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Abstract RNA folding pathways play an important role in various biological pro-
cesses, such as (i) the hok/sok (host-killing/suppression of killing) system in E.

coli to check for sufficient plasmid copy number, (ii) the conformational switch in
spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing
of a portion of the 5′ exon, and (iii) riboswitches – portions of the 5′ untranslated
region of messenger RNA that regulate genes by allostery.

Since RNA folding pathways are determined by the energy landscape, we de-
scribe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy
landscape for a given RNA sequence. Given two metastable secondary structures
A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability
p(x, y) = Zx,y/Z that a secondary structure has base pair distance x from A and
distance y from B. Using polynomial interpolation with the fast Fourier transform,
we compute p(x, y) in O(n5) time and O(n2) space, which is an improvement over
an earlier method, which runs in O(n7) time and O(n4) space.

FFTbor2D has potential applications in synthetic biology, where one might wish
to design bistable switches having target metastable structures A, B with favorable
pathway kinetics. By inverting the transition probability matrix determined from
FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean
first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000
sequences, each having metastable structures A, B.

Source code and binaries are freely available for download at http://bioinformatics.
bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with
optional OpenMP parallelization primitives.
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1 Introduction

RNA folding pathways play an important role in biological processes. For instance,
in the hok/sok (host-killing/suppression of killing) system [11], the transition be-
tween two metastable RNA structures determines the fate of a cell as follows. The
hok gene of E. coli and other bacteria codes a small (52 amino acid) toxin causing
irreversible damage to the cell membrane. It has been shown that hok-mRNA is
constitutively expressed from a weak promoter, while the rapidly degraded sok-
RNA is constitutively expressed from a strong promoter. The hok-mRNA is ini-
tially inactive, since a foldback sequesters the Shine-Dalgarno sequence; however,
slow exonucleolytic processing digests the last ≈ 40 nt of the 3′ end of hok-mRNA,
transforming the molecule into its active form in which the Shine-Dalgarno se-
quence is no longer sequestered. If R1 plasmids of E. coli are present in sufficient
copy number, then a portion of the 64 nt sok-RNA, which is complementary to
hok-mRNA leader region, binds to the active conformation of hok-mRNA, thus
causing degradation of the complex by RNase III [11]. If plasmids are not present
in sufficient copy number, then the cell is killed by hok toxin, thus ensuring fitness
of the daughter cells.

In the case of spliced leader (SL) RNA from certain trypanosomes and ne-
matodes, a portion of the 5′ exon is donated to another mRNA by trans splic-
ing. Intermediate structures appear to be important in the process of splicing, as
shown by LeCuyer and Crothers [12], who performed stopped-flow rapid-mixing
and temperature-jump measurements of the kinetics for the structural transition
between two low energy structures of SL RNA from Leptomonas collosoma. Con-
formational switches are thought not only to play a role in such trans splicing,
but as well in transcriptional and translational regulation, protein synthesis, and
mRNA splicing.

For these reasons, substantial experimental and computational work has been
done on folding pathways and the kinetics of RNA folding; below, we cite only a
small sample of the work in this area. On the experimental side, Neupane et al. [19]
applied single-molecule force spectroscopy of the add adenine riboswitch, to show
how folding relates to gene regulation; see also [25,2,17]. On the computational
side, Morgan and Higgs [18] appear to have been among the first to have consid-
ered the computational problem of determining optimal and near-optimal folding

pathways between two metastable secondary structures A, B of a given RNA se-
quence. In [5], Flamm developed an event-driven Monte Carlo simulation, Kinfold,
to determine expected folding time between two reference structures, including
the mean first passage time to fold into the minimum free energy structure. Using
RNAsubopt [26], Flamm et al. [6] designed the exponential time exact algorithm,
barriers, that computes the optimal folding pathway between metastable struc-
tures A and B. Since barriers may not converge, due to its reliance on the enumer-
ation of possibly exponentially many structures, in [4] we developed a local search
(tabu) method that rapidly returns near-optimal folding pathways; in benchmark-
ing results [4], local search was shown to outperform various methods, including
direct and indirect path methods of Morgan and Higgs [18], breadth-first search
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with bounded lookahead, Findpath [7], and the exponential time, exact method
barriers [6], in producing near-optimal pathways within reasonable time. There
are far too many contributions to kinetics and folding pathways to adequately sur-
vey here; the references [27,22,10,29,13] give some idea of the variety of methods.

1.1 Preliminaries

A secondary structure for a given RNA nucleotide sequence s = s1, . . . , sn is a
set S of Watson-Crick or wobble base pairs (i, j), containing neither base triples
nor pseudoknots. The number of base pairs in S is denoted by |S|. The secondary
structure S is compatible with s if for every base pair (i, j) in S, the pair (si, sj)
is contained in the set B of six canonical (Watson-Crick and wobble) base pairs.
Throughout this paper, by structure, we always mean a secondary structure which
is compatible with an arbitrary, but fixed RNA sequence s.

If A, B are secondary structures of s, then the base pair distance, dBP (A, B),
is defined to be the |A − B| + |B − A|, i.e. the number of base pairs belonging
to one structure but not the other. Structures S, T are said to be k-neighbors if
dBP (S, T ) = k. In [8], we described recursions for an O(n5) time and O(n3) algo-
rithm, RNAbor, that computes the Boltzmann probability pk of structures to have
base pair distance k from a given reference structure A. In [21], we described an
O(n4) time and O(n2) space algorithm, by using polynomial interpolation with
the fast Fourier transform (FFT). In [14], Lorenz et al. generalized the recursions
of RNAbor [8] to yield recursions for an O(n7) time and O(n4) space algorithm,
RNA2Dfold, that computes the Boltzmann probability p(x, y) that a structure has
base pair distance x from reference structure A, and distance y from another refer-
ence structure B. The goal of this paper is to describe a new algorithm, FFTbor2D,
using polynomial interpolation with the FFT, to reduce the worst case complexity
of RNA2Dfold to O(n5) time and O(n2) space. As well, we provide an illustrative
application by computing the mean first passage time between metastable struc-
tures A, B of spliced leader RNA from L. collosoma on the 2D energy landscape
computed by FFTbor2D.

The general idea of using interpolation to compute partition function values
was first suggested by Waldispühl and Ponty in the context of the RNAmutants

program [23]. Subsequently, we used the Fast Fourier Transform (FFT) in our
algorithm FFTbor [21] to interpolate the probabilities pk that structures from the
Boltzmann ensemble have base pair distance k from a target structure S∗. This pa-
per extends the result from [21] to two dimensions; i.e. in the algorithm FFTbor2D,
we interpolate the probabilities p(x, y) that structures from the Boltzmann ensem-
ble have base pair distance x [resp. y] from target structure A [resp. B].

