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ABSTRACT
In comparative protein modeling, the quality of a template
model depends heavily on the quality of the initial align-
ment between a given protein with unknown structure to
various template proteins, whose tertiary structure is avail-
able in the Protein Data Bank (PDB). Although pairwise
sequence alignment has been solved for more than three
decades, there remains a large discrepancy between the ac-
curacy of the bestsequencealignment between two amino
acid sequences, as produced by the Needleman-Wunsch
[15] or Smith-Waterman [19] algorithms, and that of the
beststructuralalignment between two protein X-ray struc-
tures, as produced by the software DALI, CE, Topofit, etc.
To improve the quality of initial alignments in template
modeling, one can integrate valuable information from an
ensemble of generated suboptimal alignments, that is align-
ments whose score is below the best possible score. In this
paper, we present a novel algorithm to produce suboptimal
pairwise alignments.

Specifically, given any initial alignmentA0 of two nu-
cleic acid or amino acid sequences, our algorithmSubOpt
simultaneouslycomputes the optimal alignmentAk having
trace distancek fromA0, thus producing a small, represen-
tative yet divergent ensemble of suboptimal structures in
time and spaceO(n3). A web server forSubOpt is under
construction athttp://bioinformatics.bc.edu/
clotelab/.
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1 Introduction

There is a well-known, demonstrable gap between the qual-
ity of sequence alignments and that of structure alignments,
when benchmarked with hand-curated structure alignments
of protein X-ray structures from the Protein Data Bank [5].
In particular, using structures in theSCOP(Structural Clas-
sification of Proteins) database [4] as the golden standard,
Sauder et al. [16] showed that at the level of 10-15% se-
quence identity,BLAST [3] correctly aligns 28% of residue
pairs, whilePSI-BLAST [2, 1] improves the per-residue
alignment accuracy to 40%. Sauder et al. [16] also showed
that structure alignments of the protein tertiary structures,
as produced byCE [17] andDALI [9], correctly align 75%
of residue pairs at the same level of 10-15% sequence iden-
tity.

A number of groups have introduced new ideas in the
attempt to identify pairsai, bj of aligned residues from two
amino acid sequencesa1, . . . , an andb1, . . . , bm in an op-
timal sequence alignment. The overall idea is that ifai, bj
occur in manysuboptimalalignments, then it is likely that
ai, bj are “correctly” aligned – i.e.ai, bj are more likely
to be aligned in the structural alignment, as produced by
DALI [9], CE [17], TOPOFIT [10], etc. (For benchmark-
ing purposes, following the work of [16, 18], we identify
the “correct” alignment with that produced by a structural
alignment algorithm, such asDALI.) Thus the main ques-
tion is no longer “What is the best alignment?”, but rather
“What are the good alignments?” (paraphrased from [21]).

Waterman [23] was the first to consider the problem
of generating suboptimal alignments. In [23], he described
how to modify the standard recursive traceback algorithm,
in order to generate all alignments whose score exceeds a
user-defined threshold. The problem with this method in



practice is that there is an enormous number of subopti-
mal structures, which deviate very slightly from the opti-
mal alignment and whose score is almost as large as that of
the optimal alignment. In [24], Waterman and Eggert de-
scribed how to generate a first suboptimal (local) alignment
produced by not allowing the alignment of any residue pair
found in the optimal alignment; a second suboptimal (lo-
cal) alignment is produced by not allowing any residue pair
from the optimal and first suboptimal alignment, etc. In
[25], Waterman et al. described how to efficiently find all
optimal alignments for all choices of the penalty parame-
ters (gap initiation, gap extension).

In [22], Vingron and Argos studied the regions of
agreement between all suboptimal alignments whose score
is, at most, within� of that of the optimal alignment. In
particular, they showed that residue pairsai, bj found in
all suboptimal alignments are more likely to be correctly
aligned in the protein tertiary structures. In [11], Mevissen
and Vingron demonstrated the utility of an edge reliability
index calledrobustness, defined as the difference between
the sequence alignment score for an alignment including a
given pairai, bj of aligned residues and the highest score
for an alignment that does not include that pair.

Given amino acid sequencesa1, . . . , an and
b1, . . . , bm, it is possible to compute the Boltzmann
probability pi,j that ai is aligned tobj , as discovered by
several groups independently [12, 13, 6]. In particular,
Miyazawa [12] identified pairsai, bj of residues, whose
Boltzmann probability of being aligned is high, while
Mückstein et al [13] sampled near-optimal alignments
from the Boltzmann ensemble. Following [6, 7], the main
idea can be summarized as follows.

