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Abstract

It is a classical result of Stein and Waterman
[16] that the asymptotic number S(n) of RNA sec-
ondary structures is 1.104366 ·n−3/2 ·2.618034n,
where the combinatorial model of RNA concerns
a length n homopolymer, such that any base can
pair with any other base, subject to the usual
convention that hairpin loops must contain at
least θ = 1 unpaired bases. The result of Stein
and Waterman is proved by developing recursions,
using generating functions and applying Bender’s
theorem [1]. These recursions form the basis
to compute the minimum free energy secondary
structure for a given RNA sequence, with respect
to the Nussinov energy model [15], later extended
by Zuker [20] to substantially more complicated
resursions for the Turner nearest neighbor energy
model [14].

In this paper, we study combinatorial asymp-
totics for two special subclasses of RNA sec-
ondary structures – canonical and saturated struc-
tures. Canonical secondary structures are defined
to have no lonely (isolated) base pairs. This
class of secondary structures was introduced by
Bompfünewerer et al. [2], who noted that the run
time of Vienna RNA Package is substantially de-
creased when restricting computations to canon-
ical structures. Here we provide an explanation
for the speed-up, by proving that the asymptotic
number of canonical RNA secondary structures is
2.1614 · n−3/2 · 1.96798n. Saturated secondary
structures have the property that no base pairs
can be added without violating the definition of
secondary structure (i.e. introducing a pseudoknot
or base triple). In the Nussinov energy model,
where the energy for a base pair is −1, satu-
rated structures [3] correspond to kinetic traps.
In [3], we showed that the asymptotic number of
saturated structures of a length n homopolymer
is 1.07427 · n−3/2 · 2.35467n. In this paper, we
show that the expected number of base pairs

of random saturated structures, generated by a
natural stochastic procedure, is
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1. Introduction

An RNA secondary structure, formally defined
later, is an outerplanar graph (no pseudoknots)
with the property that no vertex is incident to more
than one edge (no base triples) and that for every
chord between vertices i, j, there exist at least
θ = 1 many vertices that are not incident to any
edge (hairpin requirement). RNA secondary struc-
ture is equivalently defined to be a well-balanced
parenthesis expression s1, . . . , sn, containing left
parenthesis ( , right parenthesis ) , and dot • ,
where if nucleotide i is unpaired then si = •,
while if there is a base pair between nucleotides
i < j then si = ( and sj = ) . This representa-
tion is known as the Vienna representation or dot
bracket notation (dbn).

In this paper, we are interested in specific
classes of secondary structure: canonical and sat-
urated structures. A secondary structure is canon-
ical [2] if it has no lonely (isolated) base pairs.
A secondary structure is saturated [18] if no base
pairs can be added without violating the notion of
secondary structure. In order to compute parame-
ters like asymptotic value for number of structures,
expected number of base pairs, etc. we adopt
the homopolymer model of Stein and Waterman
[16]. By homopolymer, we mean that any position
(nucleotide, also known as base) can base-pair
with any other position. Since there are steric
constraints for RNA to fold back on itself within a
hairpin region, following Stein and Waterman we
additionally require that every hairpin loop contain
at least θ = 1 unpaired bases; i.e. if i, j are base-
paired, then j − i > θ.



1.1. Examples of representations of sec-
ondary structures

Below, we display the sequence and consensus
secondary structure of a selenocysteine insertion
(SECIS) sequence taken from the Rfam database
[8]. SECIS sequences are responsible for a re-
translation event, whereby the UGA stop codon
does not cause a termination of protein translation,
but rather causes the incorporation of selenocys-
teine (cysteine whose side chain contains selenium
instead of sulfur) into the growing polypeptide.
This sequence, whose GenBank accession number
S79854.1/1605-1666, and its consensus secondary
structure in (Vienna) dot bracket notation are given
as follows:

CACUGCUGAUGACGAACUAUCUCUAACUGGUCUUGACCACGAGCUAGUUCUGAAUUGCAGGG

(((((....((((((((((((((.....(((....)))..))))))))))))))...)))))

