp. Chem.,
15:488–506, 1994.

[2] S.F. Altschul and B.W. Erikson. Significance of nucleotide sequence
alignments: A method for random sequence permutation that preserves
dinucleotide and codon usage. Mol. Biol. Evol, 2(6):526–538, 1985.

[3] C. B. Anfinsen. Principles that govern the folding of protein chains.
Science, 181:223–230, 1973.

[4] K. Arnold, L. Bordoli, J. Kopp, and T. Schwede. The SWISS-MODEL
workspace: a web-based environment for protein structure homology
modelling. Bioinformatics, 22(2):195–201, January 2006.

[5] R. Backofen. The protein structure prediction problem: A constraint
optimization approach using a new lower bound. Constraints, 6(2-
3):223–255, 2001.

[6] R. Backofen, S. Will, and E. Bornberg-Bauer. Application of constraint
programming techniques for structure prediction of lattice proteins with
extended alphabets. Bioinformatics, 15(3):234–242, March 1999.

[7] R. Backofen, S. Will, and P. Clote. Algorithmic approach to quantifying
the hydrophobic force contribution in protein folding. Pacific Symposium
on Biocomputing, 5:92–103, 2000.

[8] Rolf Backofen. Using constraint programming for lattice protein folding.
In Workshop on Constraints and Bioinformatics/Biocomputing, 1997.
Held in conjunction with Third International Conference on Principles
and Practice of Constraint Programming (CP97).

[9] Rolf Backofen and Sebastian Will. A constraint-based approach to
structure prediction for simplified protein models that outperforms other

13

0 3000 5000 7000 9000 11000 13000 15000

X: 1078
Y: −360

seconds

Local Search (−315)
Large Neighbourhood Search (−346)
Native State (−360)

45

Fig. 7: Execution trace of LN-2D (20,000 iterations) plus LNS-3D (2 hours) on Will’s instance S2.

existing methods. In Proceedings of the 19th International Conference
on Logic Programming (ICLP 2003), pages 49–71, 2003.

[10] B. Berger and T. Leighton. Protein folding in the hydrophobic-
hydrophilic (hp) model is NP-complete. Journal of Computational
Biology, 5:27–40, 1998.

[11] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne,
K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan,
J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki,
H. Weissig, J. D. Westbrook, and C. Zardecki. The Protein Data Bank.
Acta Crystallogr. D. Biol. Crystallogr., 58(Pt):899–907, June 2002.

[12] H. J. Bernstein. Recent changes to RasMol, recombining the variants.
Trends Biochem. Sci., 25(9):453–455, September 2000.

[13] E. Bornberg-Bauer. Chain growth algorithms for HP-type lattice pro-
teins. In RECOMB, pages 47–55. ACM Press, 1997.

[14] P. Bradley, K. M. Misura, and D. Baker. Toward high-resolution de novo
structure prediction for small proteins. Science, 309(5742):1868–1871,
September 2005.

[15] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swami-
nathan, and M. Karplus. CHARMM: A program for macromolecular
energy, minimization, and dynamics calculations. J. Comput. Chem.,
4:187–217, 1983.

[16] B. Cipra. Packing challenge mastered at last. Science, 281:1267, 1998.
[17] P. Clote, F. Ferré, E. Kranakis, and D. Krizanc. Structural RNA has lower

folding energy than random RNA of the same dinucleotide frequency.
RNA, 11(5):578–591, 2005.

[18] A. Condon. Using constraint programming and local search methods to
solve vehicle routing problems. CP’98, pages 565–575, 1998.

[19] J.H. Conway and N.J.A. Sloane. Sphere Packing, Lattices and Groups.
Springer-Verlag, 1998. Third edition.

[20] D.G. Covell and R.L. Jernigan. Conformations of folded proteins in
restricted spaces. Biochemistry, 27:3287–3294, 1990.

[21] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yan-
nakakis. On the complexity of protein folding. J. Comp. Biol., 5(3):523–
466, 1998.

[22] A. Dal Palu, A. Dovier, and F. Fogolari. Constraint Logic Programming
approach to protein structure prediction. BMC. Bioinformatics, 5:186,
November 2004.