LetFZ be theforward partitionfunction, defined for
0 ≤ i ≤ n and0 ≤ j ≤ m by

FZ(i, j) =
∑

A

escore(A)/C

whereA ranges over all possible alignments ofa1, . . . , ai
with b1, . . . , bj, score(A) is the alignment score using stan-
dardBLAST parameters, andC is a constant. For simplic-
ity, we consider a linear gap penalty ofx ⋅ g for a gap of
sizex; however, it is straightforward [12, 13, 6, 7] to extend
the algorithm for an affine gap penalty, by using auxiliary
matrices (Gotoh’s trick [8]). The similarity (BLOSUM or
PAM) between amino acidsai, bj is denotedsim(ai, bj).

Algorithm 1 (Forward partition function)
For 1 ≤ i ≤ n and1 ≤ j ≤ m, defineFZ(i, 0) = e

i⋅g
C ,

FZ(0, j) = e
j⋅g
C , and defineFZ(i, j) by

FZ(i−1, j−1)⋅e
sim(ai,bj )

C +FZ(i, j−1)⋅e
g
C +FZ(i−1, j)⋅e

g
C .

Analogously, we compute thebackward partition
functionBZ, defined for1 ≤ i ≤ n+1 and1 ≤ j ≤ m+1
by

BZ(i, j) =
∑

A

escore(A)/C

whereA ranges over all possible alignments ofai, . . . , an
with bj , . . . , bm.

Algorithm 2 (Backward partition function)
For n+1 ≥ i ≥ 1 andm+1 ≥ j ≥ 1, letBZ(i,m+1) =

e
(n+1−i)⋅g

C ,BZ(n+1, j) = e
(m+1−i)⋅g

C and defineBZ(i, j)
to be

BZ(i+1, j+1)⋅e
sim(ai,bj )

C +BZ(i, j+1)⋅e
g
C +BZ(i+1, j)⋅e

g
C .

One can easily check thatFZ(n,m) = BZ(1, 1) and that

this value is
∑

A e
score(A)

C , whereA ranges over all align-
ments ofa1, . . . , an with b1, . . . , bm. The Boltzmann prob-
ability Pr[(ai, bj)] thatai will be aligned withbj is then

FZ(i− 1, j − 1) ⋅ e
sim(ai,bj)

C ⋅BZ(i+ 1, j + 1)

FZ(n,m)
.

In [18], Sierk et al. investigate which combination of
features, either singly or in combination, best allows one to
identify residue pairsai, bj which occur in structural align-
ments produced byDALI andCE. In particular, these au-
thors benchmarked(i) robustness, defined earlier, with(ii)
Boltzmann pair probabilities, with(iii) the maximum num-
ber of bits per position. Sierk et al. determined that the
best method is alogistic regressionmodel using all three
parameters.

In this paper, we describe a novel method to produce
suboptimal alignments. Moreover, we provide some pre-
liminary results by testing our algorithm against theBAl-
iBASEdatabase [20] of manually curated (structure) align-
ments, created to allow the benchmarking of various se-
quence alignment methods.

2 Method

Let a = (a1, . . . , an) andb = (b1, . . . , bm) be sequences
of nucleic acids or amino acids, and letA0 be an initial
alignment. The alignmentA0 is arbitrary; i.e.A0 can be
produced byBLAST [3], the Needleman-Wunsch algorithm
[15], the Smith-Waterman algorithm [19], any manually
produced partial alignment, or even theemptyalignment
(i.e. having empty trace).

Recall that thetrace tr(A) of alignmentA is the set
of positions(i, j), where1 ≤ i ≤ n, 1 ≤ j ≤ m andai is
aligned withbj. Define thetrace distanced(A,B) between
alignmentsA andB of sequencesa = (a1, . . . , an) and
b = (b1, . . . , bm) to be the number of aligned residue pairs
ai, bj whereA andB differ; i.e. ∣ (A ∖ B) ∪ (B ∖ A) ∣.

Dynamic programming

In this section, we consider global1 pairwise alignment
with a linear gap penalty2 g, where the similarity score of

1Our program,SubOpt, can also compute near-optimal local align-
ments; however, this will not be discussed in the current paper.