Figure 1 depicts an equivalent representation of
the RNA secondary structure, in Feynman linear
form.

Figure 1. Depiction of SECIS sequence with
GenBank accession number S79854.1/1605-
1666, represented as a Feynman linear dia-
gram. The sequence and secondary structure
were taken from the Rfam Database [8], and
the graph was created using jViz [17].

1.2. Outline and results of the paper

In Section 2, we review a combinatorial method,
known as DSV methodology, which we apply in
Section 2.1 to compute the asymptotic number of
canonical secondary structures for a homopolymer
of length n with θ = 1. Our description of
the DSV methodology with its application of the
main theorem of Flajolet and Odlyzko [6] is not
meant to be self-contained, and we refer the reader
to [12] for a detailed overview of this method,
along with a number of example applications.
Subsequently, we determine the expected number
of base pairs for canonical structures; due to lack
of space, we can only state the result, proved by
similar techniques.

Applying DSV methodology for the expected
number of base pairs for such saturated

structures leads to complex expressions,
which may be intractable. For that reason,
we consider a natural stochastic process to
generate random saturated structures. Our
stochastic process adds base pairs, one at a
time, according to the uniform distribution,
without violating any of the constraints of a
structure. See Section 3 for more details. At
the web site http://bioinformatics.bc.edu/clotelab/
SUPPLEMENTS/RNAasymptoticsCanonicalStr/,
we have placed Python programs and Mathematica
code used in computing and checking the
asymptotic number of canonical secondary
structures.

2. DSV methodology

In this section, we describe a combinatorial
method usually called DSV methodology, appar-
ently due to Delest, Schützenberger and Viennot.
See especially the appendix of [12] for a detailed
presentation of this method.

If A is a finite alphabet, then A∗ denotes the set
of all finites sequences of characters drawn from
A. Let Σ be the set consisting of the symbols for
left parenthesis ( , right parenthesis ) , and dot •,
used to represent a secondary structure in Vienna
notation.

A context-free grammar [11] for RNA sec-
ondary structures is given by G = (V,Σ,R, S0),
where V is a finite set of nonterminal symbols
(also called variables), Σ = {•, ( , ) }, S0 ∈ V is
the start nonterminal, and

R ⊆ V × (V ∪ Σ)∗

is a finite set of production rules. Elements of R
are usually denoted by A → w, rather than (A,w).
If rules A → α1,. . . , A → αm all have the same
left hand side, then this is usually abbreviated by
A → α1‖ · · · ‖αm.

If x, y ∈ (V ∪ Σ)∗ and A → w is a rule,
then by replacing the occurrence of A in xAy
we obtain xwy. Such a derivation in one step is
denoted by xAy ⇒G xwy, while the reflexive,
transitive closure of ⇒G is denoted ⇒∗

G. The
language generated by context-free grammar G is
denoted by L(G), and defined by

L(G) = {w ∈ Σ∗ : S0 ⇒∗
G w}.

For any nonterminal S ∈ V , we also write L(S)
to denote the language generated by rules from
G when using start symbol S. A derivation of
word w from start symbol S0 using grammar G



Type of nonterminal Equation for the l.g.f.
S → T | U S(z) = T (z) + U(z)
S → T U S(z) = T (z)U(z)
S → t S(z) = z
S → ε S(z) = 1

Table 1. Translation between context-free
grammars and generating functions. Here,

G = (V, Σ,R, S0) is a given context-free grammar,
S, T and U are any nonterminal symbols in V , and

t is a terminal symbol in Σ. The generating
functions for the languages L(S), L(T ), L(U) are
respectively denoted by S(z), T (z), U(z). Table is

reproduced with permission from [12].

is a leftmost derivation, if each successive rule
application is applied to replace the leftmost non-
terminal occurring in the intermediate expression.
A context-free grammar G is non-ambiguous, if
there is no word w ∈ L(G) which admits two
distinct leftmost derivations.

