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ABSTRACT

DiANNA is a recent state-of-the-art artificial neural
network and web server, which determines the
cysteine oxidation state and disulfide connectivity
of a protein, given only its amino acid sequence.
Version 1.0 of DiANNA uses a feed-forward neural
network to determine which cysteines are involved
in a disulfide bond, and employs a novel architec-
ture neural network to predict which half-cystines
are covalently bound to which other half-cystines.
In version 1.1 of DiANNA, described here, we
extend functionality by applying a support vector
machine with spectrum kernel for the cysteine clas-
sification problem—to determine whether a
cysteine is reduced (free in sulfhydryl state), half-
cystine (involved in a disulfide bond) or bound to a
metallic ligand. In the latter case, DiANNA predicts the
ligand among iron, zinc, cadmium and carbon.
Available at: http://bioinformatics.bc.edu/clotelab/
DiANNA/.

INTRODUCTION

Cysteine residues play a unique role in determining protein
stability and function. Cysteines may be reduced (free, where
sulfur occurs in the reactive sulfhydryl form) or oxidized; the
latter may be involved in a disulfide bond, i.e. a half-cystine, or
instead covalently bound to a metallic ligand that is part of a
prosthetic group. Experimental determination of cysteine spe-
cies (free, half-cystine, ligand-bound) is non-trivial, and often
only the knowledge of the three-dimensional structure indi-
cates the species. For this reason, cysteine classification is an
important bioinformatics problem that may be approached by
using machine learning methods. In this paper, we apply sup-
port vector machines (SVM) to the ternary cysteine classifica-
tion problem, to determine whether a given cysteine is free, a
half-cystine or ligand-bound. To the best of our knowledge,

the present paper describes the only existent ternary cysteine
classification program.

It is reasonable to assume that each species of cysteine
resides in a distinct micro-environment which influences the
cysteine redox potential and its steric accessibility. This hypo-
thesis is confirmed and exploited in several machine learning
approaches for cysteine classification that, while different,
share the common feature that the discrimination is based
on the analysis of the cysteine sequence context, using a sym-
metric sequence window of length w centered about each
cysteine. Particular effort has been spent on the binary clas-
sification problem to discriminate intra-chain half-cystines
from free cysteines, the latter being the most represented spe-
cies. For this problem, various methods have yielded steadily
increasing prediction accuracies (1,2). Nevertheless, other spe-
cies of cysteines exist—namely ligand-bound cysteines and
half-cystines involved in inter-chain disulfide bonds. Such
cysteines reside in possibly different micro-environments,
hence may be discernable from other species. Only one
attempt has been made to discriminate ligand-bound cysteines;
specifically, Passerini and Frasconi (3) obtained prediction
accuracy of �90% for the binary classification problem of
distinguishing ligand-bound cysteines from half-cystines.

DiANNA 1.1 is the only software which performs ternary
cysteine classification; all other cysteine classification web
servers consider only the binary classification problem of
discriminating free cysteines from intra-chain half-cystines.
In this paper, we apply a SVM with (a variant of) the spectrum
kernel (4) to classify cysteines into three different species:
free, half-cystine or ligand-bound. For predicted ligand-bound
cysteines, we further refine the classification by predicting the
bound ligand to be iron, zinc, cadmium or carbon. Although
we have some results concerning inter-chain disulfide bonds
(data not shown), the DiANNA web server is intended only for
use with single-chain proteins.

DATASET

To test and train a ternary SVM predictor for cysteine clas-
sification, it was necessary to build a dataset, in which each
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cysteine species is well represented. This was done as follows.
From the Protein Data Bank (5), we extracted the set of single-
chain proteins containing ligand-bound cysteines, and
produced a non-redundant collection by using the program
UniqueProt (6) with HSSP distance set to 0. This produced
a list of 202 chains, denoted by UP. To enrich the small
number (60) of half-cystines examples (which is probably
not representative), we considered the 967 non-redundant
protein chains used in (1) for training and testing a neural
network to predict cysteine oxidation state prediction (dataset
MA). We merged the UP and MA datasets, and re-applied
UniqueProt to eliminate redundancy between the two lists.
From each redundancy cluster, we selected one member con-
taining ligand-bound cysteines, if available (if not, we selected
the representative member proposed by UniqueProt). In this
fashion, we obtained a dataset (denoted UPMA) of 526 chains,
with adequate representation of each of the three cysteine
classes. Table 1 displays the number of cysteines in each
species, and Table 2 presents the number of chains containing
each species. From each protein in UPMA, we extracted
symmetric windows of size w centered around each cysteine.
Different values of w were tested, and the best results were
obtained for w ¼ 17 [the same value led to the best
performance in (3)]. The annotated UPMA list is available
at URL http://bioinformatics.bc.edu/clotelab/DiANNA/
UPMA_annotated.html.

