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Abstract. We present a detailed analysis for asymptotical number of
case of π-shapes, similar to that of the RNA secondary structures.

1. Introduction

In this section, we give a self-contained justification of the application
of the Odlyzko-Flajolet theorem (2) to obtain the asymptotic number of
π-shapes compatible with secondary structures on n. Recall that if S(z) =
∑

∞

n=0 Snzn is the generating function for π-shapes compatible with sec-
ondary structures on n, it is given by

S(z) =
1 − z5 −

√
1 − 2z5 − 4z7 + z10

2(1 − z)z2

We begin by discussing why the square root function is not analytic, and why
the exponential growth rate of Sn is determined by the dominant singularity.

2. Why the square root is not analytic

The definition of a function f being analytic at a point z0 is that the
complex derivative of f is defined at z0. Note that while the function

√
z

is defined at z=0, it is not analytic at z=0. The derivative of
√

z = z1/2

is 1
2
z−1/2. As is suggested by this, the derivative does not exist at zero.

One can directly find this by showing that the Cauchy-Riemann equations
are not satisfied (if they are, the complex derivative exists), but it’s ugly.
One can also use the Cauchy integral theorem. In any case,

√
z is analytic

everywhere except 0.

3. Back to task, exponential growth factor

Similarly the function
√

1 − 2z5 − 4z7 + z10 is not analytic exactly at the
zeros of the polynomial 1 − 2z5 − 4z7 + z10. And the function,

S =
1 − z5 −

√
1 − 2z5 − 4z7 + z10

2(1 − z)z2

This research was supported by National Science Foundation Grant DBI-0543506.
Corresponding author: P. Clote, Tel: (617) 552-1332, Fax: (617) 552-2011.
W.A. Lorenz and Y. Ponty should both be considered first authors.

1



2 W.A. LORENZ, Y. PONTY, P. CLOTE, W.A. LORENZ, Y. PONTY, AND P. CLOTE

is analytic everywhere except the zeros of the polynomial inside the square
root, and possibly where the denominator equals 0.

It is known from introductory complex analysis that a power series con-
verges in a circular region about the point of expansion out to the nearest
non-analytic point, or singularity. In addition, if the singularity is not trivial
1 the power series always diverges outside of this circle. (See the chapter
on power series in Churchill’s Complex Variables and Applications (1) for a
good and quick introduction.)

This fact gives an immediate answer for the exponential growth of the
power series terms of a given function. In the case of generating series,
we are expanding about the point z = 0. For a generating series with
positive coefficients, it can be shown, using Pringsheim’s theorem (3), that
the singularity closest to the origin always occurs on the positive real axis
at some value ρ. Then, we know that the power series converges for the
circular region |z| < ρ, and so the exponential growth of the terms fn cannot
be greater than (1/ρ)n. Otherwise, if the terms grow faster than this, it is
clear that the series

f(z) =
∞

∑

n=0

fnzn

cannot converge near z = ρ as the terms aren’t going to zero. Similarly, since
the power series diverges for any z such that |z| > ρ, the exponential growth
rate of the terms cannot be less than (1/ρ)n. Otherwise it is straightforward
to show the series will converge for real z > ρ. Thus we immediately get that
for generating functions the exponential rate of growth of terms is exactly
(1/ρ).

This singularity closest to the origin is called the dominant singularity.
For our function S, the dominant singularity is at ρ ≈ 0.756328, one of the
roots of the polynomial 1 − 2z5 − 4z7 + z10, which is inside the square root
in S(z). And we get immediately that for large n, S scales as

Sn ≈ (1/ρ)n ≈ (1/0.756328)n ≈ (1.32218)n.

So, the above gives the exponential growth. In many cases, this is all that
is desired. However, we still could be off by non-exponential growth factors.
Thus, for example, if ρ = 1, all we know is that there is no exponential
growth or decay. Within these bounds, anything, for example polynomial
growth, is possible.