Suppose that G = (V,Σ,R, S) is a non-
ambiguous context-free grammar which generates
a collection L(S) of objects (e.g. canonical sec-
ondary structures) and that S(z) =

∑∞
n=0 snzn

is a (complex) generating function, such that the
nth Taylor coefficient [zn]S(z) = sn represents
the number of objects we wish to count. In the
sequel, sn will represent the number of canonical
secondary structures for a homopolymer of length
n. The DSV method uses Table 1, taken from
[12], in order to translate the grammar rules of R
into a system of equations, which can be solved
to find an expression for S(z). The appendix of
[12] explains at length how to perform dominant
singularity analysis in order to determine the
asymptotic value of sn.

2.1. Asymptotic number of canonical sec-
ondary structures

In [2] the notion of canonical secondary struc-
ture S is defined as a secondary structure having
no lonely (isolated) base pairs; i.e. formally, there
are no base pairs (i, j) ∈ S for which both
(i − 1, j + 1) 6∈ S and (i + 1, j − 1) 6∈ S. In
this section, we compute the asymptotic number of
canonical secondary structures for a homopolymer
of length n with θ = 1; i.e. for which there exists
at least one unpaired base in every hairpin loop.
Throughout this section, secondary structure is
interpreted to mean a secondary structure on a ho-
mopolymer with minimum number θ of unpaired
bases in every hairpin loop set to be 1. At the

cost of working with more complex expressions,
by the same method, one could analyze the case
when θ = 3, which is assumed for the software
mfold [19] and RNAfold [9].

Consider the context-free grammar G =
(V,Σ,R, S), where V consists of nonterminals
S, R, Σ consists of the terminals • , ( , ) , S is
the start symbol and R consists of the following
rules:

S → •|S • |(R) |S (R) (1)
R → ( • ) |(R) |(S (R) ) |(S • )

The nonterminal S is intended to generate all
nonempty canonical secondary structures. In con-
trast, the nonterminal R is intended to generate
all secondary structures which become canonical
when surrounded by a closing set of parentheses.
We claim that the grammar G is non-ambiguous
and generates all nonempty canonical secondary
structures (inductive proof not given due to space
constraints).

By DSV methodology, the non-ambiguous
grammar (1) gives the following equations

S(z) = z + S(z)z + R(z)z2 + S(z)R(z)z2(2)
R(z) = z3 + R(z)z2 + S(z)R(z)z4 + S(z)z3(3)

which can be solved using Mathematica™ soft-
ware to give the solutions

S(z) =
1− z − z2 + z3 − z5 −

√
F (z)

2z4
(4)

and

S(z) =
1− z − z2 + z3 − z5 +

√
F (z)

2z4
(5)

where F (z) = 4z5
(
−1 + z2 − z4

)
+(

−1 + z + z2 − z3 + z5
)2

. Note that when
evaluated at z = 0, the equation (4) yields
S = 0/0, while equation (5) yields 2/0. Since
S(z) =

∑∞
n=0 snzn is assumed to be analytic at

0, we retain only the first solution, for which it is
easily verified that limz→0 S(z) = 0.

The square root function
√

z has a singularity
at z = 0, so we are led to investigate the
roots of F (z). Mathematica™ computes the 10
roots 0.508136, 4.11674, −0.868214−0.619448i,
−0.868214+0.619448i, −0.799805− 0.367046i,
−0.799805 + 0.367046i, 0.410134 − 0.564104i,
0.410134 + 0.564104i, 0.945448 − 0.470929i,
0.945448 + 0.470929i. It follows that ρ =
0.508136 is the root of F (z) having smallest
(complex) modulus; such a singularity is known
as the dominant singularity.



