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ABSTRACT
Motivation: Thermodynamics-based dynamic programming RNA
secondary structure algorithms have been of immense importance
in molecular biology, where applications range from the detection
of novel selenoproteins using EST data, to the determination of
microRNA genes and their targets. Dynamic programming algorithms
have been developed to compute the minimum free energy secon-
dary structure and partition function of a given RNA sequence, the
minimum free energy and partition function for the hybridization of two
RNA molecules, etc. However, the applicability of dynamic program-
ming methods depends on disallowing certain types of interactions
(pseudoknots, zig-zags, etc.), as their inclusion renders structure
prediction an NP-complete problem. Nevertheless, such interactions
have been observed in X-ray structures.
Results: A non-Boltzmannian Monte Carlo algorithm was designed
by Wang and Landau to estimate the density of states for complex
systems, such as the Ising model, that exhibit a phase transition. In
this paper, we apply the Wang-Landau (WL) method to compute the
density of states for secondary structures of a given RNA sequence,
and for hybridizations of two RNA sequences. Our method is shown
to be much faster than existent software, such as RNAsubopt. From
density of states, we compute the partition function over all secondary
structures and over all pseudoknot-free hybridizations. The advan-
tage of the WL method is that by adding a function to evaluate the free
energy of arbitary pseudoknotted structures and of arbitrary hybridi-
zations, we can estimate thermodynamic parameters for situations
known to be NP-complete. This extension to pseudoknots will be
made in the sequel to this paper; in contrast, the current paper
describes the Wang-Landau algorithm applied to pseudoknot-free
secondary structures and hybridizations.
Availability: The Wang-Landau RNA hybridization web server
is under construction at http://bioinformatics.bc.edu/

clotelab/.
Contact: clote@bc.edu

1 INTRODUCTION
RNA is an important biomolecule, now known to play both an
information carryingrole, as well as acatalytic role. Indeed, the
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genomic information of retroviruses, such as the hepatitisC and
human immunodeficiency viruses, is encoded by RNA rather than
DNA, while the peptidyl transferase reaction, arguably themost
important enzymatic reaction responsible for life, is catalyzed not
by a protein, but rather by RNA [56]. It has recently emerged that
RNA plays a wide range of previously unsuspected roles in many
biological processes, includingretranslation of the genetic code
(selenocysteine insertion [6], ribosomal frameshift [3]), transcriptio-
nal and translational gene regulation [34, 36], temperature sensitive
conformational switches [13, 52], chemical modification ofspecific
nucleotides in the ribosome [45], regulation of alternative splicing
[9], etc.

A secondary structure for a given RNA nucleotide sequence
a1, . . . , an is a setS of base pairs(i, j), such thatai, aj forms
either a Watson-Crick or GU (wobble) base pair, and such thatthere
are nobase triplesor pseudoknotsin S.1 For example, the secondary
structure of Y RNA2 with EMBL access code AAPY01489510/220-
119 is displayed in panels (a,b) of Figure 1, while panels (c,d) of
the same figure depict the pseudoknotted structure of the Gag/pro
ribosomal frameshift site of mouse mammary tumor virus [53]. In
conventional dot-bracket notation, this latter structureis given as
follows, where it should be noted that two kinds of bracket are nee-
ded due to the pseudoknot:

AAAAAACUUGUAAAGGGGCAGUCCCCUAGCCCCGCUCAAAAGGGGGAUG
..............(((((.[[[[[[[.)))))........]]]]]]].

It is computationally intractable to compute the minimum free
energy tertiary structure of RNA; indeed, determining the opti-
mal pseudoknotted structure is NP-complete [35]. In contrast, by
disallowing pseudoknots, secondary structure predictionis algorith-
mically tractable; there are dynamic programming algorithms to
compute the minimum free energy structure for a single RNA mole-
cule, as well as for the hybridization of two or more RNA molecules.
In particular, such methods can be loosely grouped into two types
of algorithm – those that use(i) a stochastic context free grammar

1 A base triple inS consists of two base pairs(i, j), (i, ℓ) ∈ S or (i, j),
(k, j) ∈ S. A pseudoknot inS consists of two base pairs(i, j), (k, ℓ) ∈ S
with i < k < j < ℓ.
2 According to [48], one of the functions of Y RNA is to bind to cer-
tain misfolded RNAs, including 5S rRNA, as part of a quality control
mechanism.
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Fig. 1. (a,b) Pseudoknot-free secondary structure of Y RNA with EMBL access code AAPY01489510/220-119, depicted in panel(a) in Feynman circular
form, and in panel(b) in classical form.(c,d)Pseudoknotted structure for the Gag/pro ribosomal frameshift site of mouse mammary tumor virus, depicted in
panel(c) in Feynman circular form, and in panel(d) in classical form. Images produced with sofwarejViz [57] from structures taken respectively from Rfam
[25] and Pseudobase [53].