1.2 Plan of paper

The plan for the rest of this paper is as follows. In Section 2, we develop the
quintic O(n5) time and quadratic O(n2) space algorithm FFTbor2D, which uses
dynamic programming to evaluate a complex polynomial Z(x) at quadratically
many complex roots of unity, and then use the fast Fourier transform (FFT) to
compute the coefficients of Z(x) by polynomial interpolation. The coefficients of
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Z(x) yield the 2D energy landscape for a given RNA sequence. Moreover, by
exploiting parity and complex conjugates, we obtain an additional reduction of
time by a factor of 4. Although this section is rather technical, the main result
entails a significant improvement in the algorithm run time. In Section 3, we
present bencharking results, comparing the run times of FFTbor2D and RNA2Dfold

(developed by Lorenz et al. [14]). In Section 4, we apply FFTbor2D to determine the
mean first passage time (MFPT) along the 2D energy grid in folding between two
metastable structures of L. collosoma spliced leader RNA. Finally, in Secton 5, we
we describe differences in the algorithms RNA2Dfold and and FFTbor2D, and mention
relative strengths of each software depending on the envisioned application.

2 Polynomial interpolation using the FFT

For expository clarity, we describe FFTbor2D and all recursions in terms of the
Nussinov energy model [20], where the energy E0(i, j) of a base pair (i, j) is defined
to be −1, and the energy E(S) of a secondary structure S is −1 times the num-
ber |S| of base pairs in structure S. Nevertheless, the implementation of FFTbor2D
involves the full Turner energy model [28], where free energy E(S) depends on
negative, stabilizing energy contributions from base stacking, and positive, desta-
bilizing energy contributions due to loss of entropy in loops.

Given reference secondary structures A, B of a given RNA sequence s = s1, . . . , sn,
our goal is to compute

Zx,y
1,n =

X
S such that

dBP (S,A)=x,dBP (S,B)=y

e
−E(S)

RT (1)

for all 0 ≤ x, y < n, where R is the universal gas constant, T absolute tempera-
ture, E(S) denotes the free energy of S, and S ranges over all secondary structures
that are compatible with s. As mentioned, we emphasize that for expository rea-
sons alone, the Nussinov energy model is used in the recursions in this paper,
although full recursions and the implementation of FFTbor2D involve the Turner
energy model.

For any secondary structure S of s, and any values 1 ≤ i ≤ j ≤ n, the restriction
S[i,j] is defined to be the collection of base pairs of S, lying within interval [i, j];
i.e. S[i,j] = {(k, `) : i ≤ k < ` ≤ j}. In [14], Lorenz et al. generalized the dynamic
programming recursions of our earlier work [8], to yield recursions for the partition
function Zx,y

i,j in equation (1). In the context of the Nussinov model, Zx,y
i,j is equal

to

Z
(x−α0),(y−β0)
i,j−1 + (2)P

sksj∈B,
i≤k<j

“
e
−E0(k,j)

RT
P

u+u′=x−α(k)

P
v+v′=y−β(k) Zu,v

i,k−1Z
u′,v′

k+1,j−1

”
where α0 = 1 if j is base paired in A[i,j] and 0 otherwise, β0 = 1 if j is base
paired in B[i,j] and 0 otherwise, E0(k, j) = −1 if k, j can base-pair, and otherwise
E0(k, j) = +∞, and α(k) = dBP (A[i,j], A[i,k−1] ∪A[k+1,j−1] ∪ {(k, j)}), and β(k) =
dBP (B[i,j], B[i,k−1] ∪B[k+1,j−1] ∪ {(k, j)}).
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2.1 Recursions to compute the polynomial Zi,j(x)

Given RNA sequence s = s1, . . . , sn and two arbitrary, but fixed reference struc-
tures A, B, we define the polynomial

Z(x) =
n−1X
r=0

n−1X
s=0

zrn+sx
r·n+s (3)

where (constant) coefficients

zrn+s = Zr,s
1,n =

X
S such that

dBP (S,A)=r,dBP (S,B)=s

e
−E(S)

RT

where E(S) denotes the free energy of S. If we evaluate the polynomial Z(x) at
n2 distinct pairs of values a0, . . . , an2−1 in

Z(a0) = z0, . . . ,Z(an2−1) = zn2−1, (4)

then Lagrange polynomial interpolation guarantees that we can determine the co-
efficients crn+s of Z(x), for 0 ≤ r, s < n. Due to technical difficulties concerning
numerical robustness, we will perform polynomial interpolation by using Vander-
monde matrices and the fast Fourier transform (FFT).

The following theorem shows that a recursion, analogous to equation (2), can
be used to compute the polynomial Zi,j(x) defined by

Zi,j(x) =
n−1X
r=0

n−1X
s=0

zrn+s(i, j)x
rn+s =

n2−1X
k=0

zk(i, j)xk (5)

where

zrn+s(i, j) = Zr,s
i,j =

X
S such that

dBP (S,A[i,j])=r,dBP (S,B[i,j])=s

e
−E(S)

RT .

Here, in the summation, S runs over structures on si, . . . , sj , which are r-neighbors
of the restriction A[i,j] of reference structure A to interval [i, j], and simultaneously
s-neighbors of the restriction B[i,j] of reference structure B to interval [i, j].

Theorem 1: Let s1, . . . , sn be a given RNA sequence. For any integers 1 ≤ i < j ≤ n,
let

Zi,j(x) =
n−1X
r=0

n−1X
s=0

zrn+sx
rn+s

where

zrn+s(i, j) = Zr,s
i,j .

Inductively we define Zi,j(x) to equal

Zi,j−1(x) · xα0n+β0 + (6)P
sksj∈B,
i≤k<j

“
e
−E0(k,j)

RT · Zi,k−1(x) · Zk+1,j−1(x) · xα(k)n+β(k)
”
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where α0 = 1 if j is base-paired in A[i,j] and 0 otherwise, β0 = 1 if j is base-paired in
B[i,j] and 0 otherwise, and α(k) = dBP (A[i,j], A[i,k−1]∪A[k+1,j−1]∪{(k, j)}), β(k) =
dBP (B[i,j], B[i,k−1] ∪ B[k+1,j−1] ∪ {(k, j)}). The proof is given in supplementary
information.