Let T (z) = 1−z−z2+z3−z5

2z4 and factor 1 − z/ρ
out of F (z) to obtain Q(z)(1 − z/ρ) = F (z). It
follows that

S(z) = T (z) +

√
Q(z)
2z4

· (1− z/ρ)α

where α = 1/2. As explained in [12], for asymp-
totics we can ignore the term T (z). By the main
theorem of Flajolet and Odlyzko [6], discussed at
length in the appendix of [12],

sn ∼
K(ρ)
Γ(−α)

· n−α−1 · (1/ρ)n (6)

where α = 1/2 and K(z) =
√

Q(z)

2z4 . Plugging
ρ = 0.508136 into equation (6), we derive the
following theorem.

Theorem 1: The asymptotic number of canon-
ical secondary structures for a homopolymer of
length n is

2.1614 · n−3/2 · 1.96798n. (7)

We now derive the expected number of base
pairs in canonical secondary structures of a ho-
mopolymer of length n with θ = 1. Modify
the equations (2,3) by adding a new variable u,
intended to count the number of base pairs, thus
yielding S(z, u) =

z + S(z, u)z + R(z, u)uz2 + S(z, u)R(z, u)uz2

and R(z, u) =

uz3+R(z, u)uz2+S(z, u)R(z, u)u2z4+S(z, u)uz3.

which can be solved by the software
Mathematica™to yield the solution1

S(z, u) =
P

n≥0
P

k≥0 sn,kznuk

= 2u2z4
“
1 − z − uz2 + uz3 − u2z5−r

4u2z5
“

uz2 − u2z4 − 1
”

+
“

z + uz2 − uz3 + u2z5 − 1
”2

!
.

Using a classical observation [5], note that the
expected number sn,k of base pairs in a canonical
secondary structure on a homopolymer of length
n is related to the partial derivative of S(z, u);

1. Since S(z, u) is assumed to be analytic at 0, we have
discarded one of the two solutions as before.

indeed,

[zn]∂S(z,u)
∂u (z, 1)

[zn]S(z, 1)

=
[zn]

(∑
i≥0

∑
k≥0 si,kzikuk−1

)
(z, 1)

sn

=

∑
k≥0 sn,kk

sn

=
∑
k≥0

kP(Xn = k)

= E(Xn)
= sn,k.

Here, P(Xn = k) = sn,k

sn
is the (uniform)

probability that a canonical secondary structure of
a homopolymer of length n has exactly k base
pairs.

We compute that G(z) = ∂S(z,u)
∂u (z, 1) satisfies

G(z) =
−(z2 − 2)(T (z)−

√
F (z) + z

√
F (z))

2z4
√

F (z)

where T (z) = (1−2z +2z3− z4−3z5 + z6) and

F (z) = −4z5(1−z2+z4)+(−1+z+z2−z3+z5)2.

Simplification yields G(z) =

−(z2 − 2)(z − 1)
2z4

− T (z)(z2 − 2)
2z4

·

(
1√
F (z)

)
.

We are thus led to investigate the dominant sin-
gularity ρ, i.e., the root of F (z) having smallest
(complex) modulus. As before, we obtain ρ =
0.508136. Factor (1 − z/ρ) out of F (z) so that
F (z) = Q(z)(1− z/ρ). It follows that G(z) =

−(z2 − 2)(z − 1)
2z4

−T (z)(z2 − 2)
2z4

·Q(z)α·(1−z/ρ)α

where α = −1/2. By the theorem of Flajolet and
Odlyzko [6], we obtain the asymptotic value

K(ρ)
Γ(−α)

· n−α−1 · (1/ρ)n (8)

where α = −1/2 and K(z) =
−Q(z)−1/2T (z)(z2−2)

2z4 . Plugging ρ = 0.508136
into equation (8), we find the asymptotic value of
[zn]∂S(z,u)

∂u (z, 1) is

0.68568 · n−1/2 · 1.96798n. (9)

Dividing (9) by the asymptotic number [zn]S(z)
of canonical secondary structures, given in (7), we
have the following theorem.