to compute a covariation model, and(ii) those that use free energy
parameters obtained from UV absorbance (optical melting) experi-
ments, in order to determine the minimum free energy structure (i.e.
thermodynamic-based algorithms). Examples of stochasticcontext-
free grammars are the programsInfernal [43] and Pfold [30].
Examples of thermodynamics-based algorithms are the programs
mfold [63], UNAFOLD [37], RNAfold [26], RNAstructure
[39]. Thermodynamics-based algorithms for hybridizationof two
structures are given inUNAFOLD [19], RNAcofold [42, 4], while
theNUPACK software considers hybridization of three or more RNA
molecules. [20]. Such thermodynamics-based algorithms are parti-
cularly important, since the tertiary structure of RNA is believed
to be largely determined by secondary structure, which actsas a
scaffold for tertiary contacts; see [2] for experimental data suppor-
ting this view.3 Computing the minimum free energy pseudoknotted
structure for a given RNA sequence is NP-complete [35] for the Tur-
ner nearest neighbor energy model.4 For that reason, pseudoknot
structure prediction algorithms fall into three categories: (i) expo-
nential timeexactalgorithms,(ii) dynamic programming algorithms
that restrict pseudoknots to a particular class,(iii) heuristic methods.
Examples of exact algorithms for pseudoknot structure prediction
are the branch-and-bound algorithm of [7] and the method using
tree-width decomposition of [62]. Examples of algorithms that
consider only pseudoknots of a particular class are found inthe
pioneering work of [50] and [33], with subsequent refinements in
[21, 47, 49]. Examples of heuristic approaches include Monte Carlo
methods [41], genetic algorithms [1], and a simple, yet elegant algo-
rithm calledProbKnot (D.H. Mathews, to appear) that appears
to be the state-of-the art method according to recent benchmarking
studies. Finally, it is beyond the scope of this paper to provide
additional background on algorithms for RNA structural alignment,
motif detection, or tertiary structure prediction.

As will be shown later, by Wang-Landau (WL) Monte Carlo
methods, we can obtain essentially the same results as by dynamic
programming computation of the partition function fromUNAFOLD

3 There is some controversy about the extent to which RNA secondary
structure constrains the tertiary structure. See [12] for more on this point.
4 The minimum energy pseudoknotted structure can be computedby maxi-
mum weight matching inO(n3) time for the simple Nussinov energy model
[51].

andRNAcofold; however, the advantage of the WL approach is
that by extending the energy evaluation function for a givenstructure
or hybridization, we can estimate the partition function for arbitrary
pseudoknotted structures, known to be an NP-complete problem.

Before proceeding, we formally define a secondary structureas
follows. Given an RNA sequences = a1, . . . , an, a secondary
structureS ons is defined to be a set of ordered pairs corresponding
to base pair positions, which satisfies the following requirements.

1. Watson-Crick or GU wobble pairs:If (i, j) belongs toS, then
pair(ai, aj) must be one of the following canonical base pairs:
(A, U), (U, A), (G, C), (C, G), (G, U), (U, G).

2. Threshold requirement:If (i, j) belongs toS, thenj − i > θ.

3. Nonexistence of pseudoknots:If (i, j) and(k, ℓ) belong toS,
then it is not the case thati < k < j < ℓ.

4. No base triples:If (i, j) and(i, k) belong toS, thenj = k; if
(i, j) and(k, j) belong toS, theni = k.

For steric reasons, following convention, the thresholdθ, or mini-
mum number of unpaired bases in a hairpin loop, is taken to be3.
For any additional background on RNA and dynamic programming
computation of secondary structures, see the text [14] and the recent
review [22].

2 APPROACH
The non-Boltzmannian WL Monte Carlo algorithm was developed
by Wang and Landau [55, 54] to estimate the density of states and
partition function for complex systems, such as the Ising model, that
exhibit a phase transition. While the Metropolis-HastingsMonte
Carlo algorithm samples low energy states, the Wang-Landaualgo-
rithm is designed to visit states uniformly across all energies in a dis-
crete energy landscape. Indeed, for the Metropolis-Hastings algo-
rithm, the expected frequency, orstationary probability, p∗

mc(x) of
visiting the statex, whose energy isE, is given by the uniform pro-

bability 1
g(E)

times the Boltzmann probabilityp∗
mc(x) = e−E/RT

Z
,

where whereg(E) is the number of states having energyE, and
the partition functionZ =

P

z e−E(z)/RT ; in contrast, for the WL
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algorithm, the expected frequency, or stationary probability, of visi-
ting statex is p∗

wl(x) = 1
g(E)·E

, whereE is the total number of
distinct energiesE (in the discrete case), or of energy bins (in the
continuous case). It follows that non-Boltzmannian sampling strate-
gies, such as that devised by Wang and Landau [55, 54], Kou and
Wong [31], etc. are potentially useful in biopolymer folding, where
one searches for a global energy minimum in a landscape having
many local energy minima. Indeed in [10], Chen and Xu appliedthe
WL algorithm for the structure prediction of helical transmembrane
proteins, while the equi-energy sampling method of Kou and Wong
[31], related to Monte Carlo with replica exchange, has beenapp-
lied to estimate the density of states for lattice protein folding under
the hydrophobic-hydrophilic (HP) energy model [32], as well as in
protein structure prediction by fragment assembly [61].