Note that if one were to compute all terms of the polynomial Z1,n(x) by explic-
itly performing polynomial multiplications, then the computation would require
O(n7) time and O(n4) space, the same time complexity of [14]. Instead of explic-
itly performing polynomial expansion in variable x, we instantiate x to a complex
number ρ ∈ C, and apply the following recursion, by setting Zi,j(ρ) equal to

Zi,j−1(ρ) · ρα0n+β0 + (7)P
(sk,sj)∈B,

i≤k<j

“
e
−E0(k,j)

RT · Zi,k−1(ρ) · Zk+1,j−1(ρ) · ρα(k)n+β(k)
”

In this fashion, we can compute Z(ρ) = Z1,n(ρ) in O(n3) time and O(n2) space.
For n2 distinct complex numbers ρi where 0 ≤ i ≤ n2 − 1, we can compute and
save only the values Z(ρ0), . . . ,Z(ρn2−1), each time re-using the O(n2) space for
the next computation of Z(ρi). It follows that the computation resources used to
determine the (column) vector

Y = (y0, . . . , yn2−1)
T =

0BBB@
y0

y1

...
yn2−1

1CCCA (8)

where y0 = Z(α0), . . . , yn2−1 = Z(αn2−1) are thus quintic time O(n5) and quadratic
space O(n2).

2.2 Polynomial interpolation

Our plan is to determine the coefficients of the polynomial Z(x) in equation (3) by
polynomial interpolation. For reasons of numerical stability, we instead determine
the coefficients of the polynomial p(x), defined by

p(x) =
n−1X
r=0

n−1X
s=0

prn+sx
r·n+s =

n−1X
r=0

n−1X
s=0

zrn+s

Z
xr·n+s, (9)

where the fast Fourier transform (FFT) is used to implement the interpolation of
the coefficients using the inverse discrete Fourier transform (DFT), as described in
Section 2.6. The following pseudocode describes how to compute the m most signif-

icant digits for probabilities prn+s =
Zr,s

1,n

Z . It is well-known that the FFT requires
O(N log N) time to solve the inverse discrete Fourier transform for a polynomial
of degree N . In our case, N = n2, and so line 6 involving the FFT requires time
O(n2 log n).

The pseudocode for the algorithm to compute p(x) is given in Figure 1. In
the next section, we explain a highly non-trivial improvement of this algorithm to
reduce time by a factor of 4.
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Algorithm for FFTbor2D
Input: RNA sequence s = s1, . . . , sn, and distinct secondary structures A, B of s, and integer
m.
Output: Probabilities prn+s = p(r, s) = Zr,s

1,n/Z to m significant digits for x, y = 0, . . . , n− 1.

Let i denote
√
−1, α = exp( 2πi

n2 ) and αk = exp( 2πik
n2 ).

1. for k = 0, . . . , n2 − 1
2. compute the kth roots of unity αk

3. for k = 0, . . . , n2 − 1
4. compute yk = Z(αk)
5. yk = 10m · yk

Z
//normalize yk

6. compute p0, . . . , pn2−1 by FFT

7. for k = 0 to n2 − 1
8. pk = b10m · pkc · 1

10m

9. //truncate to m most significant digits

Fig. 1 Pseudocode to compute the m most significant digits for probabilities prn+s =
Z

r,s
1,n

Z
. In

our implementation, due to numerical stability issues in the FFT engine, precision parameter
m has an upper bound of 8 – only the m = 8 most significant digits are computed with
FFTbor2D. (Note that the software actually uses base 2 precision parameter, with maximum
of 27, where 227 ≈ 108.) It is well-known that the FFT requires O(N log N) time to solve the
inverse discrete Fourier transform for a polynomial of degree N . In our case, N = n2, and so
the FFT requires time O(n2 log n).

2.3 Speed-up by factor of 4

Recall that if a + bi is a complex number, where a, b are real values and i denotes√
−1, then the complex conjugate of a + bi, denoted by a + bi is defined to be

a−bi. Recall that a complex nth root of unity is a number whose nth power equals
one. Moreover, e2πi/n is the principal complex nth root of unity; i.e. {e2πik/n : k =
0, . . . , n− 1} is a set of pairwise distinct nth roots of unity. For notational reasons
below, we will write ‘n-root of unity’ instead of ‘nth root of unity’. We have the
following.

Lemma 1: Let A, B denote two distinct, arbitrary but fixed, secondary structures of
RNA sequence s, let S range over all secondary structures of s, and let d0 denote
dBP (A, B). If x = dBP (A, S) and y = dBP (S, B), then y ∈ {d0 − x + 2k : k =
0, . . . , x}.

It follows that if x = dBP (A, S) and y = dBP (S, B), then the only possible values
for (x, y) are (0, d0), (1, d0 − 1), (1, d0 + 1), (2, d0 − 2), (2, d0), (2, d0 + 2), (3, d0 −
3), (3, d0−1), (3, d0 +1), (3, d0 +3), · · · . As a corollary, we have the parity condition,
that

dBP (A, S) + dBP (S, B) ≡ dBP (A, B) mod 2 (10)

first noticed in [14], as well as the triangle inequality dBP (A, S) + dBP (S, B) ≥
dBP (A, B) for base pair distance, probably folklore. Lorenz et al. [14] exploited
the parity condition and the triangle inequality by using sparse matrix methods
to improve on the efficiency of the naive implementation of the O(n7) time and
O(n4) space algorithm to compute the partition function, Zr,s

1,n, and minimum free

energy structure, MFEr,s
1,n, over all structures having base pair distance r to A and

s to B. The following lemma is not difficult to establish.
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Lemma 2: If Z(x) is the complex polynomial defined in equation (3), then for any
complex nth root of unity α, it is the case that Z(α) = Z(α).

Lemma 3: Let Z(x) be defined by equation (3), and let α ∈ C be any complex
number. If the base pair distance between reference structures A, B is even, then
Z(−α) = Z(α), while if the distance is odd, then Z(−α) = −Z(α).

Lemma 4: Suppose that M is evenly divisible by 4, ν = exp(2πi
M ) is the principal

M-root of unity, and M
4 < k ≤ M

2 . Then

νk = −(ν−(M/2−k)) = −νM/2−k.

Lemma 1 is proved by simple induction; Lemma 2 is proved by a computation
involving binomial coefficients; Lemma 3 is immediate by the parity observation
above, resulting from Lemma 1; Lemma 4 is elementary, relying on Euler’s formula
and trigonometric addition formulas. Details proofs of Lemmas 2,3,4 can be found
in supplementary information.

Lemma 1 entails that either all even coefficients, or all odd coefficients of Z(x)
are zero, and so by a variable change described in detail below, we require only half
the number of evaluations of Z(x), in order to perform polynomial interpolation.
Lemma 2 entails that we require only half again the number of evaluations of Z(x),
since the remainder can be inferred by taking the complex conjugate. Lemma 1
and Lemma 2, along with a precomputation of powers of the complex roots of
unity, lead to a large performance speed-up in our implementation of FFTbor2D –
indeed, by a factor of 4 or more. Though the intuitive idea of how to obtain this
speedup by a factor of four may be apparent, the technical details leading to the
pseudocode of FFTbor2D, presented in Figure 2, are rather tricky. These details are
presented in the next two subsections, which can be skipped by the reader wishing
to move on to the algorithm itself.

