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ABSTRACT

Motivation: Thermodynamics-based dynamic programming RNA
secondary structure algorithms have been of immense importance
in molecular biology, where applications range from the detection
of novel selenoproteins using EST data, to the determination of
microRNA genes and their targets. Dynamic programming algorithms
have been developed to compute the minimum free energy secon-
dary structure and partition function of a given RNA sequence, the
minimum free energy and partition function for the hybridization of two
RNA molecules, etc. However, the applicability of dynamic program-
ming methods depends on disallowing certain types of interactions
(pseudoknots, zig-zags, etc.), as their inclusion renders structure
prediction an NP-complete problem. Nevertheless, such interactions
have been observed in X-ray structures.

Results: A non-Boltzmannian Monte Carlo algorithm was designed
by Wang and Landau to estimate the density of states for complex
systems, such as the Ising model, that exhibit a phase transition. In
this paper, we apply the Wang-Landau (WL) method to compute the
density of states for secondary structures of a given RNA sequence,
and for hybridizations of two RNA sequences. Our method is shown
to be much faster than existent software, such as RNAsubopt . From
density of states, we compute the partition function over all secondary
structures and over all pseudoknot-free hybridizations. The advan-
tage of the WL method is that by adding a function to evaluate the free
energy of arbitary pseudoknotted structures and of arbitrary hybridi-
zations, we can estimate thermodynamic parameters for situations
known to be NP-complete. This extension to pseudoknots will be
made in the sequel to this paper; in contrast, the current paper
describes the Wang-Landau algorithm applied to pseudoknot-free
secondary structures and hybridizations.

Availability: The Wang-Landau RNA hybridization web server
is under construction at http://bioinformatics. bc. edu/
clotel ab/.

Contact: cl ot e@c. edu

1 INTRODUCTION

RNA is an important biomolecule, now known to play both an
information carryingrole, as well as &atalytic role. Indeed, the

*to whom correspondence should be addressed

genomic information of retroviruses, such as the hepafitiand
human immunodeficiency viruses, is encoded by RNA rathar tha
DNA, while the peptidyl transferase reaction, arguably thest
important enzymatic reaction responsible for life, is batad not

by a protein, but rather by RNA [56]. It has recently emerdeat t
RNA plays a wide range of previously unsuspected roles inyman
biological processes, includingtranslation of the genetic code
(selenocysteine insertion [6], ribosomal frameshift [8Rnscriptio-
nal and translational gene regulation [34, 36], tempeeasensitive
conformational switches [13, 52], chemical modificatiorspécific
nucleotides in the ribosome [45], regulation of alternatiplicing
[9], etc.

A secondary structure for a given RNA nucleotide sequence
ai,...,an is a setS of base pairqi, j), such thata;,a; forms
either a Watson-Crick or GU (wobble) base pair, and suchtkigae
are nabase tripleor pseudoknot® 5.1 For example, the secondary
structure of Y RNA with EMBL access code AAPY01489510/220-
119 is displayed in panels (a,b) of Figure 1, while paneld)(of
the same figure depict the pseudoknotted structure of thép@ag
ribosomal frameshift site of mouse mammary tumor virus [53]
conventional dot-bracket notation, this latter structisrgjiven as
follows, where it should be noted that two kinds of bracket rmee-
ded due to the pseudoknot:

AAAAAACUUGUAAAGGGGCAGUCCCCUAGCCCOGCUCAAAAGGGGGAUG
(CCCC-TOILee-270)) 1111111

It is computationally intractable to compute the minimuraefr
energy tertiary structure of RNA; indeed, determining thsi-o
mal pseudoknotted structure is NP-complete [35]. In cattray
disallowing pseudoknots, secondary structure predi¢t@ahgorith-
mically tractable; there are dynamic programming algonghto
compute the minimum free energy structure for a single RNAemo
cule, as well as for the hybridization of two or more RNA malles.
In particular, such methods can be loosely grouped into fiwed
of algorithm — those that ug@ a stochastic context free grammar

1 A base triple inS consists of two base paifs, j), (i,¢) € S or (i, j),
(k,j) € S. A pseudoknot inS consists of two base paits, j), (k,¢) € S
with: < k < j <.

2 According to [48], one of the functions of Y RNA is to bind toree
tain misfolded RNAs, including 5S rRNA, as part of a qualitgntrol
mechanism.