In this paper, we apply the WL algorithm to compute the den-
sity of states and partition function for RNA secondary structure as
well as for the hybridization of two RNA sequences. We begin by
validating and benchmarking the WL method against the exhaustive
methodRNAsubopt [58], that enumerates all secondary struc-
tures of a given RNA sequence. Next, we compute the partition
function over all secondary structures and over all pseudoknot-free
hybridizations. We describe as well how to compute the partition
function Z(T ) over all temperatures from0◦ to 100◦ Celsius by
performing two Wang-Landau computations, followed by convolu-
tion calculations. Although the computation of the partition function
over all secondary structures and over all pseudoknot-freehybridi-
zations can be done using existent softwareRNAfold [27] resp.
RNAcofold [4], UNAFold [37], and a recently published method
of Chitsaz et al. [11], the real advantage of our method is that by
adding a function to evaluate arbitary pseudoknotted structures and
arbitrary hybridizations, we can approximately compute the parti-
tion function, heat capacity, melting temperature, etc. for a context
known to be NP-complete [35].

Thedensity of statesis defined to be theabsolute frequencyfunc-
tion for energy; i.e. density of statesg(e) counts the number of states
having energye. In the context of RNA secondary structure, astate
is a secondary structure for an arbitrary but fixed RNA sequence
s. In [16], Cupal et al. described the first efficient algorithm, run-
ning inO(m2n3) time, to compute the density of states for an RNA
sequence of lengthn, where energy is discretized intom bins. The
program of Cupal et al. is no longer available, since it has been
superceded by the programRNAsubopt, developed by Wuchty
et al. [58], which enumerates all secondary structures, whose free
energy is within a user-defined bound above the minimum free
energy. Though not documented, theRNAsubopt program additio-
nally admits the option-D, which, instead of outputting structures,
outputs only the number of secondary structures in each energy bin
above the minimum free energy (bin size is0.1 kcal/mol).

3 METHODS
Monte Carlo algorithms have been implemented by a number of groups, in
order to study RNA kinetics of folding. In particular,KinFold, develo-
ped by Flamm et al. [23], computes themean first passage time(MFPT)
of folding, by using a variant of the Gillespie algorithm in an event-
driven simulation with a choice of Metropolis-Hastings andKawasaki dyna-
mics. In [28, 59], a similar time-driven Monte Carlo simulation program,
KineFold, is described to compute kinetically determined pseudoknot-
ted structure for a given RNA sequence. Danilova et al. [17] describe

1. procedure Metropolis-Hastings( )
2. T = Thi

3. x = initial state
4. while (T > Tlo){
5. repeat M times {
6. choose random neighbor y ∈ Nx

7. if (E(x) ≤ E(y)) then
8. x = y
9. else

10. choose random z ∈ (0, 1)

11. if
“

z < e−E(y)/RT /Nx

e−E(x)/RT /Ny

”

then x = y

12. }
13. T = T * 0.9
14. }
15. return x

Fig. 2. Pseudocode for Metropolis-Hastings algorithm with simulated anne-
aling [29].

1. procedure WangLandau(s)
2. S = ∅ // empty initial structure
3. c = exp(1) // initial modification factor
4. while c > 1 + ǫ {
5. for all energies bins e: g(e) = 1
6. while h is not flat {
7. for i = 1 to NumSteps
8. choose random T ∈ N (S) of S
9. e0 = bin(E(S)); e1 = bin(E(T ))
10. choose random z ∈ (0, 1)

11. if z < g(e0)
g(e1)

12. S = T
13. e = e1

14. else // S remains unchanged
15. e = e0

16. g(e) = c · g(e) // update d.o.s.
17. h(e) = h(e) + 1 // update histogram
18. }
19. c =

√
c // reduce modification factor

20. }
21. return relative density of states g,
where g(i) = g(i)/sumjg(j)

Fig. 3. Pseudocode for Wang-Landau algorithm, as applied to RNA secon-
dary structure density of states computation. In line 8,N (S) denotes the
collection of immediate neighbors of structureS; i.e. those obtained by
adding or removing a single base pair. In line 16, d.o.s. abbreviates density
of states.

the RNAkinetics web server used to study the kinetics of the folding
transitions of a growing RNA molecule, as in the case of transcriptional
folding.