Theorem 2: The asymptotic expected number
of base pairs in canonical secondary structures
on a homopolymer of length n with θ = 1 is
0.31724 · n.



3. Random saturated structures

An RNA secondary structure is saturated if θ+1
is the maximum size of a contiguous sequence of
unpaired nucleotides; i.e. it is not possible to add
any base pairs without violating the definition of
secondary structures. If one models the folding of
an RNA secondary structure as a random walk on
a Markov chain (i.e. by the Metropolis-Hastings
algorithm), then saturated structures correspond to
kinetic traps with respect to the Nussinov energy
model [15].

In [3], we computed the asymptotic number
N(n) = 1.07427 · n−3/2 · 2.35467n of satu-
rated secondary structures on [1, n] for the ho-
mopolymer with θ = 1. An important question
is related to whether or not the distribution of
the number of base pairs of saturated structures
is Gaussian.2 It is currently an open question
to determine the asymptotic number N(n, k) of
saturated secondary structures having k base pairs,
although this was (essentially) solved in [3] for
k equal to the largest and next to largest possi-
ble value. If values of N(n, k) were available,
then the expected number of base pairs in a
random saturated secondary structure would be∑

k kN(n, k)/N(n). However, since we are cur-
rently unable to determine the asymptotic value
of N(n, k) or to otherwise determine the asymp-
totic number of base pairs in random saturated
secondary structures, in this section and the next,
we consider natural algorithmic approaches of
generating (a subclass of) random saturated sec-
ondary structures. In particular, in this section we
are interested in the asymptotic expected number
of base pairs in saturated structures. We define
a stochastic greedy process to generate random
saturated structures.

We look at the expected number of base pairs
of random saturated structures, generated by the
following stochastic process. We begin with n
bases in sequential order arranged on a line. Select
the base pair (1, u) by choosing u, where θ +2 ≤
u ≤ n, at random with probability 1/(n− θ− 1).
The base pair joining 1 and u partitions the line
into two parts. The left region has k bases strictly
between 1 and u, where k ≥ θ, and the right
region contains the remaining n − k − 2 bases

2. Since the energy of a secondary structure S under the
Nussinov energy model [15] is equal to −1 times the number
of base pairs, this question is equivalent to whether the energy
distribution for saturated secondary structures is Gaussian.
Note that it remains an open question whether the energy
distribution of (not necessarily saturated) secondary structures
is Gaussian under the Turner energy model [14].

1 u n

at least θ unpaired bases

.....k
n−k−2

Figure 2. Base 1 is base-paired by selecting
a random base u such there are at least θ
unpaired bases enclosed between 1 and u.

properly contained within endpoints k + 2 and n
(see Figure 2). Proceed recursively on each of the
two parts. Observe that the secondary structures
produced by our stochastic process will always
base pair with the leftmost available base.

Let Uθ
n be the expected number of basespairs

of the saturated secondary structure generated by
this recursive procedure. In general, we have the
following recursive equation

Uθ
n = 1 +

1
n− θ − 1

n−2∑
k=θ

(Uθ
k + Uθ

n−k−2),(10)

for all n ≥ θ +2. Observe that we have the initial
conditions Uθ

0 = Uθ
1 = · · · = Uθ

θ+1 = 0, Uθ
θ+2 =

Uθ
θ+3 = 1. If we write equation (10) for Uθ

n+1 and
substitute in it the value for Uθ

n we derive

Uθ
n+1 =

1 +
1

n− θ

n−1∑
k=θ

(Uθ
k + Uθ

n−k−1) =

1 +
1

n− θ

(
Uθ

n−1 + Uθ
n−θ−1 +

n−2∑
k=θ

(Uθ
k + Uθ

n−k−2)

)

1 +
1

n− θ

(
Uθ

n−1 + Uθ
n−θ−1

)
+

n− θ − 1
n− θ

(Uθ
n − 1).