2For simplicity, the pseudocode of our algorithm is given forthe linear
gap penaltyG(k) = k ⋅ g, for sizek gap. However, our implementation



sequence elementsai andbj is �(ai, bj). Given sequences
a1, . . . , an andb1, . . . , bm, and given a non-negative inte-
ger0 ≤ K ≤ n +m, we define an(n + 1) × (m + 1) ×
(K + 1) matrixM , whereM(i, j, k) is themaximumsim-
ilarity over all pairwise alignments betweena1, . . . , ai and
b1, . . . , bj , whose trace distance from the restriction of ini-
tial alignmentA0∣[i,j] toa1, . . . , ai andb1, . . . , bj is exactly
k. After computing all values ofM(i, j, k) for 0 ≤ i ≤ n,
0 ≤ j ≤ m, and0 ≤ k ≤ K, we can produce the subop-
timal alignmentsAk for eachk, which differ by exactlyk
residue pairsai, bj from the initial alignmentA0. In the se-
quel, we will refer toAk as thek-alignment. Note that ifA0

is the empty alignment, then thek-alignmentAk consists of
exactlyk aligned residue pairsai, bj , whose contribution is
in a very precise mathematical sense themost important.

Finally, we remark that in a manner similar to that of
[6, 7] and described above, it is straightforward to compute
thepartition function

Zk =
∑

A

escore(A)/C

whereA ranges over all possible alignments ofa1, . . . , an
with b1, . . . , bm for which the trace distance betweenA and
an initially given alignmentA0 equalsk, andscore(A) is
the alignment score using standardBLAST parameters. In
this fashion, we could compute aBoltzmann density plot
Zk/Z.

We begin by initializingM in the base case, where
eitheri = 0 or j = 0:

M(i, j, k) =

⎧













⎨













⎩

0 if i = j = k = 0
−∞ if i = j = 0 andk > 0
g ⋅ j if i = 0 andk = 0
−∞ if i = 0 andk > 0
g ⋅ i if j = 0 andk = 0
−∞ if j = 0 andk > 0.

We continue with the inductive case, where1 ≤ i ≤ n,
1 ≤ j ≤ m, and0 ≤ k ≤ K, as described in Figure 1.

Following the insight of Gotoh [8], in our implemen-
tation, we actually define auxilliary matricesP,Q in or-
der to computek-suboptimal alignments for the affine gap
penaltygap(k) = � + �(k − 1), consisting of a gap initi-
ation cost� and a gap extension cost�. This results in a
program, which we callSubOpt.

3 Results

In this section, we benchmark our algorithm,SubOpt,
by using alignments from theBAliBASEdatabase [20], a
database of manually refined multiple sequence alignments
specifically designed for the evaluation and comparison of
sequence alignment programs. We have taken 10 multiple
alignments having sequence identity less than 25%, from
which 92 pairwise alignments are obtained.

adapts the insight of Gotoh [8], in order to support theaffinegap penalty
G(k) = �+(k−1) ⋅ (g−1), thereby accounting for distinction between
gap initiation and gap extension within the same run time complexity.

3.1 Comparison of suboptimal and global alignment

Table 1 gives the number of alignments found bySubOpt
among 92 reference alignments, where we used the BLO-
SUM45 similarity matrix, gap initiation cost� = −14 and
gap extension cost� = −2. Here, for each value ofk,
we considered only onek-alignment; i.e. in the traceback
phase, we only generated one alignment for each value
of k. Table 1 shows that 15 alignments can be found by
the Needleman-Wunsch algorithm [15] using trace distance
k = 0, but SubOpt can find 18 more alignments, where
trace distance from the initial alignment varies from 2 to
40. If no reference alignment is found for a given trace dis-
tancek, then the valuek does not occur in the left column
of Table 1.

k number of alignments
0 15
2 3
4 3
6 2
8 2
9 2
12 1
19 1
23 1
30 1
36 1
40 1

TOTAL 15+18=33

Table 1. The number ofBAliBASEalignments found by our
programSubOpt.

Table 2 shows the number ofBAliBASEalignments
found bySubOpt, as a function of gap initiation and gap
extension parameters. As above, for each value ofk we
considered only onek-alignment. For values� = −14 and
� = −6, we find a maximum of 35 alignments among the
92 reference alignments.

� ∖� -2 -4 -6 -8 -10 -12 -14 -16
-1 3 9 23 31 29 30 33 31
-2 4 11 27 31 31 32 33 30
-3 3 14 28 31 33 31 31 31
-4 3 13 24 30 32 33 31 33
-5 3 11 24 27 31 32 32 33
-6 3 11 22 27 30 33 35 33

Table 2. The number of alignments found by our program
SubOpt, as a function of gap initiation and gap extension
parameters.