We now begin by providing background definitions and describing the
Wang-Landau algorithm.
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WANG-LANDAU
The WL algorithm [55, 54] was designed in order to compute thedensity of
statesandpartition function, neither of which can be computed directly by
classical Monte Carlo methods, such as the Metropolis-Hastings algorithm,
simulated annealing, replica exchange, etc.

Recall the definition of Markov chain. LetQ = {1, . . . , n} be a finite set
of states, letπ = (p1, . . . , pn) be the distribution for initial state, and let
P = (pi,j) be a matrix of transition probabilities, satisfying

P

j pi,j = 1
for all i. A (first-order, time-homogeneous)Markov chainM = (Q, π, P ) is
a stochastic process, whose stateqt at timet is a random variable determined
by

Pr[q0 = i] = πi,

P r[qt+1 = j|qt = i] = pi,j .

Definepi(t) = Pr[qt = i] andp
(t)
i,j = Pr[qt = j|q0 = i]. Clearly,

the(i, j)th entry of thetth powerP t of P equalsp(t)
i,j ; moreover, by time-

homogeneity it follows thatp(t)
i,j = Pr[qt0+t = j|qt0 = i], for all t0. The

stationary probabilityof statei is defined bylimt pi(t) = p∗i , provided the
limit exists. It is a classical result that every finite, aperiodic, irreducible Mar-
kov chain has anequilibriumdistribution ofstationaryprobabilities; see the
text of Clote and Backofen [14] for a new, self-contained proof of this result.
A Markov chain with state setQ and stationary probabilitiesp∗1, . . . , p∗n is
reversible, if for all i, j ∈ Q, p∗i pi,j = p∗j pj,i.

Figure 2 presents pseudocode for the classical Metropolis-Hastings Monte
Carlo algorithm with simulated annealing [40, 29], which implements a ran-
dom walk on the Markov chain whose transition probabilitiespi,j of moving
from statexi to xj is given by

pi,j = P (xi → xj) = min

„

1,
exp(−E(xj)/RT )/Z

exp(−E(xi)/RT )/Z
·
N (xj)

N (xi)

«

= min

0

@1,
exp(

−(E(xj)−E(xi))

RT
)

N (xi)

1

A . (1)

whereN (xi) is the set of immediate neighbors of statexi, andN (xj) is
the set of immediate neighbors of statexj ; i.e. N (xi) is the set of states
that can be reached by a single move from statexi. It can be proved that the
stationary probabilities for this Markov chain are given bythe Boltzmann

probabilitiesp∗i = e−E(i)/RT

Z
, as shown in [14].

In contrast, Figure 3 presents pseudocode for the WL algorithm, which
implements a random walk on the Markov chain whose transition probabili-
tiespi,j of moving from statexi to xj are given by

pi,j = P (xi → xj) =
1

N (xi)
· min

„

g(E(xi))

g(E(xj))
, 1

«

= P (ei → ej) =
1

N (xi)
· min

„

g(ei)

g(ej)
, 1

«

. (2)

In this case, the stationary probability of statexi is are given byg(E(xi))
E

.
The mathematical justification for applying the Metropolis-Hastings

Monte Carlo method [40] to determine the minimum energy conformation
of a biopolymer [46, 8, 18] depends on two facts:(i) every finite, irre-
ducible, aperiodic Markov chain has astationary probabilitydistribution,
(ii) if the Markov chain isreversible, a situation calleddetailed balance
by the physics community, then the stationary distributionof the Markov
chain corresponding to the Metropolis-Hastings algorithmis theBoltzmann

distribution, defined byP (x) =
exp(−E(x)/RT

Z
, where E(x) is the

energy of state (i.e. conformation)x, R is the universal gas constant1.986
cal/mol,T is absolute temperature, and thepartition functionZ is defined by
P

x exp(−E(x)/RT , where the sum is taken over all statesx in the Mar-
kov chain. As temperatureT approaches zero, the Boltzmann probability of
the minimum energy state approaches1, in the case of a unique minimum
energy state, or more generally1/m, in the case ofm distinct minimum
energy states. See [14] for details.

In contrast to the Metropolis-Hastings algorithm, which performs a
random walk on the Markov chain of states (secondary structures), the
Wang-Landau algorithm performs a random walk on theenergy spaceof
the Markov chain of states (secondary structures), where the stationary pro-
bability of visiting energyei is proportional to 1

g(ei)
, then the histogram of

energies encountered in the random walk will be flat.
In this paper, we consider the Markov chain, whose states arethe secon-

dary structures of a given RNA sequence, and for which permissible local
moves correspond to the addition or removal of a single base pair [23].
Although detailed balance holds for the Metropolis-Hastings algorithm in
Figure 2, it does not necessarily hold for the Metropolis algorithm, obtained
by replacing line