1All singularities we deal with will be what we call non-trivial. A function f analytic
inside a circle C has a non-trivial singularity at z0 on C if either f or its derivative of
some order has no limit as z tends to z0 in C. An example of a trivial singularity is the
singularity of the function f(z) = ez(z − 1)/(z − 1) at z = 1.
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4. Finer asymptotics

To get the asymptotics more exactly is not hard either, that is, using the
results from the paper by Flajolet and Odlyzko (2).

To use these results, we have to verify that the generating series is analytic
in the region 4 shown in figure 1, except at the point ρ, thus analytic in 4\ρ,
where for the shape 4 we can choose any ε and 0 < φ < π/2. The region
4 is the solid circle about the origin with radius ρ + ε, with a symmetric
wedge cut out of it, centered about the real axis, to the point ρ.

Since our singularities are isolated (this will always be true if you have only
finitely many singularities), and our dominant singularity is unique, (that is,
we do not have more than one singularity the same minimal distance from
the origin) we can choose ε to make our function analytic in 4\ρ. Simply
note that 4 is a subset of the solid circle of radius ρ + ε about the origin.
Thus, if all of our singularities have larger magnitude than ρ, they will have
larger magnitude than ρ + ε for some ε, and will not be in 4.

Note that this method can be applied in any case in which the singularities
are isolated and the dominant singularity is unique. There are usually ways
to work around cases where the dominant singularity is not unique.

ε
φ

Dominant singularity

ρ

iρ

External singularities

Figure 1. The shaded region 4 where, except at z = ρ, the
generating function S(z) must be analytic

First some setup. We have our function

S =
1 − z5 −

√
1 − 2z5 − 4z7 + z10

2(1 − z)z2

Call the polynomial under the square root P (z). Since z = ρ is a root of

P (z) we can pull out the factor
√

1 − z/ρ (using Mathematica or Maple) to
get

√

P (z) =
√

1 − z/ρ
√

P2(z)
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where now
√

P2(z) will be analytic for all z such that |z| < ρ + ε for some

ε, so that for where we’re interested in,
√

P2(z) is always analytic.
Split S into 2 parts:

S(z) =
1 − z5

2(1 − z)z2
−

√
1 − 2z5 − 4z7 + z10

2(1 − z)z2

g(z) =
1 − z5

2(1 − z)z2

h(z) = −
√

1 − z/ρ
√

P2(z)

2(1 − z)z2

S(z) = g(z) + h(z)

If we didn’t worry about being rigorous, we can quick pull out the asymp-
totics. If you don’t care about being rigorous, you can skip the next section.

5. A detailed analysis

To apply the results of the paper by Flajolet and Odlyzko(2), we will need
to rescale the relevant part of the function so that the dominant singularity
is at 1 instead of at ρ.

Let

G(z) = z2g(z) =
1 − z5

2(1 − z)

H(z) = z2h(z) = −
√

1 − z/ρ
√

P2(z)

2(1 − z)

That way, G(z) and H(z) are both defined, and analytic, at 0 and we can talk
about their power series expansion about 0. Recall that Cauchy’s formula
is

fn = [zn]f(z) =
1

2πi

∮

O+

f(z)

zn+1
dz,

where O+ is any positively oriented contour in 4 (in an analytic region) that
encloses the origin. In their proof, they’re going to use a special contour, we
don’t have to worry about that.

Then,

Sn =
1

2πi

∮

S(z)

zn+1
dz

=
1

2πi

∮

g(z)

zn+1
dz +

∮

h(z)

zn+1
dz

=
1

2πi

∮

G(z)

zn+3
dz +

∮

H(z)

zn+3
dz

Sn = Gn+2 + Hn+2

We figure out the asymptotics of G and H.
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G(z) =
1 − z5

2(1 − z)

=
1

2
(1 + z + z2 + z3 + z4)

Thus Gn is 0 for any large n. Note that even if this is not the case, more
generally we know that G(z) will grow exponentially like 1/|ρ′|, where ρ′

is the first place that the function G(z) is not analytic (may be complex).
Since |ρ′| > ρ, this exponential growth rate will be slower than the growth
rate of H(z), so we can ignore it.