2.4 Time reduction due to Lemma 1

Let n denote the length of RNA sequence s, and let N denote the least even integer
greater than or equal to n. Since N is even, we have (r+s) ≡ (r ·(N +1)+s) mod 2.
For distinct fixed structures A, B, let π1(k) = b k

N+1c, and π2(k) = k mod (N + 1),
and define the polynomial

Z(x) =
NX

r=0

NX
s=0

zrN+sx
r·N+s

=

(N+1)2−1X
k=0

zπ1(k)·(N+1)+π2(k)x
π1(k)·(N+1)+π2(k)

=

(N+1)2−1X
k=0

zkxk

where for the last equality, we have used the fact that k = π1(k) · (N + 1) + π2(k),
well-known from row major order of a 2-dimensional array.
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Consider the coefficients of the polynomial

Z(x) =
NX

r=0

NX
s=0

zrN+sx
rN+s =

(N+1)2−1X
k=0

zkxk. (11)

Since N is even, the parity of r+s equals the parity of r(N +1)+s, hence it follows
from the parity condition that either (i) all coefficients z1, z3, z5, . . . of odd parity
are zero, or (ii) all coefficients z0, z2, z4, . . . of even parity are zero. To simplify
notation, in the remainder of this subsection, let M be the least integer greater
than or equal to (N +1)2 that is evenly divisible by 4, and let M0 = M/2. We will
assume that Z(x) =

PM−1
k=0 zkxk, whereupon coefficients zk = 0 for k > (N + 1)2.

Case 1: All coefficients zk of odd parity in equation (11) are zero.

In this case, we have Z(x) =
P M

2 −1

k=0 z2kx2k. But then Z(x) = Y (u) =
M0−1X
k=0

bkuk,

where we have made a variable change u = x2, and coefficient changes bk = a2k.
By evaluating M0 = M

2 many complex M0-roots of unity, we can use polynomial
interpolation to determine all coefficients bk of the polynomial

Y (u) =
M0−1X
k=0

bkuk =
M0−1X
k=0

z2kx2k.

Since Y (x2) = Z(x), we have Y (exp(2πki
M/2

)) = Y (exp(4πki
M )) = Z(exp(2πki

M )),

hence we use the previous recursions (6) to evaluate Z(exp(2πki
M ). Instead of per-

forming M evaluations of Z(x) at M-roots of unity, this requires only M0 = M/2
evaluations of Y (u) at M0-roots of unity; i.e. only half the number of evaluations
of Z(x) are necessary to obtain the coefficients of Y (x). But then, we immediately
obtain the full polynomial Z(x), since its coefficients of odd parity are zero.

Case 2: All coefficients zk of even parity in equation (11) are zero.

In this case, z0, z2, z4, · · · are zero, so Z(x) =
PM/2−1

k=0 z2k+1x2k+1. But then

Z(x) = x · Y (u), where Y (u) =
PM0−1

k=0 bkuk, where we have made a variable
change u = x2, and coefficient changes bk = z2k+1. Similarly to Case 1, we can

interpolate the M0 coefficients of the polynomial Y (u) =
M0−1X
k=0

bkuk by evaluating

M0 many complex M0-roots of unity. Since Z(x) = x · Y (x2), Y (x2) = x−1 · Z(x),
so Y (exp(2πki

M/2
)) = Y (exp(4πki

M )) = exp(−2πki
M ) · Z(exp(2πki

M )), employing the pre-

vious recursions (6) to evaluate Z(exp(2πki
M ). Note, that unlike the Case 1, since

Z(x) = x ·Y (x2), we have Y (x2) = Z(x)
x , which explains the presence of additional

factor exp(−2πki
M )) in Case 2. Thus, instead of performing M evaluations of Z(x)

at M-roots of unity, we perform only M0 = M
2 evaluations of Y (u) at M0-roots of

unity; i.e. only half the number of evaluations of Z(x) are necessary to obtain the
coefficients of Y (x). But then, we immediately obtain the full polynomial Z(x),
since Z(x) = x · Y (x2), and the coefficients of Z(x) of even parity are zero.

In the following, we will need the observation, that if the parity of base pair
distance dBP (A, B) between A, B is even, then

Y (x2) = Z(x) (12)
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while if the parity is odd, then

Y (x2) =
1

x
· Z(x). (13)

2.5 Time reduction due to Lemma 2

As before, let M be the the least number evenly divisible by 4, which is greater
than or equal to (N + 1)2, let ν = exp(2πi

M ) and ω = ν2 = exp(2πi
M )2 = exp( 2πi

M/2
).

Clearly, ν is a principal complex M-root of unity, while ω is a principal complex
M
2 -root of unity. Evaluate Z(α) for each M

2 -root of unity that belongs to the first

quadrant, and apply Lemma 2 to infer the values of Z(α) for each M
2 -root of

unity that belongs to the fourth quadrant. More precisely, we compute Z(νk), for
k = 0, . . . , M

4 , and by Lemmas 2,3,4 infer that for k = M
4 + 1, . . . , M

2 − 1, we have

Z(νk) = −1d0 ·Z(ν
M
2 −k), where d0 = dBP (A, B). This is justified in the following.

By induction on k = M
4 + 1, . . . , M

2 − 1, we have

Y (ωk) = Y (ν2k)

=

(
Z(νk) if dBP (A, B) = 0 mod 2

1
νk · Z(νk) if dBP (A, B) = 1 mod 2

=

(
Z(−ν( M

2 −k)) if dBP (A, B) = 0 mod 2

ν−k · Z(−ν( M
2 −k)) if dBP (A, B) = 1 mod 2

=

(
Z(ν( M

2 −k)) if dBP (A, B) = 0 mod 2

ν−k · −Z(ν( M
2 −k)) if dBP (A, B) = 1 mod 2

=

(
Z(ν( M

2 −k)) if dBP (A, B) = 0 mod 2

−ν−k · Z(ν( M
2 −k)) if dBP (A, B) = 1 mod 2

Line 1 follows by definition, since ω = ν2; line 2 follows by equations (12) and
(13); line 3 follows by Lemma 4; line 4 follows by Lemma 3. Thus if dBP (A, B) is
even, then

yk = Y (ωk) =

8><>:
Z(νk) for k = 0, . . . , M

4

Z(ν
M
2 −k) for k = M

4 + 1, . . . , M
2 − 1.

(14)

while if dBP (A, B) is odd, then

yk = Y (ωk) =

8><>:
ν−k · Z(νk) for k = 0, . . . , M

4

−ν−k · Z(ν
M
2 −k) for k = M

4 + 1, . . . , M
2 − 1.