(© Oxford University Press 2010.
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Fig. 1. (a,b) Pseudoknot-free secondary structure of Y RNA with EMBL asceode AAPY01489510/220-119, depicted in pgagin Feynman circular
form, and in pane(b) in classical form(c,d) Pseudoknotted structure for the Gag/pro ribosomal fraifieste of mouse mammary tumor virus, depicted in
panel(c) in Feynman circular form, and in panl) in classical form. Images produced with sofwahéd z [57] from structures taken respectively from Rfam
[25] and Pseudobase [53].

to compute a covariation model, a(ig) those that use free energy and RNAcof ol d; however, the advantage of the WL approach is
parameters obtained from UV absorbance (optical meltirgge- that by extending the energy evaluation function for a gistencture
ments, in order to determine the minimum free energy stracite. or hybridization, we can estimate the partition functionddbitrary
thermodynamic-based algorithms). Examples of stochastitext-  pseudoknotted structures, known to be an NP-completeqmobl

free grammars are the progranmsfernal [43] and Pfold [30]. Before proceeding, we formally define a secondary strucisre
Examples of thermodynamics-based algorithms are the gmogr follows. Given an RNA sequence = as,...,a,, a Secondary

nf ol d [63], UNAFOLD [37], RNAf ol d [26], RNAstructure structureS ons is defined to be a set of ordered pairs corresponding
[39]. Thermodynamics-based algorithms for hybridizatafrntwo to base pair positions, which satisfies the following reguients.
structures are given ibNAFOLD [19], RNAcof ol d [42, 4], while

theNUPACK software considers hybridization of three or more RNA 1. Watson-Crick or GU wobble pairdf (7, j) belongs taS, then

molecules. [20]. Such thermodynamics-based algorithmgparti- pair (a;, a;) must be one of the following canonical base pairs:
cularly important, since the tertiary structure of RNA idieesd (A4,0), (U, A), (G,0), (C,G), (G,U), (U, Q).
to be largely determined by secondary structure, which asta 2. Threshold requirementf (i, j) belongs taS, thenj — i > 6.

scaffold for tertiary contacts; see [2] for experimentaadsuppor-

ting this view® Computing the minimum free energy pseudoknotted

structure for a given RNA sequence is NP-complete [35] ferTtr-

ner nearest neighbor energy modefor that reason, pseudoknot 4. No base triplesif (4, j) and (¢, k) belong toS, thenj = k; if

structure prediction algorithms fall into three categsrig) expo- (4,7) and(k, j) belong toS, theni = k.

nential timeexactalgorithms (i) dynamic programming algorithms

that restrict pseudoknots to a particular clgi§, heuristic methods. ~ For steric reasons, following convention, the thresttladr mini-

Examples of exact algorithms for pseudoknot structureiptied ~ Mum number of unpaired bases in a hairpin loop, is taken t. be

are the branch-and-bound algorithm of [7] and the methodgusi For any additional background on RNA and dynamic prograngmin

tree-width decomposition of [62]. Examples of algorithniatt ~ computation of secondary structures, see the text [14]facecent

consider only pseudoknots of a particular class are founthén  review [22].

pioneering work of [50] and [33], with subsequent refinersent

[21, 47, 49]. Examples of heuristic approaches include @urlo

methods [41], genetic algorithms [1], and a simple, yetahéglgo-

rithm called Pr obKnot (D.H. Mathews, to appear) that appears

to be the state-of-the art method according to recent beadting 2 APPROACH

studies. Finally, it is beyond the scope of this paper to i@V  The non-Boltzmannian WL Monte Carlo algorithm was devetbpe

additional background on algorithms for RNA structuragatinent, by Wang and Landau [55, 54] to estimate the density of statds a

motif detection, or tertiary structure prediction. partition function for complex systems, such as the Isinglehahat
As will be shown later, by Wang-Landau (WL) Monte Carlo exhibit a phase transition. While the Metropolis-Hastirdsnte

methods, we can obtain essentially the same results as laymilgn  Carlo algorithm samples low energy states, the Wang-Laattp:

programming computation of the partition function frtdNAFOLD  rithm is designed to visit states uniformly across all efesrin a dis-

crete energy landscape. Indeed, for the Metropolis-Hgstaigo-

rithm, the expected frequency, stationary probability p;,,.(x) of

3 There i t bout the extent to which RNA stamgn N !
ore 1S some coriiroversy apoLl the extent "0 WhIic visiting the stater, whose energy i&, is given by the uniform pro-
e—E/RT

structure constrains the tertiary structure. See [12] foreton this point. - L -
4 The minimum energy pseudoknotted structure can be combyteahxi- bability 9(E) times .the Boltzmann probablllmc.(:r) = zZ

mum weight matching i© (n3) time for the simple Nussinov energy model Where whereg(E) is the number of states having enerfly and
[51]. the partition functionZ = 3~_ e~ #*)/ET" in contrast, for the WL