[23] J. A. Dalton and R. M. Jackson. An evaluation of automated homology
modelling methods at low target template sequence similarity. Bioinfor-
matics, 23(15):1901–1908, August 2007.

[24] F. Ding, J. M. Borreguero, S. V. Buldyrey, H. E. Stanley, and N. V.
Dokholyan. Mechanism for the alpha-helix to beta-hairpin transition.
Proteins., 53(2):220–228, November 2003.

[25] I. Dotu, M. Cebrian, P. Van Hentenryck, and Peter Clote. Protein
structure prediction with large neighborhood constraint programming
search. In P.J. Stuckey, editor, International Conference on Principles
and Practice of Constraint Programming (CP’08), volume 5202, pages
82–96. Springer Lecture Notes in Computer Science, 2008.

[26] I. Dotú, M. Cebrián, P. van Hentenryck, and P. Clote. A local
search approach to protein structure prediction on the face centered
cubic lattice. In Twenty-Third Conference of the Association for the
Advancement of Artificial Intelligence (AAAI-08), Jul 13-17 2008.

[27] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang,
R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Koll-
man. A point-charge force field for molecular mechanics simulations of
proteins based on condensed-phase quantum mechanical calculations. J.
Comput. Chem., 24(16):1999–2012, December 2003.

[28] M. S. Evans, I. M. Sander, and P. L. Clark. Cotranslational folding

14

promotes beta-helix formation and avoids aggregation in vivo. J. Mol.
Biol., 383(3):683–692, November 2008.

[29] F. Ferré and P. Clote. Disulfide connectivity prediction using sec-
ondary structure information and diresidue frequencies. Bioinformatics,
21(10):2336–2346, 2005.

[30] F. Ferre and P. Clote. Dianna 1.1: an extension of the DiANNA
web server for ternary cysteine classification. Nucleic. Acids. Res.,
34(Web):W182–W185, July 2006.

[31] C. A. Floudas. Computational methods in protein structure prediction.
Biotechnol. Bioeng., 97(2):207–213, June 2007.

[32] G. Helles. A comparative study of the reported performance of ab initio
protein structure prediction algorithms. J. R. Soc. Interface, 5(21):387–
396, April 2008.

[33] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT
Press, 2005.

[34] L. Holm and C. Sander. Database algorithm for generating protein
backbone and side-chain co-ordinates from a C alpha trace application
to model building and detection of co-ordinate errors. J. Mol. Biol.,
218(1):183–194, March 1991.

[35] B. John and A. Sali. Comparative protein structure modeling by iterative
alignment, model building and model assessment. Nucleic. Acids. Res.,
31(14):3982–3992, July 2003.

[36] A. H. Khodabakhshi, J. Manuch, A. Rafiey, and A. Gupta. Inverse
protein folding in 3D hexagonal prism lattice under HPC model. J.
Comput. Biol., 16(6):769–802, June 2009.

[37] J.L. Klepeis and C.A. Floudas. Prediction of β-sheet topology and
disulfide bridges in polypeptides. Journal of Computational Chemistry,
24(2):191–208, 2002.

[38] J. Kyte and R. F. Doolittle. A simple method for displaying the
hydropathic character of a protein. J. Mol. Biol., 157(1):105–132, May
1982.

[39] P. Y. Lam, P. K. Jadhav, C. J. Eyermann, C. N. Hodge, Y. Ru, L. T.
Bacheler, J. L. Meek, M. J. Otto, M. M. Rayner, Y. N. Wong, et al.
Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV
protease inhibitors. Science, 263(5145):380–384, January 1994.

[40] R. H. Lathrop. The protein threading problem with sequence amino acid
interaction preferences is NP-complete. Protein. Eng., 7(9):1059–1068,
September 1994.

[41] R.H. Lathrop and T.F. Smith. Global optimum protein threading with
gapped alignment and empirical pair score functions. J. Mol. Biol.,
255(4):641–665, 1996.

[42] K.F. Lau and K. A. Dill. A lattice statistical mechanics model of
the conformational and sequence spaces of proteins. Journal of the
American Chemical Society, 22:3986–3997, 1989.