For H(z), rescale so that the singularity occurs at w = 1 instead of z = ρ.
To do this, simply substitute z = ρw. We get

H(w) = −
√

1 − w
√

P2(ρw)

2(1 − ρw)

ε
φ

Dominant singularity

External singularities

1

i

Figure 2. The shaded region 4 where, except at w = 1,
the generating function H(w) must be analytic

The function H(w) has a singularity at w = 1, and is analytic in the
required region, 4\1, where the rescaled region 4 is shown in figure 2.
Note that external singularities that remain will scale to still be outside of
the region 4. We now apply the following theorem (stated as Corollary 2,
part (i) of (2) on page 224) which states

Theorem. Assume that f(z) is analytic in 4\1, and that as z → 1 in 4,

f(z) ∼ K(1 − z)α
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Then, as n → ∞, if α /∈ 0, 1, 2, ...,

fn ∼ K

Γ−α
n−α−1.

We take α = +1/2. Note that

f(z) ∼ g(z)

as z → z0 means

lim
z→z0

f(z)

g(z)
= 1

For our H(w), we find

H(w)

(1 − w)1/2
= −

√

P2(ρw)

2(1 − ρw)

so that

lim
w→1

H(w)

(1 − w)1/2
= −

√

P2(ρ)

2(1 − ρ)
= K ′

lim
w→1

H(w)

K ′(1 − w)1/2
= 1

This can be rewritten

H(w) ∼ K ′(1 − w)1/2

By the above theorem, we get

[wn]H(w) ∼ K ′

Γ(−1/2)
n−3/2

Now we scale back. Note that

H(w) =
∑

Hw
n wn

where in the term Hw
n = [wn]H(w), the superscript w reminds us that these

are the coefficients when we expand the function in terms of the variable w.

H(w) =
∑

Hw
n wn

=
∑

Hw
n

zn

ρn

=
∑ Hw

n

ρn
zn

Therefore, the Hn = [zn]H(z), the power series coefficients of H in terms of
z, are given by,

Hn =
Hw

n

ρn
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so that

Hn ∼ Hw
n

ρn

Hn ∼ K ′

Γ(−1/2)
(
1

ρ
)nn−3/2

Remember that for large n, the Gn goes away so that

Sn = Hn+2 ∼ K ′

Γ(−1/2)
(
1

ρ
)n+2(n + 2)−3/2

And then note that

lim
n→∞

(n + 2)−3/2

n3/2
= lim

n→∞

(
n + 2

n
)3/2 = 1

so that
(n + 2)−3/2 ∼ n−3/2

which means we can simplify to

Sn ∼ K ′

ρ2Γ(−1/2)
(
1

ρ
)nn−3/2

or letting K = K ′/ρ2,

Sn ∼ K

Γ(−1/2)
(
1

ρ
)nn−3/2

Plugging in values (ρ ≈ 0.756328) gives

Sn ∼ 1.84657(1.32218)nn−3/2

These asymptotics have been verified by simulation of the corresponding
recurrence relations to work.

6. The short way

Now that we can see how the theorem applies, how rescaling works, and
that splitting the generating function into parts that are not analytic at 0
does not cause problems, we can see that if we start with

g(z) =
1 − z5

2(1 − z)z2

h(z) = −
√

1 − z/ρ
√

P2(z)

2(1 − z)z2

S(z) = g(z) + h(z)

we can ignore g(z) as it doesn’t have the dominant singularity. Then we

simply get K by taking out the
√

1 − z/ρ term and evaluating the rest of
h(z) at the dominant singularity ρ to get

K = −
√

P2(ρ)

2(1 − ρ)ρ2
≈ 1.84657
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Since the singularity is of the form (1 − z/ρ)1/2, we read off α = 1/2. We
then take the general equation

Sn ∼ K

Γ(−1/2)
(
1

ρ
)nn−1−α

and plug in our values to obtain our final answer.

Sn ∼ 1.84657(1.32218)nn−3/2.
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