3. Nonexistence of pseudoknott:(s, j) and(k, ¢) belong toS,
then it is not the case thai k < j < £.




algorithm, the expected frequency, or stationary prokgbéf visi- 1. procedure Metropolis-Hastings( )
ting statez is pj,(z) = sy, Where is the total number of 2. T - Thi
distinct energies (in the discrete case), or of energy bins (in the 3.z =initial state
continuous case). It follows that non-Boltzmannian sanpéitrate- 4. while (7> To){
gies, such as that devised by Wang and Landau [55, 54], Kou and - repeat Mtimes {
Wong [31], etc. are potentially useful in biopolymer foldirwhere 6. choose random nei ghbor yc N,
one searches for a global energy minimum in a landscape dnavin 7. if (B(z) <E(y)) then
many local energy minima. Indeed in [10], Chen and Xu appled 8. r=yY
WL algorithm for the structure prediction of helical transmbrane 9. el se
proteins, while the equi-energy sampling method of Kou armhgV/ 10. choose r ?g?y?/rgf €(0,1)
[31], related to Monte Carlo with replica exchange, has begm 11. if (z < M) then z=y
lied to estimate the density of states for lattice proteldif@ under 12. 1 !
the hydrophobic-hydrophilic (HP) energy model [32], as hvaslin 13. T=T=+ 0.9
protein structure prediction by fragment assembly [61]. 14. 1
In this paper, we apply the WL algorithm to compute the den- 15. return z

sity of states and partition function for RNA secondary stioe as

well as for the hybridization of two RNA sequences. We begin b

validating and benchmarking the WL method against the esthaw Fig. 2. Pseudocode for Metropolis-Hastings algorithm with sirtedeanne-
method RNAsubopt [58], that enumerates all secondary struc- N9 [29]-

tures of a given RNA sequence. Next, we compute the partition

function over all secondary structures and over all psendikee

hybridizations. We describe as well how to compute the thanti

function Z(T) over all temperatures fror® to 100° Celsius by ~ L+ Procedure VéanglLandau(s)
performing two Wang-Landau computations, followed by aov 2. S=01/ enpty initial structure
tion calculations. Although the computation of the pastitfunction 3. c=exp(l) /7 initial modification factor
over all secondary structures and over all pseudoknotHyeeidi- 4. while c>1+e { . )
zations can be done using existent softwBNAf ol d [27] resp. 5. for all energies bins e g(e) =1
RNAcof ol d [4], UNAFol d [37], and a recently published method S while his not flat {
of Chitsaz et al. [11], the real advantage of our method isliga /- for ¢=11to NunBteps
adding a function to evaluate arbitary pseudoknotted sires and o choose random T' € N(S) of S
arbitrary hybridizations, we can approximately compute plarti- 9. eo = bin(E(S)); e1 = bin(E(T))
tion function, heat capacity, melting temperature, etcafoontext L0 choose random z € (0,1)
known to be NP-complete [35]. 11. if z< 322‘33
Thedensity of statets defined to be thabsolute frequencfunc- 12. S=T
tion for energy; i.e. density of statgée) counts the number of states 13. e=a .
having energy. In the context of RNA secondary structurestate 14 else // S remains unchanged
is a secondary structure for an arbitrary but fixed RNA segeen 19 €=¢o
s. In [16], Cupal et al. described the first efficient algorithran- ~ 16- gle)=c-gle) /1 update d.o.s.
ning inO(m>n?) time, to compute the density of states for an RNA 17 h(e) = h(e)+1 /1 update histogram
sequence of length, where energy is discretized inta bins. The o ]
program of Cupal et al. is no longer available, since it hasnbe 19. c=+/c /] reduce nodification factor
superceded by the prograRNAsubopt, developed by Wuchty 20. } ] ]
et al. [58], which enumerates all secondary structures sefice 21 return relative density of states g,

energy is within a user-defined bound above the minimum freé\here g(i) = g(i)/sum;g(j)

energy. Though not documented, BR¥Asubopt program additio-

nally admits the option D, which, instead of outputting structures,

outputs only the number of secondary structures in eachygn Fig. 3. Pseudocode for Wang-Landau algorithm, as applied to RNArsec

above the minimum free energy (bin sizéis kcal/mol). dary s_tructurg densi_ty of st_ates computation. In_Iine'\BgS) deno_tes the
collection of immediate neighbors of structufg i.e. those obtained by

adding or removing a single base pair. In line 16, d.o.s.abates density
of states.