(15)

It follows that values y0, . . . , yM/2−1 can be obtained by only M
4 evaluations of

Z(x).
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Improved Algorithm for FFTbor2D
Input: RNA sequence s = s1, . . . , sn, and distinct secondary structures A, B of s, and integer
m.
Output: Probabilities p(x, y) = Zx,y

1,n/Z to m significant digits for x, y = 0, . . . , n − 1. Let N

be the least even number greater than or equal to n, M be the least number evenly divisible by
4, which is greater than or equal to (N + 1)2, M0 = M/2, ν = exp( 2πi

M
), ω = ν2 = exp( 2πi

M0
).

For 0 ≤ k < M2, let π1(k) = b k
M
c, π2(k) = k − M · π1(k) = k mod M , and note that

k = π1(k) ·M + π2(k).

1. for k = 0, . . . , M
2

2. compute the M-roots of unity νk, ν−k

3. for k = 0, . . . , M
2
− 1

4. if dBP (A, B) even

5. if k ≤ M
4

6. yk = Y (ωk) = Z(νk) by (14)

7. else// M
4

< k < M
2

8. yk = Y (ωk) = Z(νM/2−k) by (14)
9. else // dBP (A, B) is odd

10. if k ≤ M
4

11. yk = Y (ωk) = ν−k · Z(νk) by (15)

12. else// M
4

< k < M
2

13. yk = Y (ωk) = −1 · ν−k · Z(νM/2−k) by (15)
14. //note that Z =

P
r,s Zr,s

1,n = y0 = Z(ν0)

15. for k = 0, . . . , M
2
− 1

16. yk = 10m · yk
Z

//normalize yk

17. //compute coefficients of
Y (x)
Z

using (16)
18. if dBP (A, B) even then
19. for k = 0 to M − 1
20. r = π1(k), s = π2(k)
21. if k even

22.
Z

r,s
1,n

Z
= ak/2 from (16)

23. else// k odd

24.
Z

r,n
1,n

Z
= 0

25. else // dBP (A, B) odd
26. for k = 0 to M − 1
27. r = π1(k), s = π2(k)
28. if k even

29.
Z

r,n
1,n

Z
= 0

30. else// k odd

31.
Z

r,n
1,n

Z
= a(k−1)/2 from (16)

32. for k = 0 to (N + 1)2

33. zk = b10m · zkc · 1
10m

34. //truncate to m significant digits

Fig. 2 Pseudocode to compute the m most significant digits for probabilities pk = zk
Z

=

Z
π1(k),π2(k)
1,n

Z
. Our program, FFTbor2D, supports values of m = 1, . . . , 8 for the precision param-

eter m. (Note that the software actually uses base 2 precision parameter, with maximum of
27, where 227 ≈ 108.)

2.6 Using the fast Fourier transform

Now let M0 = M
2 , let ν = exp(2πi

M ) be the principal M-root of unity, and ω =
ν2 = exp( 2πi

M/2
) = exp(2π·2i

M ) be the principal M0-root of unity. Recall that the
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Vandermonde matrix VM0 is defined to be the M0×M0 matrix, whose i, j entry is
ωi·j = ν2i·j ; i.e.

VM0 =

0BBBBBBBB@

1 1 1 · · · 1

1 ω ω2 · · · ωM0−1

1 ω2 ω4 · · · ω2(M0−1)

1 ω3 ω6 · · · ω3(M0−1)

...
...

...
...

...

1 ωM0−1 ω2(M0−1) · · · ω(M0−1)(M0−1)

1CCCCCCCCA
The Fast Fourier Transform (FFT) is the O(n log n) algorithm, which computes
the Discrete Fourier Transform (DFT), defined as the matrix product Y = VM0A:0BBBBBB@

y0

y1

y2

...
yM0−1

1CCCCCCA = VM0 ·

0BBBBBB@
a0

a1

a2

...
aM0−1

1CCCCCCA
The (i, j) entry of V −1

M0
is ω−ji

M0
and that

aj =
1

M0

M0−1X
k=0

ykω−kj =
1

M0

M0−1X
k=0

ykν−2kj (16)

for j = 0, . . . , M0 − 1 (for more on FFT, see [3]).
Since we defined Y in (8) by Y = (y0, . . . , yM0−1)

T , where y0 = Z(α0), . . . , yM0−1 =

Z(αM0−1) and αk = ωk exp(k·2πi
M0

), it follows that the coefficients zk = Z
π1(k),π2(k)
1,n

in the polynomial Z(x) = z0+z1x+ · · ·+zMxM defined in (3) can be computed, at
least in principle, by using the FFT. However, since the values of zk are astronomi-
cally large, numerical instability makes even this approach infeasible for moderate
values of n. Nevertheless, we apply this approach to compute the m most signif-

icant digits of
Z

π1(k),π2(k)
1,n

Z , where the partition function Z =
P

S exp(−E(S)/RT )
satisfies Z =

P
x,y Zx,y

1,n. This leads to numerical stability, allowing FFTbor2D to

compute the m most significant digits of p(x, y) =
Zx,y

1,n

Z . Pseudocode for the com-
plete algorithm, FFTbor, is given in Figure 2.

3 Benchmarking

To perform comparative benchmarking between RNA2Dfold and FFTbor2D, we took
precision parameter m = 8, and proceeded as follows. For each sequence length
n = 20, 25, 30, . . . , 300, we generated 100 random sequences using probability 0.25
for each nucleotide A,C,G,U. For a given RNA sequence s, the metastable structure
A was taken to be the MFE structure of s. Using RNAbor, we determined that value
k0 ≥ 10, for which partition function Zk0 constitutes a visible peak in the graph-
ical output – see Figure 2 and 3 of [8] for an example. Subsequently, metastable
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structure B was taken to be that structure having minimum free energy over all
structures, whose base pair distance from A was k0.

For all 0 ≤ x, y ≤ n, RNA2Dfold and FFTbor2D were benchmarked in the compu-
tation of all Boltzmann probabilities p(x, y) = Z(x,y)

Z , where x [resp. y] represents
base pair distance to metastable structure A [resp. B]. Care was taken for both
software to employ the same energy model (Turner99 energy model, no dangles,
suppression of minimum free energy structure computations for RNA2Dfold) and
the same number of parallel threads (8 threads using OpenMP). Nonetheless, there
are slight differences in the energy models – namely, RNA2Dfold includes mismatch
penalties for multiloop stems and for exterior loops, while FFTbor2D does not. Even
in the computation of the partition function Z, for spliced leader RNA from L. col-

losoma of length 56 nt, RNA2Dfold -d0 obtains a value of −9.660419 kcal/mol, while
FFTbor2D obtains −9.660543 kcal/mol; similarly, for attenuator RNA of length 73
nt, RNA2Dfold -d0 obtains a value of −22.171785 kcal/mol, while FFTbor2D obtains
−22.173213 kcal/mol. Note that the straightforward calculation of the partition
function, following McCaskill’s algorithm [15] makes no use of the FFT engine,
and thus the differences cannot be due to floating point or precision issues.