SVM PREDICTION USING STRING KERNELS

SVMs were introduced by Vapnik within the context of a
mathematically rigorous statistical learning theory—for a
very clear exposition of this topic see (7). Often demonstrating
better prediction accuracy than neural networks, SVMs have

become increasingly popular in bioinformatics, with applica-
tions ranging from translation initiation site determination (8),
remote homology detection in proteins (9), viral protease
cleavage site prediction (10), fast computation of Z-scores
for minimum free energy of RNA (11) and so on.

To apply SVMs to the ternary cysteine classification prob-
lem, we use the spectrum representation (4) which describes
an amino acid sequence by specifying the vector of k-mers
which occur; i.e. for peptide p, define Fk(p) ¼ hfa(x):a 2 Aki,
where fa(x) is the number of occurrences of the k-mer a in p,
and A is the set of 1-letter codes of amino acids. Leslie et al.
use the term spectrum kernel resp. mismatch kernel in (4,13),
and Busuttil et al. use the term profile-based kernel in (14).
More rigorously speaking, these authors actually apply
classical kernels [e.g. the linear kernel in (4,13)] for new
representations of amino acid sequences—the spectrum
representation, mismatch representation, profile-based spec-
trum representation. In this paper, we obtained the best
results when k ¼ 3, so that the amino acid sequence p in
each size w window is encoded by the vector F3(p) of
8000 coordinates, giving the number of occurrences of
each 3-mer in p. With the spectrum representation, we used
the software libSVM (12) with a degree 2 polynomial kernel,
such that the cost parameter C ¼ 1—for explanation of these
parameters see (12).

To train and test the SVMs we used 5-fold cross-validation,
splitting positive and negative datasets into five random
subsets of approximatively the same size. Using libSVM,
the SVM multiclass classifier outputs, for each cysteine in
the input sequence, the probability of being a free cysteine
(FC), a half-cystine (HC) and ligand-bound (LC). To measure
the performance of the algorithm we used the Q3 score, which
is the ratio between correctly predicted examples and the total
number of examples. The Q3 score is commonly used for
the performance evaluation of three states (sheet, helix,
coil) secondary structure predictors—e.g. see (15). Addition-
ally, we computed the Qp score, which is the fraction of
proteins for which all cysteines are correctly classified. The
results (Table 3) show that the highest Q3 and Qp scores are
obtained using for the spectrum representation with a degree
2 polynomial kernel (scores of 0.78 and 0.53, respectively).
Although the papers (13) and (14,16) report that the mismatch
and profile-based kernels outperform the spectrum kernel in
protein classification experiments, we found that this is not the

Table 1. Total number of different cysteine species in datasets considered in

this paper

Dataset LC IA HC IE HC FC Total

UP 624 60 2 546 1230
MA 216 1481 37 2412 4109
UPMA 624 608 24 1199 2455

The description of each dataset can be found in the section ‘Dataset’. Legend: IA,
intra-chain disulfide bonds; IE, inter-chain disulfide bonds; HC, half-cystines;
FC, free cysteines; LC, ligand-bound cysteines.

Table 2. Breakdown of protein chains which contain at the same time half-

cystines (HC), free cysteines (FC) and ligand-bound cysteines (LC), for each of

the three datasets considered in this paper

Chains UPMA UP MA

Total 526 202 967
w/ HC 140 19 291
w/ FC 363 139 716
w/ LC 189 202 52
w/ both HC and FC 28 9 65
w/ both HC and LC 17 19 1
w/ both FC and LC 128 139 26
w/ HC, FC and LC 7 9 0

Table 3. Performance measure (Q3 and Qp scores) for the three-class prediction

of LC, HC, FC using different kernels and input representation

Kernel Q3 Qp

SpR MmR PrfR SpR MmR PrfR

Linear 0.75 0.64 0.63 0.45 0.43 0.43
Polynomial (2) 0.78 0.74 0.74 0.53 0.46 0.45
Polynomial (3) 0.76 0.72 0.72 0.5 0.47 0.47
RBF 0.75 0.73 0.72 0.43 0.43 0.43

The Q3 score is the ratio between correct prediction and total number of exam-
ples. The Qp score is the fraction of proteins for which all cysteines are correctly
predicted. Q3 and Qp scores are obtained averaging the results of a 5-fold cross
validation. Optimal values of the C parameter and the g parameter for the radial
basis function (RBF) kernel are estimated by a grid search. Legend: SpR—
Spectrum representation; MmR—Mismatch representation; PrfR—Profile
representation.
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case for cysteine oxidation state prediction. Additional data
describing the results of binary classification experiments can
be found in the web supplement at the DiANNA web site.