3 METHODS

Monte Carlo algorithms have been implemented by a numberafs, in

order to study RNA kinetics of folding. In particulaKi nFol d, develo-

ped by Flamm et al. [23], computes theean first passage tim@IFPT)

of folding, by using a variant of the Gillespie algorithm im &vent- the RNAKi net i cs web server used to study the kinetics of the folding
driven simulation with a choice of Metropolis-Hastings dtalvasaki dyna-  transitions of a growing RNA molecule, as in the case of wepsonal
mics. In [28, 59], a similar time-driven Monte Carlo simutet program, folding.

Ki neFol d, is described to compute kinetically determined pseudbkno  We now begin by providing background definitions and degugilihe
ted structure for a given RNA sequence. Danilova et al. [18§cdbe  Wang-Landau algorithm.
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The WL algorithm [55, 54] was designed in order to computedibesity of
statesand partition function neither of which can be computed directly by
classical Monte Carlo methods, such as the Metropolisifigsialgorithm,
simulated annealing, replica exchange, etc.

Recall the definition of Markov chain. L& = {1, ..., n} be afinite set
of states, letr = (p1,...,pn) be the distribution for initial state, and let
P = (p;,;) be a matrix of transition probabilities, satisfyidg; p;,; = 1
for all 7. A (first-order, time-homogeneous)arkov chainM = (Q, , P) is
a stochastic process, whose sigtat timet is a random variable determined
by

Prigo=1] = mi,
Priget1 =jlae =14 = pij.
Definep;(t) = Prlq: = 1i] andpm. = Prlqt = jlgqo = i]. Clearly,

7

the (i, j)th entry of thetth power P* of P equaISp( ).

moreover, by time-

homogeneity it follows thap“]) Prigig+¢ = j‘qto =i, for all 5. The
stationary probabilityof state: is defined bylim¢ p;(t) = p}, provided the
limit exists. Itis a classical result that every finite, apdic, irreducible Mar-
kov chain has aequilibrium distribution ofstationaryprobabilities; see the
text of Clote and Backofen [14] for a new, self-containedgbwaf this result.
A Markov chain with state sep and stationary probabilities], . .., p}; is
reversible if for all 4, j € Q, pfpi,; = p;pjyi.

Figure 2 presents pseudocode for the classical Metroptalitings Monte
Carlo algorithm with simulated annealing [40, 29], whiclplements a ran-
dom walk on the Markov chain whose transition probabiligg of moving
from statex; to x; is given by

L Pl e ) — i (1 SPCE)/RT)/Z N ()
pig = Ploi—eg)= (l’exp(—E(zZvRT)/z N(é))
= min | 1, Nzo) 1)

where N (z;) is the set of inmediate neighbors of statg and N (z;) is

the set of immediate neighbors of statg; i.e. AV'(x;) is the set of states

that can be reached by a single move from statdt can be proved that the

stationary probabilities for this Markov chain are giventhg Boltzmann
e —E(i)/RT .

probabilitiesp} = “——_——, as shown in [14].

In contrast, Figure 3 presents pseudocode for the WL algoritwhich
implements a random walk on the Markov chain whose tramsjti@babili-
tiesp; ; of moving from stater; to x; are given by

(1)) 1)
E(z))’
i)

(e
1) . )

1 gle
Ny ™" (.q(eg)
E(z1)

In this case, the stationary probability of stateis are given b
The mathematical justification for applying the Metrodeastmgs
Monte Carlo method [40] to determine the minimum energy conftion
of a biopolymer [46, 8, 18] depends on two fact§): every finite, irre-
ducible, aperiodic Markov chain hassgationary probabilitydistribution,
(i) if the Markov chain isreversible a situation callecdetailed balance
by the physics community, then the stationary distributidrthe Markov
chain corresponding to the Metropolis-Hastings algoriiarthe Boltzmann
distribution, defined by P(x) w, where E(z) is the
energy of state (i.e. conformatiom) R is the universal gas constahi986
cal/mol, T is absolute temperature, and theatition functionZ is defined by
>, exp(—E(x)/RT, where the sum is taken over all states the Mar-

1
Pi,j P(wl —>$j): m

Ple; — ej) =

kov chain. As temperatur€ approaches zero, the Boltzmann probability of

the minimum energy state approachiesn the case of a unique minimum
energy state, or more generallym, in the case ofn distinct minimum
energy states. See [14] for details.