For benchmarking purposes, to allow for a fair comparison of FFTbor2D with
RNA2Dfold, we restricted the range of x, y in the same manner as done in the source
code of RNA2Dfold. In that code, parameters K [resp. L] are defined respectively
to be the sum of the number of base pairs in reference structure A [resp. reference
structure B] plus the number of base pairs in the maximum matching (Nussinov)
structure which contains no base pair of A [resp. B]. For x ≥ K, y ≥ L, both
RNA2Dfold and FFTbor2D set p(x, y) = 0. For the benchmarking results displayed in
Figures 3,4,5, the values x, y are restricted in FFTbor2D to 0 ≤ x, y ≤ max(K, L),
while 0 ≤ x ≤ K and 0 ≤ y ≤ L in RNA2Dfold.

Figure 3 depicts average run time of RNA2Dfold and FFTbor2D as a function of
RNA sequence length, for random RNA sequences of lengths 20 − 200 and their
metastable structures A, B, as previously explained. We see that both programs
have roughly comparable run times for sequences of length up to approximately 80
nt, while FFTbor2D is demonstrably faster for longer sequences. Figure 4 presents
log run time as a function of sequence length, in order to more clearly determine
the crossover point in performance. RNA2Dfold is marginally faster for sequences of
length up to roughly 80 nt, though the difference is in the millisecond range. Fig-
ure 5 shows that the standard deviation of run times on random sequences is tiny
for FFTbor2D compared with RNA2Dfold, where standard deviation increases rapidly
as a function of sequence length. This figure shows that run time of RNA2Dfold

depends on sequence details, as well as sequence length, while the run time of
FFTbor2D depends only on sequence length.

4 Kinetics

In this section, we describe folding kinetics along the 2D energy grid, as depicted
in Figure 6. Consider the 56 nt L. collosoma spliced leader RNA [12], described in
the Introduction, having sequence AACUAAAACA AUUUUUGAAG AACAGU-
UUCU GUACUUCAUU GGUAUGUAGA GACUUC. Let A denote the minimum
free energy structure of spliced leader, using Turner 1999 energies as implemented
in Vienna RNA Package 1.8.5:
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Fig. 3 Run time in seconds for RNA2Dfold and FFTbor2D on random RNA sequences of length
20− 200 nt, where sequence generation and choice of metastable structures A, B is described
in the text. Beyond a length of approximately 80 nt, FFTbor2D is demonstrably faster.

..((...((((((..(((((.((((...)))).)))))..))).)))..)).....,

and let B denote the low energy alternate structure for spliced leader:

.......................((((((((((((.....)))))..)))))))...

Using the program Switch Design (switch.pl) described in [7], we generated 20,000
sequences, for which structures A, B are metastable. For spliced leader RNA as well
as for each of these 20,000 sequences, we computed the corresponding probability
profile p(x, y) using FFTbor2D, and subsequently defined the Markov chain M(s) =
(Q, M), where Q = {(x, y) : 0 ≤ x, y ≤ n, and p(x, y) > 0} is the set of states, and
the transition probability matrix M = (Mi,j) is defined by

M(x,y),(u,v) =

8><>:
1

|Q|−1
·min(1, p(u,v)

p(x,y) ) if (u, v) 6= (x, y)

1−
X

(u,v) 6=(x,y)

M(x,y),(u,v) if (u, v) = (x, y).

Let d0 = dBP (A, B) denote the base pair distance between the metastable struc-
tures A, B, and let M−

(d0,0) denote the matrix obtained from M by removing both

the row and column corresponding to (0, d0). For spliced leader and each of the
20,000 sequences obtained from Switch Design, we determined the mean first passage
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time (MFPT) from state (0, d0), corresponding to metastable structure A, to state
(d0, 0), corresponding to metastable structure B, by computing (I−M−

(d0,0))
−1 ·e,

where I denotes the identity matrix, and e denotes the column vector composed
entirely of ones [16]. Using LAPACK [1] for matrix inversion, we found that L.

collosoma spliced leader RNA has a MFPT on the 2D energy grid, which is smaller
than only 2.855% of the 20,000 sequnces generated by Switch Design, thus consti-
tuting a Z-score of 1.989 for the kinetics of folding from A to B (see left panel of
Figure 7). This result seems to suggest that spliced leader could be under evolu-
tionary pressure for slow folding between these metastable structures, if we take
MFPT from (0, d0) to (d0, 0) as a surrogate for Kinfold [6] folding time from A

to B – an interpretation which seems to be consistent with the functional role of
spliced leader as described in the Introduction. Since accurate Kinfold kinetics
requires many simulations, each requiring enormous time [24], our method may
prove useful in synthetic biology, in prioritizing computationally designed RNA
sequences for subsequent experimental validation.

Finally, it should be mentioned that the GC-content of spliced leader RNA is
30.357%, which constitutes a Z-score of +2.50; i.e. the overwhelming majority of

50 100 150 200

−
4

−
2

0
2

4
6

●

● ●
● ●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Time benchmarking (each point is the log average of 100 sequences)

Sequence Length

Lo
g 

ru
nt

im
e 

(s
ec

on
ds

)

●

FFTbor2D timing
RNA2Dfold timing

Fig. 4 Logarithm of run time in seconds for RNA2Dfold and FFTbor2D on random RNA se-
quences of length less than 200 nt, for same data as that in Figure 3. By taking logarithm of
run times, the crossover points are apparent, where FFTbor2D is faster than RNA2Dfold. For
very small sequences, RNA2Dfold is faster, though since both programs converge in a fraction
of a second, this difference is of no practical consequence.
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Fig. 5 (Left) Standard deviation of run times of RNA2Dfold and FFTbor2D as a function of
sequence length n. (Right) Minimum and maximum run times for RNA2Dfold and FFTbor2D.
For each collection of 100 random sequences of length n, the minimum and maximum run time
for a sequence of that length was computed. Taken together, these figures clearly show the
run time dependence of RNA2Dfold on particular sequences, while the run time of FFTbor2D
depends only on sequence length, rather than sequence details.