Table 3 shows the percentage ofBAliBASE ref-
erence alignments, in whichSubOpt outperforms the



M(i, j, k) = max

⎧





















⎨





















⎩

M(i− 1, j − 1, k) + �(ai, bj) if (i, j) ∈ A0

M(i− 1, j − 1, k − 2) + �(ai, bj) if (i,−), (r, j) ∈ A0, for some1 ≤ r < i
M(i− 1, j − 1, k − 2) + �(ai, bj) if (i, r), (−, j) ∈ A0, for some1 ≤ r < j
M(i− 1, j − 1, k − 1) + �(ai, bj) if (i,−), (−, j) ∈ A0

M(i, j − 1, k) + g if (−, j) ∈ A0

M(i, j − 1, k − 1) + g if (r, j) ∈ A0, for some1 ≤ r ≤ i
M(i− 1, j, k) + g if (i,−) ∈ A0

M(i− 1, j, k − 1) + g if (i, r) ∈ A0, for some1 ≤ r ≤ j

Figure 1. Inductive step in the dynamic programming (forward) algorithm to compute the optimal alignment scoreM(i, j, k)
over all alignments betweena1, . . . , ai and b1, . . . , bj whose trace differs ink positions from the restriction of the initial
alignmentA0 to a1, . . . , ai andb1, . . . , bj. Note that in case 1 and 2 above, the traceback would alignai andbj, while in case
3 and 4, the traceback would alignbj with a gap symbol, and in case 5 and 6, the traceback would align ai with a gap symbol.
Both time and memory requirements are clearlyO(nmK).

Needleman-Wunsch algorithm, as a function of trace dis-
tancek. We do not showk = 0 since in this case the results
are the same for both algorithms. Again, for each value
of k we considered only onek-alignment. For trace dis-
tance greater than1, most of the k-alignments produced by
SubOpt are more similar to the reference alignment, than
that produced by Needleman-Wunsch. For example, when
k = 4, 65.1% of the 4-alignments produced bySubOpt
more closely resemble the reference alignment than does
the Needleman-Wunsch optimal alignment.

k SubOpt
1 50.5%
2 58.9%
3 52.1%
4 65.1%
5 53.2%
6 67.3%
7 55.8%
8 64.7%
9 55.2%
10 65.0%
11 53.7%
12 64.6%

Table 3. The percentage of reference alignments, in which
SubOpt outperforms the Needleman-Wunsch algorithm,
as a function of trace distancek.

3.2 Comparison of 3 near-optimal alignment methods

In this section, we compare near-optimal alignments gen-
erated by three different methods:(i) sampling from the
Boltzmann ensemble byprobA [13], (ii) generating all
Zuker suboptimal alignmentsusing thenoptalign web

server3 which implements Zuker’s method [26] of generat-
ing alignments which are optimal and contain residue pairs
ai, bj for various possible choices ofai, bj , and (iii) our
programSubOpt, which generates, for each integerk, all
alignments which have maximum possible score, contin-
gent on the requirement that their trace distance from the
Needleman-Wunsch optimal alignmentA0 equalsk. (For
fixed value ofk, there may be many alignments, whose
trace distance withA0 equalsk, all of which have the max-
imum possible alignment score. Our programSubOpt
can generate, for each value ofk, all such possiblek-
alignments by straightforward modification of the trace-
back phase.)

3.2.1 Entropy

We took two proteins from the multiple alignment
1aboAref1 - reference 1 from theBAliBASEdatabase [20]:
1ihvA (Swiss Prot accession P00383) and 1pht (Swiss Prot
accession P27986). These proteins, fromEscherichia coli
and fromHomo sapiensrespectively, both contain an SH3
domain, consisting of five conserved�-strands [14].

Using each of the previously described methods
probA, noptalign, SubOpt, we generated the top
scoring 111 near-optimal alignments and computed for
each sequence 1ihvA and 1pht, theposition-specific en-
tropyH(i). This was done as follows.