In contrast to the Metropolis-Hastings algorithm, whichrfpems a
random walk on the Markov chain of states (secondary stresju the
Wang-Landau algorithm performs a random walk on ¢nergy spacef
the Markov chain of states (secondary structures) wherstttionary pro-
bability of visiting energye; is proportional tor then the histogram of
energies encountered in the random walk will be flat.

In this paper, we consider the Markov chain, whose statetharsecon-
dary structures of a given RNA sequence, and for which peibiés local
moves correspond to the addition or removal of a single base[p3].
Although detailed balance holds for the Metropolis-Haggiralgorithm in
Figure 2, it does not necessarily hold for the Metropoli©etgm, obtained
by replacing line

~BW)/RT /Ny,

11. if (Z<W)then T=1y
by
) o—E(v)/RT B
11. if (Z<m)then rT=9y

Indeed for the case of RNA secondary structures, detailethba doesiot
hold in this situation, since if we define the stationary fatoility p; for

statex; to be the Boltzmann probability; = M, and the
transition probabilities given by equation (1), then it & always the case
thatp} -p; ; = p; -pj,q- Forinstance, the empty structuse=
on the 10-mer GGGEECCCCC has 18 immediate neighbors, one of which
isT = (...... ). The structurd” has11 immediate neighbors, one of
which is the empty structur§. Lettingz; = S andz; = T, we have
E(x;) = 0 kcal/mol, E(z;) = 2.70 kcal/mol, ensemble free energy is
—RTIn(Z) = —3.96, henceZ = exp(3.96/RT) whereT = 310°
Celsius soZ = 621.5, and we have stationary probabilitip$ = 6211 =

-5
0.00161, p; = 2012456 — 0.00002, p;,; = 292356, andp;; = {;
We compute that

11

0.00161 - 0.012456/18 = 692.01 x 10~°
0.00002 - 1/11 = 1.82 x 1076,

pi Py =

P; ‘Pia =

Summarizing, in the Metropolis algorithm (with modifieddii1), reversi-
bility of a Markov chain depends on the permissible local smwvhile in
the Metropolis-Hastings algorithm (with line 11 as in Fig&), reversibi-
lity is always ensured. In the case at hand, if every secgnstaucture is
an immediate neighbor of every secondary structure, thémeidetropolis
algorithm, transition probabilities would be

exp(—FE(z;)/RT)/Z )
N - exp(—E(z:)/RT)/Z

_(E(l'j)_E(zi)))
RT

N

pi,j = P(x; — x;)=min (17

exp(

®

min | 1,

where\ is the number of secondary structures. In this case, an easyie
tation shows that the Markov chain is reversible. Despigertbn-reversible
nature of the Markov chain corresponding to the Metropolgorthm,
whose states are the secondary structures of a given RNAeisegjuand
whose local moves consist of the addition or removal of alsifmase
pair, it has been standard practice to apply the Metropdgerithm in
this case [23, 28, 59, 17]. For that reason, we do not hesitapply
the Wang-Landau algorithm for the study of RNA secondarycstire
formation.

Note that in Figure 3, the Wang-Landau computes the relatessity
of states, defined by(i) = N(e;)/N, where N(e;) is the number of
states having energy;, and N is the total number of states. In the case of
RNA secondary structures, itis simple to compute the taiativer of secon-
dary structures by dynamic programming, given as follonise@an RNA
sequence of length, let BP; ; = 1 if positionss, j can form a Watson-
Crick or wobble pair, otherwise leBF; ; = 0. Let® = 3 denote the
minimum number of unpaired bases in a hairpin loop. LetiWg; denote




the number of secondary structures on subsequigngeof the given RNA
sequence, we have tha; ; = 0if j <4 + 3, and otherwise

j—6—1
Nij=N;j-1+ Z BPy ;-  Nig—1 Ngi1,5-1-
k=i
It follows that the total number of secondary structureie@tVy ,,. From
the relative density of states computed by Wang-Landaurigigo, we
compute the absolute density of states by

g(ei) = g(ei) - N.