If we multiply out by n−θ and simplify we obtain

(n−θ)Uθ
n+1 = 1+(n−θ−1)Uθ

n+Uθ
n−1+Uθ

n−θ−1,
(11)

which is valid for n ≥ θ + 1.

3.1. Asymptotic behavior

In the sequel we look at asymptotics. In partic-
ular we prove the following result.

Theorem 3: If the threshold satisfies θ = o(n)
then the limit limn→∞

Uθ
n

n exists.
Before continuing with the proof of Theorem 3

we mention an alternative approach in trying to es-
tablish the convergence of Uθ

n/n as n approaches
infinity. As explained in [4], where we established
the existence of an asymptotic limit for the ex-
pected minimum free energy As explained in [4],



where we established the existence of an asymp-
totic limit for the expected minimum free energy
for randomly generated RNA sequences (not ran-
dom structures!), Kingman’s ergodicity theorem
[10] requires (here) a superadditive sequence of
doubly-indexed random variables Xi,j . Indeed, if
one defines Xθ

i,j to be the expected number of base
pairs among random saturated random secondary
structures on the nucleotide sequence [i, j], then
Kingman’s theorem would require superadditivity,
i.e. Xθ

i,k ≥ Xθ
i,j + Xθ

j,k. If one could establish
superadditivity, then since Xθ

1,n/n is bounded
above by 1/2, it would follow from Kingman’s
theorem that limn→∞X1,n/n exists. Since it is
not obvious that one has superadditivity in the case
at hand, we have proceeded otherwise.

Proof: (of Theorem 3) Consider the two
sequences (Uθ

n

n : n ≥ 1) and (Uθ
n+1−Uθ

n : n ≥ 1).
We prove that if one of these sequences has a
limit, as n approaches infinity, then so does the
other; moreover, we claim that limn→∞

Uθ
n

n =
limn→∞

(
Uθ

n+1 − Uθ
n

)
. The idea is to use the

following equation which is derived from the basic
identity (11): Uθ

n+1 =

1
n− θ

+
n− θ − 1

n− θ
Uθ

n+
1

n− θ
Uθ

n−1+
1

n− θ
Uθ

n−θ−1.

Collecting terms we have Uθ
n+1 − Uθ

n =

1
n− θ

− Uθ
n

n− θ
+

Uθ
n−1

n− θ
+

Uθ
n−θ−1

n− θ
(12)

=
1 + Uθ

n−θ−1

n− θ
−

Uθ
n − Uθ

n−1

n− θ
(13)

=
1 + Uθ

n−θ−1

n− θ
− 1

n− θ
(Uθ

n − Uθ
n−1).(14)

Repeating equation (14) to the term Uθ
n − Uθ

n−1

we derive that Uθ
n+1 − Uθ

n =

1 + Uθ
n−θ−1

n− θ
− 1

n− θ

(
1 + Uθ

n−θ−2

n− 1− θ
−

Uθ
n−1 − Uθ

n−2

n− 1− θ

)
.

(15)
Since there are at most n/2 base pairs in any
secondary structure on a sequence of length n,
we conclude from equation (15) that the limit of
Uθ

n+1−Uθ
n exists if and only if the limit of Uθ

n/n
exists.