Consider two amino acid sequences,a = a1, . . . , am
and b = b1, . . . , bm. For a collection of near-optimal
alignments of two proteins,a = a1, . . . , am and b =
b1, . . . , bm, we compute the frequenciesf(i, k), for 1 ≤
i ≤ n and0 ≤ k ≤ 2m + 2, defined as follows. For
j = 1, . . . , n, we definef(i, 2j−1) to be the frequency that
ai is aligned withbj , while forj = 2, . . . ,m, whilef(i, 2j)
is the frequency thatai is aligned with a gap occurring be-
tweenbj−1 and bj . Finally, f(i, 0) is the frequency that

3The Pearson Lab has created a web serverhttp://fasta.
bioch.virginia.edu/noptalign for noptalign.



ai is aligned with a gap beforeb0, andf(i, 2m) is the fre-
quency thatai is aligned with a gap afterbm. For each fixed
value ofi0 in {1, . . . , n}, f(i0, j) is a probability distribu-
tion; i.e.

∑2m
j=0 f(i0, j) = 1. Hence theposition-specific

entropyH(i) is defined by

H(i) = −

2m
∑

j=0

f(i0, j) ⋅ ln f(i0, j).

The entropyH(i) will be low in regions whereai is very
often aligned to the same amino acidbj , or to a gap occur-
ring between amino acidsbj−1 andbj ; i.e. at positioni,
the near-optimal alignments tend to agree on the alignment
partner ofai.

Figure 3 displays the position-specific entropy where
a = a1, . . . , an designates the protein 1ihvA (Swiss Prot
accession P00383), whileb = b1, . . . , bm designates
the protein 1pht (Swiss Prot accession P27986) and the
position-specific entropy where the role of the proteins is
reversed; i.e.a = a1, . . . , an designates the protein 1pht
(Swiss Prot accession P27986), whileb = b1, . . . , bm des-
ignates the protein 1ihvA (Swiss Prot accession P00383).

We computed the position-specific entropy as fol-
lows:

∙ Calculate the frequency that the amino acid at position
i of sequence 1ihvA aligns with a particular amino
acid, or with a gap between two particular amino acids
of sequence 1pht. This yieldsf1(i, j), wherei ranges
from1 to the length of sequence 1ihvA, whilej ranges
from 0 to twice the length of sequence 1pht.

∙ Calculate the frequency that the amino acid at position
i of sequence 1pht aligns with a particular amino acid,
or with a gap between two particular amino acids of
sequence 1ihvA. This yieldsf2(i, j), wherei ranges
from 1 to the length of sequence 1pht, whilej ranges
from 0 to twice the length of sequence 1ihvA.

∙ For each positioni in sequence 1ihvA, we calculate
the position-specific entropy:

H1(i) = −
∑

j

f1(i, j) ⋅ ln(f1(i, j))

and for each positionj in sequence 1pht, we calculate
the position-specific entropy:

H2(i) = −
∑

j

f2(i, j) ⋅ ln(f2(i, j))

Figure 3 presents the position-specific entropy of the
proteins 1ihvA, resp. 1pht, according to each of three meth-
odsprobA, noptalign, SubOpt of generating near-
optimal alignments. The position-specific entropy from
our program,SubOpt, appears to be smaller than either
of the other two methods, which suggests two aspects:(i)
There appears to be a greater diversity in the near-optimal

alignments generated byprobA andnoptalign, than by
SubOpt. (ii) In looking at thecore blocksof theBAliBASE
alignment containing sequences 1ihvA and 1pht, as shown
in Figure 2, it appears that the location of residues in the
conserved block corresponds roughly with locations hav-
ing small position-specific entropy, especially with respect
to our program,SubOpt. We now numerically quantify
both of these notions.
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Figure 3. Position-specific entropy for near-optimal align-
ments generated by the three different methods. Above:
first sequence (lihvA); below: second sequence (1pht).

3.2.2 Near-optimal diversity and correlation with core
blocks

To numerically quantify the two previously mentioned in-
sights, we compare thenear-optimal diversity, defined by

2n
∑

i=0

2m
∑

j=0

p(i,j) ⋅ (1− p(i,j))

wherep2i−1,k = f1(i, k) andp2i,k = f1(i, k), or equiva-
lently, wherepi,2k−1 = f2(i, k) andpi,2k = f2(i, k). In
other words, in the first sequencea = a1, . . . , an, consider
the2n + 1 possiblelocations, corresponding to either one
of then residues, or to a gap beforea1, or between some
ai andai+1, or afteran. Similarly, in the second sequence



-NFRVYYRDsrd------pvwkGPAKLLWkg-----------------eGAVVIQd--nsdiKVVPRRKAKIIRd-----
gYQYRALYDykkereedidlhlGDILTVNkgslvalgfsdgqearpeeiGWLNGYnettgerGDFPGTYVEYIGrkkisp

Figure 2. Core blocks from the initial segment of theBAliBASEalignment of two SH3 proteins 1ihvA (Swiss Prot accession
P00383) and 1pht (Swiss Prot accession P27986). Aligned uppercase letters designation locations within core blocks.

b = b1, . . . , bm, consider the2m + 1 possiblelocations,
corresponding to either one of them residues, or to a gap
beforeb1, or between somebi andbi+1, or afterbm. Then
pi,j is the frequency that theith location from the first se-
quence is aligned with thejth location from the second se-
quence.