Table 4 displays the number of examples in dataset UPMA
for each distinct ligand type in ligand-bound cysteines. For the
cases for which we have at least 39 examples (i.e. Zn, Fe, Cd,
C) we investigated whether machine learning can be used to
discriminate the atomic species bound—i.e. whether sequence
context of each type of ligand is significantly different. Experi-
ments were performed where the positive set consisted of
amino acid sequences symmetrically flanking those cysteines
bound to a specific ligand (say iron), while the negative set
consisted of sequences flanking cysteines bound to a different
ligand. In the case of cadmium (Cd) and carbon (C), we
randomly resampled the positive training set (which is sub-
stantially smaller than the negative training set) until the num-
ber of positive and negative examples was the same (note that
the test set is unchanged). As in ternary cysteine classification,
we found that the best discrimination was obtained in using the
degree 2 polynomial kernel with the spectrum representation.
Results are reported in Table 5 and Figure 1.

WEB SERVER

DiANNA 1.1 has a simple user-friendly web interface, which
allows the user to obtain a prediction of the state (free, half-
cystine or ligand-bound) for each cysteine in an input protein.
The ternary SVM predictor outputs the highest probability
class, and, for those cysteines predicted as ligand-bound,
the most likely ligand is displayed (among iron, zinc, cad-

mium, carbon), by a winner-takes-all decision. Additionally,
as described previously (17,18), DiANNA 1.1 uses a state-of-
the-art method to predict the disulfide connectivity—i.e.
which cysteines form a disulfide bond with which other cys-
teines. A screen shot of the DiANNA 1.1 web server output for
a ternary classification prediction is shown in Figure 2. Addi-
tionally, DiANNA 1.1 allows all possible binary classification
predictions for the three cysteine classes (free, half-cystine,
ligand-bound). The web server interface is largely self-
explanatory. The upper panel of Figure 2 displays the input
form, including the pull-down menu, which allows the user to
choose the classifier used for cysteine state prediction (ternary
classifier, or one of three binary classifiers). The lower panel of
Figure 2 displays the output of the ternary cysteine state clas-
sifier, indicating the probability of each class (half-cystine,
free cysteine, ligand-bound). In the case of predicted ligand-
bound cysteines, the predicted ligand is listed in the right-most
column. The user enters a protein in FASTA format, possibly
including a FASTA comment, and chooses either to predict
the cysteine state for each cysteine, or to determine the
disulfide connectivity. The latter function has already been
described in (17).

CONCLUSION

Given the amino acid sequence of a protein, DiANNA (17) is a
state-of-the-art method to predict disulfide connectivity topol-
ogy. Version 1.0 of the DiANNA web server, described in
(18), additionally predicts the oxidation state of each cysteine
(free or half-cystine), by using our implementation of the
neural network of Fariselli et al. (19). In version 1.1 of
the DiANNA web server, described in this paper, we replace

Table 4. Total number of distinct atomic ligands found covalently bound to

cysteine residues in the UPMA dataset.

Cys-bound atom Examples

As 2
Au 1
C 89
Cd 39
Cu 10
Fe 185
H 1
Hg 24
Mn 1
Ni 6
Pb 1
S 27
U 2
Zn 225

Table 5. Performance measures for the prediction of cysteines bound to

specific ligands

Measure Zn Cd Fe C

Acc 0.93 0.99 0.91 0.96
Sen 0.8 0.97 0.67 0.74
Spe 0.99 1 0.98 0.99
MCC 0.84 0.99 0.74 0.83
AUC 0.97 0.97 0.94 0.94

Legend: Acc—accuracy; Sen—sensitivity; Spe—specificity; MCC—
Matthew’s correlation coefficient; AUC—area under the ROC curve.
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Figure 1. ROC curves for the prediction of cysteines covalently bound to
specific ligands. [For an explanation of receiver operating characteristic
(ROC) curves see (20)].
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the binary classifier of (19) by a SVM with degree 2 polyno-
mial kernel for the spectrum representation (4). Using libSVM,
we obtain a ternary classifier, capable of discriminating
between free cysteines, half-cystines and ligand-bound
cysteines. Moreover, for the latter, DiANNA 1.1 predicts
the type of ligand. To the best of our knowledge, this is the
first application of string-based kernels to sequence windows;
until this paper, such kernels had been used only for protein
classification.
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interface design, and anonymous referees for some valuable
suggestions. Work of P.C. was partially supported by NSF
DBI-0543506. Funding to pay the Open Access publication
charges for this article was provided by NSF grant DBI-
0543506.