11. if (z <
e−E(y)/RT /Nx

e−E(x)/RT /Ny
) then x = y

by

11. if (z < e−E(y)/RT

e−E(x)/RT ) then x = y

Indeed for the case of RNA secondary structures, detailed balance doesnot
hold in this situation, since if we define the stationary probability p∗i for

statexi to be the Boltzmann probabilityp∗i =
exp(−E(xi)/RT

Z
, and the

transition probabilities given by equation (1), then it is not always the case
thatp∗i ·pi,j = p∗j ·pj,i. For instance, the empty structureS = . . . . . . . . . .
on the10-mer GGGGGCCCCC has 18 immediate neighbors, one of which
is T = ( . . . . . . ). The structureT has11 immediate neighbors, one of
which is the empty structureS. Letting xi = S and xj = T , we have
E(xi) = 0 kcal/mol, E(xj) = 2.70 kcal/mol, ensemble free energy is
−RTln(Z) = −3.96, henceZ = exp(3.96/RT ) whereT = 310◦

Celsius soZ = 621.5, and we have stationary probabilitiesp∗i = 1
621.5

=

0.00161, p∗j = 0.012456
621.5

= 0.00002, pi,j = 0.012456
18

, andpj,i = 1
11

.
We compute that

p∗i · pi,j = 0.00161 · 0.012456/18 = 692.01 × 10−6

p∗j · pj,i = 0.00002 · 1/11 = 1.82 × 10−6.

Summarizing, in the Metropolis algorithm (with modified line 11), reversi-
bility of a Markov chain depends on the permissible local moves, while in
the Metropolis-Hastings algorithm (with line 11 as in Figure 2), reversibi-
lity is always ensured. In the case at hand, if every secondary structure is
an immediate neighbor of every secondary structure, then inthe Metropolis
algorithm, transition probabilities would be

pi,j = P (xi → xj) = min

„

1,
exp(−E(xj)/RT )/Z

N · exp(−E(xi)/RT )/Z

«

= min

0

@1,
exp(

−(E(xj)−E(xi))

RT
)

N

1

A . (3)

whereN is the number of secondary structures. In this case, an easy compu-
tation shows that the Markov chain is reversible. Despite the non-reversible
nature of the Markov chain corresponding to the Metropolis algorithm,
whose states are the secondary structures of a given RNA sequence, and
whose local moves consist of the addition or removal of a single base
pair, it has been standard practice to apply the Metropolis algorithm in
this case [23, 28, 59, 17]. For that reason, we do not hesitateto apply
the Wang-Landau algorithm for the study of RNA secondary structure
formation.

Note that in Figure 3, the Wang-Landau computes the relativedensity
of states, defined byg(i) = N(ei)/N , whereN(ei) is the number of
states having energyei, andN is the total number of states. In the case of
RNA secondary structures, it is simple to compute the total number of secon-
dary structures by dynamic programming, given as follows. Given an RNA
sequence of lengthn, let BPi,j = 1 if positions i, j can form a Watson-
Crick or wobble pair, otherwise letBPi,j = 0. Let θ = 3 denote the
minimum number of unpaired bases in a hairpin loop. LettingNi,j denote
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the number of secondary structures on subsequence[i, j] of the given RNA
sequence, we have thatNi,j = 0 if j < i + 3, and otherwise

Ni,j = Ni,j−1 +

j−θ−1
X

k=i

BPk,j · Ni,k−1 · Nk+1,j−1.

It follows that the total number of secondary structures is thenN1,n. From
the relative density of states computed by Wang-Landau algorithm, we
compute the absolute density of states by

g(ei) = g(ei) · N.

For fixed temperatureT for which the Wang-Landau computation was done,
we can compute the partition functionZ(T ) =

P

S exp(−E(S)/RT ) by

Z(T ) =
X

E

g(E) · exp(−E/RT ). (4)

In their original article [55, 54], Wang and Landau mentioned that in the
case of the Ising model, equation (4) allows one to compute the partition
function at any desired temperatureT from the density of states. Unfortuna-
tely, this is no longer the case for the Turner nearest neighbor model [60] of
RNA secondary structure, since the free energy parameters for stacked base
pairs, hairpins, bulges, internal loops, etc. all depend ontemperature. We
can nevertheless proceed by computing the density of statesfor free energy
at T = 37◦ Celsius, and the density of states for enthalpy (assumed to be
temperature independent), and then by convoluting these values, we obtain
the density of states for free energy at any desired temperature.