[43] B. Lee and F. M. Richards. The interpretation of protein structures:
estimation of static accessibility. J. Mol. Biol., 55(3):379–400, February
1971.

[44] N. Madras and G. Slade. The Self-Avoiding Walk. Birkh?user, Boston,
1996. Series: Probability and its Applications, 448 p., ISBN: 978-0-
8176-3891-7.

[45] L. Michel, A. See, and P. Van Hentenryck. Parallelizing constraint
programs transparently. In CP’2007, 2007.

[46] S. Miyazawa and R. L. Jernigan. Self-consistent estimation of inter-
residue protein contact energies based on an equilibrium mixture ap-
proximation of residues. Proteins., 34(1):49–68, January 1999.

[47] M. Paluszewski, T. Hamelryck, and P. Winter. Reconstructing protein
structure from solvent exposure using tabu search. Algorithms. Mol.
Biol., 1:20, 2006.

[48] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[49] P. Pokarowski, A. Kloczkowski, R. L. Jernigan, N. S. Kothari,

M. Pokarowska, and A. Kolinski. Inferring ideal amino acid interaction
forms from statistical protein contact potentials. Proteins., 59(1):49–57,
April 2005.

[50] G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordi-
nation number and relative solvent accessibility in proteins. Proteins.,
47(2):142–153, May 2002.

[51] A. Šali, E. Shakhnovich, and M. Karplus. How does a protein fold?
Nature, 369:248–251, May 1994.

[52] A. Šali, E. Shakhnovich, and M. Karplus. Kinetics of protein folding:
A lattice model study of the requirements for folding to the native state.
Journal of Molecular Biology, 235:1614–1636, 1994.

[53] N. Siew and D. Fischer. Convergent evolution of protein structure
prediction and computer chess tournaments: CASP, Kasparov, and
CAFASP. IBM Systems Journal, 40(2):410–425, 2001.

[54] M. Sippl. Calculation of conformation ensembles from potentials of
mean force. J. Mol. Biol., 213:859–883, 1990.

[55] J. Skolnick and A. Kolinski. Simulations of the Folding of a Globular
Protein. Science, 250(4984):1121–1125, November 1990.

[56] R. Unger and J. Moult. Genetic algorithms for protein folding simula-
tions. Journal of Molecular Biology, 231:75–81, 1993.

[57] S. Will. Constraint-based hydrophobic core construction for protein
structure prediction in the face-centered-cubic lattice. In Russ B. Altman,
A. Keith Dunker, Lawrence Hunter, and Teri E. Klein, editors, Pacific
Symposium on Biocomputing, volume 7, pages 661–672, 2002. World
Scientific Publishing Co., Singapore.

[58] Sebastian Will. Exact, Constraint-Based Structure Prediction in Simple
Protein Models. PhD thesis, Friedrich-Schiller-Universität Jena, April
2005.

[59] S. Wu, J. Skolnick, and Y. Zhang. Ab initio modeling of small proteins
by iterative TASSER simulations. BMC. Biol., 5:17, 2007.

[60] K. Yue and K. A. Dill. Sequence-structure relationships in proteins and
copolymers. Phys. Rev. E, 48(3):2267–2278, September 1993.

[61] K. Yue and K. A. Dill. Folding proteins with a simple energy function
and extensive conformational searching. Protein. Sci., 5(2):254–261,
February 1996.

[62] K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. I. Shakhnovich,
and K. A. Dill. A test of lattice protein folding algorithms. Proc. Natl.
Acad. Sci. U.S.A., 92(1):325–329, January 1995.

[63] K. Yue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I. Shakhinovich, and
K.A. Dill. A test of lattice protein folding algorithms. Proc. Natl. Acad.
Sci. USA, 92:325–329, 1995.

[64] M.J. Zaki. Protein Structure Prediction. Humana Press, 2007. second
edition.

[65] Y. Zhang. I-TASSER server for protein 3D structure prediction. BMC.
Bioinformatics, 9:40, 2008.

[66] Y. Zhang and J. Skolnick. The protein structure prediction problem
could be solved using the current PDB library. Proc. Natl. Acad. Sci.
U.S.A., 102(4):1029–1034, January 2005.