Conflict of interest statement. None declared.

REFERENCES

1. Martelli,P.L., Fariselli,P., Malaguti,L. and Casadio,R. (2002) Prediction
of the disulfide bonding state of cysteines in proteins with hidden
neural networks. Protein Eng., 15, 951–953.

2. Chen,Y.C., Lin,Y.S., Lin,C.J. and Hwang,J.K. (2004) Prediction of the
bonding states of cysteines using the support vector machines based on
multiple feature vectors and cysteine state sequences. Proteins, 55,
1036–1042.

3. Passerini,A. and Frasconi,P. (2004) Learning to discriminate between
ligand-bound and disulfide-bound cysteines. Protein Eng. Des. Sel.,
17, 367–373.

4. Leslie,C., Eskin,E. and Noble,W.S. (2002) The spectrum kernel: a string
kernel for SVM protein classification. Pac. Symp. Biocomput.,
564–575.

5. Berman,H.M., Battistuz,T., Bhat,T.N., Bluhm,W.F., Bourne,P.E.,
Burkhardt,K., Feng,Z., Gilliland,G.L., Iype,L., Jain,S. et al. (2002) The
Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 58,
899–907.

6. Mika,S. and Rost,B. (2003) UniqueProt: creating representative protein
sequence sets. Nucleic Acids Res., 31, 3789–3791.

7. Vapnik,V. (1995) The Nature Of Statistical Learning Theory.
Springer, NY.

8. Zien,A., Ratsch,G., Mika,S., Scholkopf,B., Lengauer,T. and
Muller,K.R. (2000) Engineering support vector machine kernels
that recognize translation initiation sites. Bioinformatics, 16,
799–807.

9. Jaakkola,T., Diekhans,M. and Haussler,D. (1999) Using the Fisher
kernel method to detect remote protein homologies. Proc. Int. Conf.
Intell. Syst. Mol. Biol., 149–158.

10. Narayanan,A., Wu,X. and Yang,Z.R. (2002) Mining viral protease data
to extract cleavage knowledge. Bioinformatics, 18, S5–S13.

11. Washietl,S., Hofacker,I.L. and Stadler,P.F. (2005) Fast and reliable
prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA, 102,
2454–2459.

12. Fan,R.-E., Chen,P.-H. and Lin,C.-J. (2005) Working set selection using
the second order information for training SVM. J. Machine Learning
Res., 6, 1889–1918.

13. Leslie,C.S., Eskin,E., Cohen,A., Weston,J. and Noble,W.S. (2004)
Mismatch string kernels for discriminative protein classification.
Bioinformatics, 20, 467–476.

14. Busuttil,S., Abela,J. and Pace,G. (2004) Support vector machines with
profile-based kernels for discriminative protein classification. Genome
Inform., 15, 191–200.

15. Jones,D.T. (1999) Protein secondary structure prediction based on
position-specific scoring matrices. J. Mol. Biol., 292, 195–202.

16. Kuang,R., Ie,E., Wang,K., Siddiqi,M., Freund,Y. and Leslie,C. (2004)
Profile-based string kernels for remote homology detection and motif
extraction. Proc. IEEE Comput. Syst. Bioinform. Conf., 152–160.
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18. Ferrè,F. and Clote,P. (2005) DiANNA: a web server for disulfide
connectivity prediction. Nucleic Acids Res., 33, W230–W232.

19. Fariselli,P., Riccobelli,P. and Casadio,R. (1999) Role of evolutionary
information in predicting the disulfide-bonding state of cysteine in
proteins. Proteins, 36, 340–346.

20. Gribskov,M. and Robinson,N. (1996) The use of receiver operating
characteristic (ROC) analysis to evaluate sequence matching.
Comput. Chem, 20, 25–34.

Figure 2. DiANNA ternary cysteine classification prediction input and
output example. Upper panel: The DiANNA web-server update allows the
user to choose between disulfide connectivity prediction and cysteine classi-
fication (ternary cysteine classification is only available in the 1.1 update). In
the latter case, the user can type or paste a FASTA sequence in a text box,
then choose among four different classification predictions by means of a drop
down menu (i.e. the ternary LC versus HC versus FC classification, and the
three binary classifications LC versus HC, LC versus FC and HC versus FC).
Lower panel: Output for the ternary classification. For each cysteine in the
submitted sequence, the SVM model predicts the probability of being
half-cystine, free cysteine or ligand-bound. The class having the highest prob-
ability is highlighted. If a specific cysteine is predicted as ligand bound, a
tentative prediction about the putative ligand (out of four possible ligands)
is attempted.
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