Next we show that the sequence Uθ
n

n has a limit
as n →∞. First of all we prove that∣∣∣∣Uθ

n

n
−

Uθ
n+1

n + 1

∣∣∣∣ ∈ O(θ)
n2

. (16)

To prove this, observe that by equation (11),

nUθ
n+1 = θUθ

n+1+1+(n−θ−1)Uθ
n+Uθ

n−1+Uθ
n−θ−1

(17)

and hence (n + 1)Uθ
nnUθ

n+1 =

nUθ
n+Uθ

n−θUθ
n+1−1−(n−θ−1)Uθ

n−Uθ
n−1−Uθ

n−θ−1

= 2Uθ
n + θUθ

n − θUθ
n+1 − Uθ

n−1 − Uθ
n−θ−1

= θ(Uθ
n−Uθ

n+1)+(Uθ
n−Uθ

n−1)+(Uθ
n−Uθ

n−θ−1)

Dividing both sides by n(n + 1), we have Uθ
n

n −
Uθ

n+1
n+1 =

θ(Uθ
n − Uθ

n+1)
n(n + 1)

+
(Uθ

n − Uθ
n−1)

n(n + 1)
+

(Uθ
n − Uθ

n−θ−1)
n(n + 1)

Equation (15) clearly implies that |Uθ
n+1 − Uθ

n| ∈
O(1) and |Uθ

n−Uθ
n−θ−1| ∈ O(1), and so we have

established Equation (16), that∣∣∣∣Uθ
n

n
−

Uθ
n+1

n + 1

∣∣∣∣ ∈ O(θ)
n2

.

Now we can complete the proof of Theorem
3. Indeed, equality (16) implies that the sequence
Uθ

n

n is uniformly convergent, in the sense that for
any ε > 0 there is an integer n0 such that form
n, m ≥ n0 we have that

∣∣∣Uθ
n

n − Uθ
m

m

∣∣∣ < ε. Since
every uniformly convergent sequence has a limit
the proof of the theorem is complete.

3.2. Expected number of base pairs for
arbitrary threshold θ ≥ 0

In this section we determine the generating
function

y =
∞∑

n=0

Uθ
nzn (18)

of the sequence Uθ
n of the expected number of

basespairs of random saturated secondary struc-
tures, generated by the stochastic process de-
scribed earlier. The main result of this section is
summarized in the following theorem.

Theorem 4: The generating function y for Uθ
n,

i.e., the expected number of basespairs of the
random saturated secondary structure with thresh-
old θ ≥ 0, generated by the recursive procedure
described in equation (10), is

zθ+1

(1− z)2
e

“
−z−

Pθ
i=0

zi

i+1

” ∫
e

“
z+

Pθ
i=0

zi

i+1

”
dz.

(19)
Proof: In order to use the method of gener-

ating functions we multiply equation (11) by zn+1

to obtain that (n− θ)Uθ
n+1z

n+1 =

zn+1+(n−θ−1)Uθ
nzn+1+Uθ

n−1z
n+1+Uθ

n−θ−1z
n+1,



which is valid for n ≥ θ + 1, and then sum
the resulting equation for n ≥ θ + 1 to derive
a functional equation

∞∑
n=θ+1

(n− θ)Uθ
n+1z

n+1

=
∞∑

n=θ+1

zn+1 +
∞∑

n=θ+1

(n− θ − 1)Uθ
nzn+1 +

∞∑
n=θ+1

Uθ
n−1z

n+1 +
∞∑

n=θ+1

Uθ
n−θ−1z

n+1.

Next we express the above equation using the
generating function y given in equation (18) as a
Taylor series expansion around the origin 0. Note
that the first derivative of y is

y′ =
∞∑

n=1

nUθ
nzn−1.

Observe that using the initial conditions Uθ
0 =

Uθ
1 = · · · = Uθ

θ+1 = 0 and Uθ
θ+2 = Uθ

θ+3 = 1
we can make the following substitutions

∞∑
n=θ+1

(n− θ)Uθ
n+1z

n+1 = zy′ − (θ + 1)y,

∞∑
n=θ+1

zn+1 =
zθ+2

1− z
,

∞∑
n=θ+1

(n− θ − 1)Uθ
nzn+1 = z2y′ − (θ + 1)zy,

∞∑
n=θ+1

Uθ
n−1z

n+1 = z2y

∞∑
n=θ+1

Uθ
n−θ−1z

n+1 = zθ+2y.