PARTITION FUNCTION FOR A SINGLE RNA
The left panel of Figure 4 displays the relative density of states for the free
energy of secondary structures of the 45 nt flavivirus capsidhairpin (cHP)
with EMBL access code AB010982/1-45. The right panel of the same figure
displays the sum of squared differences between the densityof states and
the best fitting normal distribution resp. extreme value distribution. The cHP
is a conserved RNA hairpin structure in the capsid coding region of flavivi-
rus genomes. Note that the relative density of states, or energy histogram,
is approximately normal. In Clote et al. [15] it is rigorously proved that the
relative density of states is asymptotically normal; specifically, it is shown
that the limit, asn approaches infinity, of the relative density of states for an
RNA sequence of lengthn is normal, where for the purpose of mathematical
analysis it is assumed that any base can pair with any other base (homopo-
lymer model) and that the energy of a secondary structureS is −1 times the
number of base pairs inS (Nussinov energy model [44]).

PARTITION FUNCTION OF HYBRIDIZATION
Following the approach in programRNAcofold of Bernhardt et al. [5],
we can modify the Wang-Landau program of Figure 3 in order to compute
the density of states for allhybridizationsof two RNA sequences, where
both intermolecular and intramolecular base-pairing is allowed, provided
that there are no pseudoknots.

In the case of the hybridization of twoRNA secondary structures, the first
of lengthn and the second of lengthm, we can compute the total number
of hybridizations as follows. Given an RNA sequenceA = a1, . . . , an

of length n, and an RNA sequenceB = b1, . . . , bm of length m, let
HPi,j = 1 if positions ai, bj can hybridize, forming a Watson-Crick or
wobble pair, otherwise letHPi,j = 0. For1 ≤ i, j ≤ n, 1 ≤ k, ℓ ≤ m, let
Hi,j;k,ℓ denote the number of hybridizations of the subsequenceai, . . . , aj

with bk, . . . , bℓ. From equation (3), we can compute the numberNAx,y

resp.NBx,y of secondary structures on subsequenceax, . . . , ay of A resp.
bx, . . . , by of B. If j < i or ℓ < k, then definedHi,j;k,ℓ = 0; otherwise

defineHi,j;k,ℓ by

Hi,j−1;k,ℓ−1 · (1 + HP (j, ℓ)) (5)

+
Pj−1

x=i HP (x, ℓ) · Hi,x−1;k,ℓ−1 · NAx+1,j

+
Pℓ−1

y=k HP (j, y) · Hi,j−1;k,y−1 · NBy+1,ℓ

It follows that the total number of pseudoknot-free hybridizations is then
H1,n;1,m.5 The previous algorithm is clearlyO(n4).

By considering the number of hybridizations to be the same asthe num-
ber of secondary structures of a chimeric sequence, formed by concatenating
A, B to form c1, . . . , cn+m = a1, . . . , an, b1, . . . , bm, we have an
O(n3) algorithm, as follows. For1 ≤ i, j ≤ n+m, if j < i or (1 ≤ i, j ≤
n, j−i ≤ θ = 3), thenNi,j = 0, while if 1 ≤ i ≤ n, n+1 ≤ j ≤ n+m,
thenNi,j = 1; otherwiseNi,j is equal to

Ni,j−1 +

j−1
X

k=i

BPk,j · Ni,k−1 · Nk+1,j−1.

It follows that the total number of hybridizations is thenN1,n.
We now describe how to compute themelting temperatureTM of

hybridization.

1. Compute number of structures for each of 5 species (temperature
independent):S(A), S(B), S(AA), S(BB), S(AB).

2. For (Celsius) temperatureT ∈ {0◦, . . . , 100◦}, computerelative den-
sity of statesf(A, T ), f(B, T ), f(AA, T ), f(BB, T ), f(AB, T ) for
each species by Wang-Landau.

3. For (Celsius) temperatureT ∈ {0◦, . . . , 100◦}, compute partition
functionsZ(A, T ), Z(B, T ), Z(AA, T ), Z(BB, T ), Z(AB, T ) by

Z(T ) = ΣEg(E) · e
−E
RT

whereabsolute density of statesg(E) is relative density times number
of structures. For instance

g(AB, T )(E) = f(AB, T )(E) · S(AB).

4. Following Dimitrov and Zuker [19], for (Celsius) temperature
T ∈ {0◦, . . . , 100◦}, compute ensemble free energy∆G(A, T ),
∆G(B, T ), ∆G(AA, T ), ∆G(BB, T ), ∆G(AB, T ). This involves
the following.

a Redundancy correction:

ZAA = ZAA − Z2
A

ZBB = ZBB − Z2
B

ZAB = ZAB − ZA · ZB

b Symmetry correction:

ZAA =
ZAA

2

ZBB =
ZBB

2
c Temperature-dependent chemical equilibrium constants:

KA =
ZAA

Z2
A

KB =
ZBB

Z2
B

KAB =
ZAB

ZA · ZB

5 In the literature, various types of hybridization are allowed. In Dimitrov-
Zuker, no intramolecular structure is allowed, while in Bernhardt et al.
pseudo-knot free hybridizations are allowed with intramolecular structure.