0

10

20

30
distance from B

0

10

20

30

distance from A

0

5

10

-RT logHZL

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Fig. 6 2D projection of energy landscape for Spliced Leader (SL) RNA from Leptomonas collo-
soma, having sequence AACUAAAACA AUUUUUGAAG AACAGUUUCU GUACUUCAUU GGUAUGUAGA GACUUC
and metastable secondary structures A = ..((...((((((..(((((.((((...)))).)))))..))).)))..))....., and B =
.......................((((((((((((.....)))))..)))))))... The x-axis (resp. y-axis) represents base pair dis-
tance between metastable structure A (resp. B), while the z-axis represents the ensemble free
energy −RT log Zx,y , where Zx,y is computed in FFTbor2D by Zx,y = p(x, y) · Z. Low energy
positions (x, y) correspond to high Boltzmann probability positions. The left panel depicts a
heat map of the ensemble free energy, while the right panel depicts a contour map with level
curves. In analogy with mountain climbing, one expects an optimal path to follow along the
valley regions in traversing the landscape from A to B. Data produced with FFTbor2D; graphics
produced using Mathematica.

the 20,000 sequences generated by Switch Design have higher GC-content than that
of spliced leader RNA from L. collosoma, as shown in the right panel of Figure 7.
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Spliced Leader MFPT from Switch Design (100.0% success, 2.00E+04 total)
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Fig. 7 (Left) Histogram of log base 10 mean first passage times, computed by (I−M−

(d0,0)
)−1·e

(see text), for a collection of 20,000 RNA sequences s, each of has a metastable structure
at the minimum free energy structure A of L. collosoma spliced leader RNA, given by
..((...((((((..(((((.((((...)))).)))))..))).)))..))....., as well as a metastable structure at the alternate
structure B, given by .......................((((((((((((.....)))))..)))))))... These sequences were gener-
ated by the program Switch Design (switch.pl) described in [7], using the Turner 1999 energy
model without dangles. The log base 10 value of MFPT of L. collosoma spliced leader is
indicated by the arrow in figure, corresponding to a Z-score of 1.989, which suggests that
spliced leader RNA may be under evolutionary pressure for slow folding kinetics from A to B.
(Right) Histogram of GC-content of the 20,000 sequences generated by Switch Design. Note
that GC-content of spliced leader RNA is 30.357%, which constitutes a Z-score of +2.50.

5 Discussion

Given an RNA sequence s and two reference secondary structures A, B, the algo-
rithm, FFTbor2D, computes the partition function Z(x, y), defined to be the sum of
Boltzmann factors exp(−E(S)/RT ) over all secondary structures S, having base
pair distance x to A and distance y to B, where 0 ≤ x, y ≤ n and n denotes the
length s. Using polynomial interpolation with the FFT and exploiting the obser-
vations of Lemmas 1,2, FFTbor2D has worst case complexity O(n5) time and O(n2)
space. This worst case algorithmic complexity is two orders of magnitude faster
and requires two orders of magnitude less space than the worst case complexity
of the algorithm RNA2Dfold of Lorenz et al. [14]. This run time complexity bound
is not only theoretical, but entails a significant practical speedup, as depicted in
Figures 3,4 and 5.

An important advantage of RNA2Dfold over FFTbor2D is that the former can
additionally compute the structures Mx,y having minimum free energy over all
structures that are x-neighbors of metastable A and simultaneously y-neighbors
of metastable B. (There is a similar advantage of RNAbor [8] over the faster FFTbor

[21].) As well, RNA2Dfold directly computes the partition function values Zx,y,
while FFTbor2D estimates Zx,y by computing p(x, y) · Z. This difference entails a
significant loss of precision, when depicting the energy landscape.

The right panel of Figure 6 depicts a contour heat map of the 2D energy
landscape for spliced leader RNA from L. collosoma, as computed by FFTbor2D.
This figure should be compared with the left panel of Figure 8, which depicts a
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Fig. 8 2D projection of energy landscape for Spliced Leader (SL) RNA from Leptomonas
collosoma, as in Figure 6, except that in the left panel, ensemble free energy −RT log Zx,y is
computed from the values of Zx,y output by RNA2Dfold, while in the right panel, ensemble
free energy is computed from the values Zx,y = p(x, y) · Z, where values p(x, y) are output
by RNA2Dfold. The loss of detail in the 2D energy landscape is caused uniquely by working
with probabilities p(x, y), rather than partition function values Zx,y . Data produced with
RNA2Dfold; graphics produced using Mathematica.

contour heat map of the 2D energy landscape for the same RNA, as computed by
RNA2Dfold. Notice the additional detail in this figure, due to the fact that RNA2Dfold
directly computes Zx,y, while FFTbor2D computes Boltzmann probabilities p(x, y)
by interpolation, allowing one to subsequently compute Zx,y = p(x, y) · Z. The
additional detail of the energy landscape is lost in the right panel of Figure 8,
obtained by computing ensemble free energy by −RT log p(x, y)+RT log ·Z, where
p(x, y) is parsed from RNA2Dfold output. It follows that the loss of detail in 2D
energy landscape is due solely to the fact that probabilities p(x, y) are computed
by FFTbor2D, rather than partition function values Zx,y. Given numerical stability
issues involving the FFT engine, FFTbor2D can only estimate the probabilities
p(x, y) to within m = 8 significant places. Nevertheless, our algorithm FFTbor2D was
developed with the intended application in synthetic biology, where one wishes to
prioritize RNA candidate sequences with respect to kinetics. For such applications,
the speedup of FFTbor2D is an important asset.
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Appendix

Here, we provide proofs of Theorem 1 and of Lemmas 2,3,4.

Theorem 1: Let s1, . . . , sn be a given RNA sequence. For any integers 1 ≤ i ≤ j ≤ n, let
Zi,j(x) =

Pn−1
r=0

Pn−1
s=0 zrn+sxrn+s where zrn+s(i, j) = Zrn+s

i,j . Then for i ≤ j ≤ i + θ,

Zi,j(x) = 1 and for j > i + θ we have the recurrence relation

Zi,j(x) = Zi,j−1(x) · xα0n+β0 + (17)P
sksj∈B,
i≤k<j

„
e
−E0(k,j)

RT · Zi,k−1(x) · Zk+1,j−1(x) · xα(k)n+β(k)

«
where α0 = 1 if j is base-paired in A[i,j] and 0 otherwise, β0 = 1 if j is base-paired
in B[i,j] and 0 otherwise, and α(k) = dBP (A[i,j], A[i,k−1] ∪ A[k+1,j−1] ∪ {(k, j)}), β(k) =
dBP (B[i,j], B[i,k−1] ∪B[k+1,j−1] ∪ {(k, j)}).
Proof: First, some notation is necessary. Recall that if F is an arbitrary polynomial [resp.
analytic] function, then [xrn+s]F (x) denotes the coefficient of monomial xrn+s in the Taylor
expansion of F (x)] – for instance, in equation (3) of the main text, [xrn+s]Z(x) = zrn+s.