For fixed temperatur@’ for which the Wang-Landau computation was done,
we can compute the partition functidh(T") = >~ ¢ exp(—E(S)/RT’) by

Z(T) = g(E) - exp(~E/RT). @)
E

In their original article [55, 54], Wang and Landau mentidrikat in the
case of the Ising model, equation (4) allows one to compugeptrtition
function at any desired temperatufefrom the density of states. Unfortuna-
tely, this is no longer the case for the Turner nearest neightodel [60] of
RNA secondary structure, since the free energy parameiestdcked base
pairs, hairpins, bulges, internal loops, etc. all dependeomperature. We
can nevertheless proceed by computing the density of statése energy
atT = 37° Celsius, and the density of states for enthalpy (assumed to b
temperature independent), and then by convoluting thelsesjawe obtain
the density of states for free energy at any desired temperat

PARTITION FUNCTION FOR A SINGLE RNA

The left panel of Figure 4 displays the relative density afest for the free
energy of secondary structures of the 45 nt flavivirus capaidpin (cHP)
with EMBL access code AB010982/1-45. The right panel of trae figure
displays the sum of squared differences between the deofsitiates and
the best fitting normal distribution resp. extreme valudritistion. The cHP

is a conserved RNA hairpin structure in the capsid codingredf flavivi-

rus genomes. Note that the relative density of states, aggriestogram,

is approximately normal. In Clote et al. [15] it is rigoroygroved that the
relative density of states is asymptotically normal; sfieally, it is shown
that the limit, as» approaches infinity, of the relative density of states for an
RNA sequence of length is normal, where for the purpose of mathematical
analysis it is assumed that any base can pair with any otfser (tewmopo-
lymer model) and that the energy of a secondary struc§use—1 times the
number of base pairs il (Nussinov energy model [44]).

PARTITION FUNCTION OF HYBRIDIZATION

Following the approach in progra®NAcof ol d of Bernhardt et al. [5],
we can modify the Wang-Landau program of Figure 3 in ordertmmute
the density of states for allybridizationsof two RNA sequences, where
both intermolecular and intramolecular base-pairing lswadd, provided
that there are no pseudoknots.

In the case of the hybridization of twoRNA secondary strreguthe first
of lengthn and the second of lengttn, we can compute the total number
of hybridizations as follows. Given an RNA sequende= aj,...,an
of lengthn, and an RNA sequenc® = by,...,by of lengthm, let
HP;; = 1if positionsa;,b; can hybridize, forming a Watson-Crick or
wobble pair, otherwise I P; ; = 0. Forl <i,5 <mn,1 < k,£ < m,let
H; ;.10 denote the number of hybridizations of the subsequence . , a;
with by, ..., b,. From equation (3), we can compute the numbed. ,
resp.N B of secondary structures on subsequengeg. . ., ay of A resp.
bz, ...,by of B.If j < iorf < k, then definedd; ;. , = 0; otherwise

defineH; ;.1 ¢ by
Hij 1ke—1-(1+HP(5,¢)
+39 7V HP(2,0) -

+Z§;€ HP(j,y) - Hij—16,y—1 " NByt1,
It follows that the total number of pseudoknot-free hytaédions is then
Hi,n:1,m-2 The previous algorithm is clearlp (n4).

By considering the number of hybridizations to be the samtd@sium-
ber of secondary structures of a chimeric sequence, formedrratenating
A,B to form c1,...,¢cntm ai,...,an,b1,...,bm, we have an
O(n?) algorithm, as follows. Fot < 4,5 < n-+m,if j <ior(1 <i,j <
n,j—i <6 =3),thenN; ; = 0,whileif1 <i <n,n+1<j<n+m,
thenN; ; = 1, otherwiseN; ; is equal to

(®)

H; v 1k0—1 NAzt1,j

j—1
Nij-1+ Z BPg ; Nig—1-Ngt1,5-1-
k=i
It follows that the total number of hybridizations is th&f .
We now describe how to compute thmelting temperaturel’y; of
hybridization.

1. Compute number of structures for each of 5 species (tetper
independent)S(A), S(B), S(AA), S(BB), S(AB).

2. For (Celsius) temperatufg € {0°, ..., 100°}, computerelative den-
sity of states’ (A, T'), f(B,T), f(AA,T), f(BB,T), f(AB,T) for
each species by Wang-Landau.

3. For (Celsius) temperatur€ € {0°,...,100°}, compute partition
functionsZ (A, T), Z(B,T), Z(AA,T), Z(BB,T), Z(AB,T) by
Z(T) = Spg(B) - e T

whereabsolute density of stateg £) is relative density times number
of structures. For instance
9(AB,T)(E) = f(AB,T)(E) - S(AB).
4. Following Dimitrov and Zuker [19], for (Celsius) tempéaree

T € {0°,...,100°}, compute ensemble free energyG(A,T),
AG(B,T), AG(AA,T), AG(BB,T), AG(AB,T). This involves
the following.

a Redundancy correction:

Zaa = Zaa-Z3
Zpp = Zpp-—Zp
Zap = ZaB—Za-ZB
b Symmetry correction:
Zaa
Z = —
AA 9
ZBB
7 — -
BB 2
¢ Temperature-dependent chemical equilibrium constants:
ZAA
Ky = 5
Z3
ZBB
Kp =
Zp
ZAB
Kap = ———
ZA-ZB

5 In the literature, various types of hybridization are akkayIn Dimitrov-
Zuker, no intramolecular structure is allowed, while in Beardt et al.
pseudo-knot free hybridizations are allowed with intragealar structure.
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Fig. 4. (Left) Density of states for free energy of secondary structurgheo#5 nt flavivirus capsid hairpin (cHP) with EMBL access e@B010982/1-45
and sequencAUGAACAACC AACGAAAAAG GACGGGAAAA CCGUCUAUCA AUAUG. Overlaid on the graph is the best fitting normal distribotand the
best fitting extreme value distributiofRight) Sum of squared differences between the density of statethariakst fitting normal distribution resp. extreme
value distribution. The:-axis of both panels depicts free energy in kcal/mol.
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Fig. 5. (Left) Comparison of execution times of WL and progr&Asubopt - D[58], in computing density of states. Since the program gialet al. [16]

is no longer publicly available, and is supercededRiAsubopt (private correspondence from |. Hofacker), we computedetteeution time in seconds
as a function oflogn, wheren is RNA sequence size. Horizontal green line is slightly &the value okxp(25) seconds, or equivalently one day. It
appears that for sequences of length 46 nt or greater, the ¥had is more efficient thaRNAsubopt . (Right) Sample output of WL method on sequence
CUGCUUUGAGGACAAAGAGAAUAAAGACUUCAUGUU, after 17,402, 000 WL MonteCarlo steps, where the value ©in line 4 of Figure 3 is defined to be
0.001. The leftmost column contains the energy bin, the middlerool contains the relative frequency in the WL sampling rung e rightmost column
contains the lowest energy secondary structure in the @ssd@nergy bin. Though our WL program allows the user toifpduih size, the default energy bin
size (here) i9).1 kcal/mol; empty bins, where no structure has yet been samate not displayed. The lowest energy structure sampledebWL method
ISCC-CCCCCaa))))))) e e with energy—3.3 kcal/mol, which is identical to the minimum free energy sture, as computed by
RNAf ol d. Only a portion of the output is displayed. In particulag targest energy of any sampled structure-i8.8 kcal/mol; in that energy bin the least

energy structure is(. . (...). ) ((...)C...). (C..)(-.2)))

d Temperature-dependent concentration (number) of mieleo WhereN%, Ng, are given and< 4, K, K 5 g are obtained from

and B: previous step. Valued’ 4 and N are gotten by using, for exam-
9 0 ple, Newton’s method for solving two nonlinear functionsedo
2-Ka Ny+Kap-Na Np+Na—Ny = 0 issues of numerical instability, Markham uses binary deguc43
2-Kp-N3+Kap-Na-Ng+Np—N% = 0 of [38)).
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Fig. 6. Computation of heat capacityr (T') for the toy sequenc®’-AGCGA-3’, hybridized to its reverse complemes3ftUCGCU-5’. (Left) Graph generated
by WL method described in this papéRight) Graph generated by the progrdsiNAFol d [37].

e LettingZ (A, B, AB, AA, BB) equal the following expression

—h

01 N0

NYIND!
Na,Np,Nap,Naa,NpB
it follows that the total partition functiotr satisfies

Z(A,B,AB, AA, BB)

7Na N Nap »Naa »NpB
ZA ZB ZAB ZAA ZBB

Z =
NaANB,Nap,Naa,NpB

which can be approximated by terid(A, B, AB, AA, BB)
where Na, Ng,Nap,Naa, Ngp oObtained as previously
explained. The chemical potentialy for each speciex is the

; atived—RT In Z :
partial derlvatlvew of ensemble free energy with respect
to number of molecules oX, hence

_ —RTOWnZ(A, B, AB, AA, BB)

HA

ON 4
SO
N
pa = —RTIn(Za)+ RTIn(~a
NA
N
ps = —RTIn(Zp)+RTIn(2
NB
Nap
pap = —RTI(Zag)+ RTIn(———+
NG - NY,
faa = —RTln(ZAA)JrRTln(%
NS - N9
uBE = —RTln(ZBB)JrRTln(%.
Ng - Ng

Total free energy satisfies
F=paNat+ppNp+paa-Naat+ups Ngp+pag-Nap
which simplifies to

F=pa-Ny+ps-Np

Normalize the ensemble free energy in terms of energy pée mo
of solute:
A Ha NG+ Np

maz (NG, N%)

5. Determineheat capacityas a function of temperature by

2AG
o1?