If we substitute these values into the above equa-
tion we derive the differential equation

zy′−(θ+1)y =
zθ+2

1− z
+z2y′−(θ+1)zy+z2y+zθ+2y.

Finally, if we collect terms and simplify we obtain
y′ =

(θ + 1)− (θ + 1)z + z2 + zθ+2

z − z2
y +

zθ+1

(1− z)2
.

(20)
It remains to solve the resulting differential

equation (20). To this effect, multiply both sides
of equation (20) by an (as yet unknown) function
φ(z) in order to obtain φ(z)y′ =

φ(z)
(θ + 1)− (θ + 1)z + z2 + zθ+2

z − z2
y+φ(z)

zθ+1

(1− z)2
.

If we could find a function φ(z) such that

dφ(z)
dz

= −φ(z)
(θ + 1)− (θ + 1)z + z2 + zθ+2

z − z2

(21)
then using the product rule for derivatives, namely
φ(z)y′ + dφ(z)

dz y = d
dz (φ(z)y), we conclude that

d

dz
(φ(z)y) = φ(z)

zθ+1

(1− z)2
. (22)

A solution of the homogeneous differential equa-
tion (21) is

φ(z) = e
−

R (θ+1)−(θ+1)z+z2+zθ+2

z−z2 dz
. (23)

After doing some elementary calculations we can
calculate the integral∫

(θ + 1)− (θ + 1)z + z2 + zθ+2

z − z2
dz

and derive up to a constant the following formula

(θ + 1) ln z − z − 2 ln(1− z)−
θ∑

i=0

zi

i + 1
. (24)

Using equation (23), this implies that

φ(z) =
(1− z)2 exp

(
z +

∑θ
i=0

zi

i+1

)
zθ+1

(25)

up to a multiplicative constant > 0. Finally, equa-
tion (22) yields the following closed form solution
for the desired function

y =
1

φ(z)

(∫
φ(z)zθ+1

(1− z)2
dz + c

)
, (26)

where c is a constant. Substituting φ(z) from
equation (25) into equation (26) we derive

y =
zθ+1

(1− z)2
·e−z−

Pθ
i=0

zi

i+1 ·
∫

ez+
Pθ

i=0
zi

i+1 dz+c,

(27)
for some constant c. The constant c is easily
determined to be 0 in view of the initial condition
Uθ

θ+2 = 1. This completes the proof of Theorem 4.

Elementary calculations show that our recur-
rence is identical to a formula derived for a seating
arrangement problem for which Rothman in [7]
(see also [13]) gives the following asymptotic
formula

Uθ
n+2θ+1 ∼ (n + 2(θ + 1) + 1)`(θ)− 1, (28)

which is valid for θ ≥ 0, where

`(θ) =
∫ 1

0

exp

{
2

[
θ+1∑
i=1

ti − 1
i

]}
dt. (29)



The previous discussion implies that the asymp-
totic limit limn→∞

Uθ
n

n is equal to `(θ) and there-
fore we have the following theorem.

Theorem 5: The expected number Uθ
n of base-

spairs of the saturated secondary structures with
threshold θ ≥ 0, generated by the recursive
procedure above, satisfies

lim
n→∞

Uθ
n

n
=
∫ 1

0

exp

{
2

[
θ+1∑
i=1

ti − 1
i

]}
dt. (30)

4. Conclusion

In this paper we applied the DSV methodol-
ogy to enumeration problems concerning canon-
ical and saturated secondary structures. For in-
stance, we showed that the asymptotic number
of canonical RNA secondary structures for the
homopolymer model with θ = 1 is equal to
2.1614 · n−3/2 · 1.96798n, which provides a the-
oretical explanation for the speed-up observed for
Vienna RNA Package when restricted to canonical
structures [2]. We then developed a new method to
determine certain structural properties for random
saturated RNA secondary structures; in particular,
we constructed generating functions for the ex-
pected number of base pairs and hairpins.
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