By definition, it is clear that Zi,j(x) = 1 if i ≤ j ≤ i + θ, where we recall that θ = 3 is the
minimum number of unpaired bases in a hairpin loop. For j > i + θ, we have

[xrn+s]Zi,j(x) = zrn+s(i, j) = Zrn+s
i,j

= Z
(r−α0)n+(s−β0)
i,j−1 +

j−1X
k=i

X
u0+u1=r−α(k)

X
v0+v1=s−β(k)

e
−E0(k,j)

RT · Zu0n+v0
i,k−1 · Zu1n+v1

k+1,j−1

= [x(r−α0)n+(s−β0)]Zi,j−1(x) +

j−1X
k=i

X
u0+u1=r−α(k)

X
v0+v1=s−β(k)

e
−E0(k,j)

RT ·
˘
[xu0n+v0 ]Zi,k−1(x)

¯
·

˘
[xu1n+v1 ]Zk−1,j−1(x)

¯
= [x(r−α0)n+(s−β0)]Zi,j−1(x) +

j−1X
k=i

X
u0+u1=r−α(k)

X
v0+v1=s−β(k)

e
−E0(k,j)

RT · [x(u0+u1)n+(v0+v1)]Zi,k−1(x)Zk−1,j−1(x)

= [x(r−α0)n+(s−β0)]Zi,j−1(x) +

j−1X
k=i

e
−E0(k,j)

RT · [x(r−α(k))n+(s−β(k))]Zi,k−1(x)Zk−1,j−1(x)

= [xrn+s]
“
Zi,j−1(x) · xα0n+β0

”
+

j−1X
k=i

e
−E0(k,j)

RT · [xrn+s]
“
Zi,k−1(x)Zk−1,j−1(x)xα(k)n+β(k)

”

= [xrn+s]

0@Zi,j−1(x) · xα0n+β0 +

j−1X
k=i

e
−E0(k,j)

RT · Zi,k−1(x)Zk−1,j−1(x)xα(k)n+β(k)

1A .

By induction, the proof of the theorem now follows. �

The following lemma was proved in [21], and is reproduced for the convenience of the
reader.
Lemma 2: If Z(x) is the complex polynomial defined in equation (9) of the main text, then

for any complex nth root of unity α, it is the case that Z(α) = Z(α). In other words, if α is a
complex nth root of unity of the form a+bi, where a, b ∈ R and b > 0, and if Z(a+bi) = A+Bi
where A, B ∈ R, then it is the case that

Z(a− bi) = A−Bi.

Proof: Letting i =
√
−1, if θ = 2π

n
, then ω = eiθ = cos(θ) + i sin(θ) is the principal nth

complex root of unity, and 1 = ω0, . . . , e(n−1)·iθ = ωn−1 together constitute the complete
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collection of all nth complex roots of unity – i.e. the n unique solutions of of the equation
xn−1 = 0 over the field C of complex numbers. Clearly, for any 1 ≤ r < n, e−irθ = 1 ·e−irθ =
e2πi · e−irθ = ei(2π−rθ) = ei(nθ−rθ) = eiθ(n−r). Moreover, if ωr = eirθ = a + bi where b > 0,
then we have e−irθ = a− bi. It follows that for any nth root of unity of the form a + bi, where
b > 0, the number a− bi is also an nth root of unity.

Recall that Z(x) =
Pn

k=0 ckxk, where ck ∈ R are real numbers representing the partition

function Zk
1,n over all secondary structures of a given RNA sequence s1, . . . , sn, whose base

pair distance from initial structure S∗ is k. Thus, in order to prove the lemma, it suffices to
show that for all values k = 0, . . . , n−1, if a+ bi is a complex nth root of unity, where a, b ∈ R
and b > 0, and if (a + bi)k = C + Di where C, D ∈ R, then (a − bi)k = C − Di. Indeed, we
have the following.

(a + bi)m =

mX
k=0

“m

k

”
am−k · (bi)k

(bi)k =

8>><>>:
bk if k ≡ 0 mod 4
ibk if k ≡ 1 mod 4
−bk if k ≡ 2 mod 4
−ibk if k ≡ 3 mod 4

(a− bi)m =

mX
k=0

“m

k

”
am−k · (−bi)k

(−bi)k =

8>><>>:
bk if k ≡ 0 mod 4
−ibk if k ≡ 1 mod 4
−bk if k ≡ 2 mod 4
ibk if k ≡ 3 mod 4

It follows that each term of the form am−k · (bi)k, for k = 0, . . . , m, is the complex conjugate
of am−k · (−bi)k, and thus (a + bi)m is the complex conjugate of (a− bi)m. Since Z(a + bi) is
a sum of terms of the form ck(a + bi)k, it follows that Z(a − bi) is the complex conjugate of
Z(a + bi). This completes the proof of the lemma. �

Lemma 3: Let d0 = dBP (A, B). Then for any complex number α ∈ C, Z(−α) = −1d0 · Z(α).

Proof: The lemma states that if the base pair distance between reference structures A, B is
even, then Z(−α) = Z(α), while if the distance is odd, then Z(−α) = −Z(α). Suppose first that

d0 is even. By Lemma 1, Z(x) = z0 +z2x2 +z4x4 + · · ·+zM−2)x
M−2), and so Z(−α) = Z(α).

Suppose now that d0 is odd. By Lemma 1, Z(x) = z1x1 + z3x3 + z5x5 · · ·+ zM−1xM−1, and
so Z(−α) = −Z(α).

Lemma 4: Suppose that ν = exp( 2πi
M

) is the principal M -root of unity, and that M
4

< k ≤ M
2

.
Then

νk = −(ν−(M/2−k)) = −νM/2−k.

Proof: Recall Euler’s formula in complex analysis: exp(ix) = cos(x) + i sin(x). As well, recall
that sin(π) = 0, cos(π) = −1, and the trigonometric addition formulas:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

sin(α− β) = sin(α) cos(β)− sin(β) cos(α).
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Then

νM/2−k = exp

„
2πi(M/2− k)

M

«
= cos

„
2π(M/2− k)

M

«
+ i sin

„
2π(M/2− k)

M

«
= cos

„
π −

2πk

M

«
+ i sin

„
π −

2πk

M

«
=

»
cos(π) cos

„
2πk

M

«
+ sin(π) sin

„
2πk

M

«–
+»

sin(π) cos

„
2πk

M

«
− sin

„
2πk

M

«
cos(π)

–
= − cos

„
2πk

M

«
+ i sin

„
2πk

M

«
= −1

»
cos

„
2πk

M

«
− i sin

„
2πk

M

«–
= −1 · cos

„
2πk

M

«
+ i sin

„
2πk

M

«
= −1 · exp

„
2πik

M

«
= −νk.

It follows that νM/2−k = −νk, so νk = −ν(M/2−k) = −ν(M/2−k). This completes the proof
of the lemma.