OAH
Cp(T) = o =

by computing the second partial of a fitting parabola deteeahiby
2m+1 evenly spaced points, using the approximation%é—c given
by

30 >
m(m + 1)4dm?2(2m + 3)6T2

—m<i<m (312 —m(m+1)AG(To+idT)

In a post-processing step, smooth the heat capacity cuneoiopu-
ting a running average. The melting temperatiiig (C),) is computed
by determining the temperature at which heat capacity eebia
maximum.

4 DISCUSSION

The left panel of Figure 5 displays the run time of the WL mettho
compared with that dRNAsubopt from the Vienna RNA package,
while the right panel of the same figure shows sample outpu fr
our WL program. Figure 5 clearly shows the advantage of WL
over existent methods in computing the density of statesddin
single RNA molecules and for hybridization complexes of two
RNA molecules. The left and right panels of the Figure 6 depic
the heat capacity computed by WL method (left) and the progra
UNAFol d (right). Melting temperature, which is usually defined as
the temperature at which half of the molecules are singbnded
while the other half are hybridized, is determined as thatpe-
rature where heat capacity achieves its maximum. The pmogra
UNAFol d does not allow any intramolecular structure (base pai-
ring between two nucleotides of the same structure), aifedhat
our WL method permits, as does tRBIAcof ol d program. While

it is clear that additional work must be done to improve hegiae
city computation with the WL method, the melting temperatlix,
computed by WL agrees reasonably well with that computed by
O(n®) methodsUNAFol d, RNAcof ol d, and the recenO(n®)
method of Chitsaz et al. [11], each of which methods admighidy
different interactions.

We now describe how to approximately compute the parti-
tion function Z(T") over all secondary structures and over all
pseudoknot-free hybridizations, simultaneously oveteatiperatu-
res from0° to 100° Celsius, by performing two WL computations,
followed by a computation of the convolution of enthalpyatele
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frequency with free energy relative frequency. Similar potations
using existent methods require over 100 cubic time comjoumsit

Compute the relative density of statgsfor free energy using
Wang-Landau with temperatuf@ = —273° Celsius (absolute
zero Kelvin). It follows thatpy, is the relative density of states
for enthalpy, Due to the fundamental thermodynamic refatio

AG = AH — TAS (6)

whereT is absolute temperature in Kelvin, andy, AH, AS

5 CONCLUSION

In this paper, we have implemented the Wang-Landau algorith
compute the relative density of states for RNA secondanctires
and hybridizations. Separately computing the number otaires
and hybridizations, we obtain the absolute density of statdich
then yields the partition function, and thence, in the cddeybri-
dization, the melting temperature. The WL method is muckefas
than existent softwar®@\NAsubopt in computing the density of
states, but could not be benchmarked with the binning metfiod
Cupal et al. which runs i (m?n®) time, for lengthn sequence
andm energy bins, since the latter software is no longer availa-

respectively denote the change in free energy, enthalgy, anble, being superceded BNAsubopt - D. In preliminary tests, we

entropy.

Compute the relative density of statpg for free energy
using Wang-Landau with temperatufe = 37° Celsius 810
Kelvin).

From equation (6), we have that

_ AH-AG
= ===

AS

Given arbitrary absolute temperatuife compute the relative
density of states for free energy at temperatfirby the fol-
lowing pseudocode, representing a kindcofolutionof p,

Withph.
1. for all z initialize p(z)=0
2. for z ranging over enthal py bins

3. for y ranging over free energy bins
4. 2=
5. p(2)+ = pr(x) * pe(y)

Compute the absolute density of stagés) = p(z) - N, where

obtain roughly the same melting temperature for duplex RB&\,
that computed by existent methods; however, the real adgant
of the WL method is that there is no restriction on types od-all
wed interaction, unlike the situation with dynamic prograimg
approaches that disallow pseudoknots, zig-zags, etc.
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By this method, one can approximate the partition functit{’)
for all temperatures fromi® to 100° in Celsius, by performing two
Wang-Landau sampling runs, respectively at temperatt&s3°

and37° Celsius, and then to repeatedly perform a fast convolution.

The method just described, which involves two WL computatjo
together with convolution computations, has until now norked
well in practice, for certain technical reasons. This dimtneeds
further exploration.

Another issue concerning any sampling method is the redjuire
time to obtain reasonably good estimates of the quantity@stion.
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time (MFPT) to reach the minimum free energy structure take-i
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