5
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Fig. 4. (Left) Density of states for free energy of secondary structures ofthe 45 nt flavivirus capsid hairpin (cHP) with EMBL access code AB010982/1-45
and sequenceAUGAACAACC AACGAAAAAG GACGGGAAAA CCGUCUAUCA AUAUG. Overlaid on the graph is the best fitting normal distribution and the
best fitting extreme value distribution.(Right)Sum of squared differences between the density of states andthe best fitting normal distribution resp. extreme
value distribution. Thex-axis of both panels depicts free energy in kcal/mol.

Fig. 5. (Left) Comparison of execution times of WL and programRNAsubopt-D [58], in computing density of states. Since the program of Cupal et al. [16]
is no longer publicly available, and is superceded byRNAsubopt (private correspondence from I. Hofacker), we computed theexecution time in seconds
as a function oflog n, wheren is RNA sequence size. Horizontal green line is slightly above the value ofexp(25) seconds, or equivalently one day. It
appears that for sequences of length 46 nt or greater, the WL method is more efficient thanRNAsubopt. (Right)Sample output of WL method on sequence
CUGCUUUGAGGACAAAGAGAAUAAAGACUUCAUGUU, after17, 402, 000 WL MonteCarlo steps, where the value ofǫ in line 4 of Figure 3 is defined to be
0.001. The leftmost column contains the energy bin, the middle column contains the relative frequency in the WL sampling run, and the rightmost column
contains the lowest energy secondary structure in the associated energy bin. Though our WL program allows the user to modify bin size, the default energy bin
size (here) is0.1 kcal/mol; empty bins, where no structure has yet been sampled, are not displayed. The lowest energy structure sampled bythe WL method
is ((.(((((....))))))).................with energy−3.3 kcal/mol, which is identical to the minimum free energy structure, as computed by
RNAfold. Only a portion of the output is displayed. In particular, the largest energy of any sampled structure is+48.8 kcal/mol; in that energy bin the least
energy structure is.(..(...).)((...)(...).((...)(...))).

d Temperature-dependent concentration (number) of molecules A
and B:

2 · KA · N2
A + KAB · NA · NB + NA − N0

A = 0

2 · KB · N2
B + KAB · NA · NB + NB − N0

B = 0

whereN0
A, N0

B are given andKA, KB, KAB are obtained from
previous step. ValuesNA andNB are gotten by using, for exam-
ple, Newton’s method for solving two nonlinear functions; due to
issues of numerical instability, Markham uses binary search (p. 43
of [38]).
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Fig. 6. Computation of heat capacitycP (T ) for the toy sequence5′-AGCGA-3′, hybridized to its reverse complement3′-UCGCU-5′. (Left) Graph generated
by WL method described in this paper.(Right)Graph generated by the programUNAFold [37].

e LettingZ(A, B, AB, AA, BB) equal the following expression

N0
A!N0

B!

NA, NB, NAB , NAA, NBB
·ZNA

A ·ZNB
B ·ZNAB

AB ·ZNAA
AA ·ZNBB

BB

it follows that the total partition functionZ satisfies

Z =
X

NA,NB ,NAB ,NAA,NBB

Z(A, B, AB, AA, BB)

which can be approximated by termZ(A, B, AB, AA, BB)
where NA, NB , NAB , NAA, NBB obtained as previously
explained. The chemical potentialµX for each speciesX is the
partial derivative∂−RT ln Z

∂NX
of ensemble free energy with respect

to number of molecules ofX, hence

µA =
−RT∂ lnZ(A, B, AB, AA, BB)

∂NA

so

µA = −RT ln(ZA) + RT ln(
NA

N0
A

µB = −RT ln(ZB) + RT ln(
NB

N0
B

µAB = −RT ln(ZAB) + RT ln(
NAB

N0
A · N0

B

µAA = −RT ln(ZAA) + RT ln(
NAA

N0
A · N0

A

µBB = −RT ln(ZBB) + RT ln(
NBB

N0
B · N0

B

.

Total free energy satisfies

F = µA·NA+µB ·NB+µAA·NAA+µBB ·NBB+µAB ·NAB

which simplifies to

F = µA · N0
A + µB · N0

B

f Normalize the ensemble free energy in terms of energy per mole
of solute:

∆G =
µa · N0

A + µb · N0
B

max(N0
A, N0

B)

5. Determineheat capacityas a function of temperature by

Cp(T ) =
∂∆H

∂T
= −T

∂2∆G

∂T 2

by computing the second partial of a fitting parabola determined by

2m+1 evenly spaced points, using the approximation for∂2∆G
∂T2 given

by

30

m(m + 1)4m2(2m + 3)δT 2
Σ−m≤i≤m(3i2−m(m+1)∆G(T0+iδT )

In a post-processing step, smooth the heat capacity curve bycompu-
ting a running average. The melting temperatureTM (Cp) is computed
by determining the temperature at which heat capacity achieves a
maximum.

4 DISCUSSION
The left panel of Figure 5 displays the run time of the WL method,
compared with that ofRNAsubopt from the Vienna RNA package,
while the right panel of the same figure shows sample output from
our WL program. Figure 5 clearly shows the advantage of WL
over existent methods in computing the density of states forboth
single RNA molecules and for hybridization complexes of two
RNA molecules. The left and right panels of the Figure 6 depict
the heat capacity computed by WL method (left) and the program
UNAFold (right). Melting temperature, which is usually defined as
the temperature at which half of the molecules are single-stranded
while the other half are hybridized, is determined as that tempe-
rature where heat capacity achieves its maximum. The program
UNAFold does not allow any intramolecular structure (base pai-
ring between two nucleotides of the same structure), a feature that
our WL method permits, as does theRNAcofold program. While
it is clear that additional work must be done to improve heat capa-
city computation with the WL method, the melting temperatureTM

computed by WL agrees reasonably well with that computed by
O(n3) methodsUNAFold, RNAcofold, and the recentO(n6)
method of Chitsaz et al. [11], each of which methods admits slightly
different interactions.

We now describe how to approximately compute the parti-
tion function Z(T ) over all secondary structures and over all
pseudoknot-free hybridizations, simultaneously over alltemperatu-
res from0◦ to 100◦ Celsius, by performing two WL computations,
followed by a computation of the convolution of enthalpy relative

7
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frequency with free energy relative frequency. Similar computations
using existent methods require over 100 cubic time computations.

• Compute the relative density of statesph for free energy using
Wang-Landau with temperatureT = −273◦ Celsius (absolute
zero Kelvin). It follows thatph is the relative density of states
for enthalpy, Due to the fundamental thermodynamic relation

∆G = ∆H − T∆S (6)

whereT is absolute temperature in Kelvin, and∆G, ∆H , ∆S
respectively denote the change in free energy, enthalpy, and
entropy.

• Compute the relative density of statespg for free energy
using Wang-Landau with temperatureT = 37◦ Celsius (310
Kelvin).

• From equation (6), we have that

∆S =
∆H − ∆G

T
.

• Given arbitrary absolute temperatureT , compute the relative
density of states for free energy at temperatureT by the fol-
lowing pseudocode, representing a kind ofconvolutionof pg

with ph.
1. for all z initialize p(z) = 0
2. for x ranging over enthalpy bins
3. for y ranging over free energy bins
4. z = x−y

T

5. p(z)+ = ph(x) ∗ pg(y)

• Compute the absolute density of statesg(z) = p(z) ·N , where
N is the total number of secondary structures, computed by
equation (3).

By this method, one can approximate the partition functionZ(T )
for all temperatures from0◦ to 100◦ in Celsius, by performing two
Wang-Landau sampling runs, respectively at temperatures−373◦

and37◦ Celsius, and then to repeatedly perform a fast convolution.
The method just described, which involves two WL computations,
together with convolution computations, has until now not worked
well in practice, for certain technical reasons. This direction needs
further exploration.

Another issue concerning any sampling method is the required
time to obtain reasonably good estimates of the quantity in question.
In the case of RNA kinetics, computations of mean first passage
time (MFPT) to reach the minimum free energy structure take inor-
dinate amounts of time, when using Metropolis-Hastings Monte
Carlo methods, which aretime-drivensimulations. For this reason,
the programKinFold [24] uses anevent-drivensimulation, where
time is incremented by an exponentially distributed randomvaria-
ble. It may be possible to use similar ideas to increase efficiency
of our WL program, which should further improve the accuracyin
the computation of heat capacity. Finally, we intend to implement a
new energy evaluation function, that allows arbitrary pseudoknots,
zig-zags, etc. using energy parameters from the recent dissertation
of Bon [7]. This will allow us to estimate the partition function,
ensemble free energy, heat capacity, melting temperature,etc. for a
context known to be NP-complete.

5 CONCLUSION
In this paper, we have implemented the Wang-Landau algorithm to
compute the relative density of states for RNA secondary structures
and hybridizations. Separately computing the number of structures
and hybridizations, we obtain the absolute density of states, which
then yields the partition function, and thence, in the case of hybri-
dization, the melting temperature. The WL method is much faster
than existent softwareRNAsubopt in computing the density of
states, but could not be benchmarked with the binning methodof
Cupal et al. which runs inO(m2n3) time, for lengthn sequence
and m energy bins, since the latter software is no longer availa-
ble, being superceded byRNAsubopt-D. In preliminary tests, we
obtain roughly the same melting temperature for duplex RNA,as
that computed by existent methods; however, the real advantage
of the WL method is that there is no restriction on types of allo-
wed interaction, unlike the situation with dynamic programming
approaches that disallow pseudoknots, zig-zags, etc.
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