Additionally, we computed the Pearson correla-
tion coefficient between positions incore blocksof the
BAliBASEalignment between 1ihvA and 1pht. For each
position in 1ihvA, we computed the correlation between
H(i) andc(i), wherec(i) = 1 if i appears in a core block
of 1ihvA, and0 otherwise (i.e.c(i) is the indicator function
of whetheri appears in a core block of 1ihvA). This corre-
lation is denotedcorrelation 1. Similarly, we computecor-
relation 2as the Pearson correlation between the position-
specific entropyH(i) of the sequence 1pht andc(i), where
c(i) equals the indicator function of whetheri appears in
a core block of 1pht. Table 4 now provides a numerical
quantification of the two previously mentioned insights.(i)
There appears to be a greater diversity in the near-optimal
alignments generated byprobA andnoptalign, than
by SubOpt: indeed, the diversity forprobA is 85.72, for
noptalign is 74.4, and forSubOpt is 30.65. (ii) In
looking at thecore blocksof theBAliBASEalignment con-
taining sequences 1ihvA and 1pht, one might ask whether
there is any correspondence between the position-specific
entropy of a locationi and whetherai is a residue in the
core blockof theBAliBASEalignment. Table 4 shows that
correlation 1 is0.22 for SubOpt, far greater than values
of 0.07 for noptalign and−0.11 for probA. Similarly,
correlation 2 is0.49 for SubOpt, far greater than values of
0.17 for noptalign and−0.14 for probA. Based on our
initial investigations, it appears that our method,SubOpt,
is possibly more effective in indentifying likelybiologi-
cally significantregions of an alignment. Oddly enough,
this suggests that there is a significant anti-correlation be-
tween entropy with respect toSubOpt and whether a lo-
cation belongs to a core block. We plan to investigate this
phenomenon more fully with respect to many alignments
in the future.

SubOpt nearOpt probA
diversity 30.65 74.4 85.72

correlation 1 0.22 0.07 -0.11
correlation 2 0.49 0.17 -0.14

Table 4. Near-optimal alignment diversity and Pearson cor-
relation between low entropy regions andBAliBASE core
blocksfor the three different methods.

4 Discussion

Our work presents a new algorithm concerning the analysis
of protein sequences, motivated by the interest of improv-
ing the quality of pairwise sequence alignment. Mathemat-
ically optimal sequence alignments, produced by apply-
ing dynamic programming with similarity matrices (BLO-
SUM, PAM, etc.) do not always properly align active
site residues or well-recognized structural elements. In-
deed, it has long been noted that sequence alignment is
substantially less accurate than structural alignment, when
benchmarked against manually curated tertiary structure
databases [16]. However, with the exponentially growing
protein sequence databases, it remains an important bioin-
formatics research area to improve the quality of pairwise
and multiple sequence alignments. Sierk et al. [18] have
taken a step by developing a logistic regression model that
exploits the notions ofrobustness, frequency ofaligned
pairsai, bj , and maximum number of bits per position.

We have presented a new method of generating near-
optimal pairwise global alignments. Given any initial
alignmentA0 of two nucleic acid or amino acid sequences,
in cubic time our algorithmSubOpt simultaneously com-
putes for all values ofk the k-optimal alignment(s); i.e.
those optimal alignment(s)Ak having trace distancek from
A0, whereA0 is the Needleman-Wunsch optimal align-
ment, or any initial alignment with which the user starts.
Using the benchmark databaseBAliBASE, we have com-
pared our algorithmSubOptwith the Needleman-Wunsch
algorithm, showing (unsurprisingly) that theBAliBASE
reference alignment may be closer to a (suboptimal)k-
alignment than to the Needleman-Wunsch optimal align-
ment. More importantly, we have computed both thedi-
versityandposition-specific entropyof near-optimal align-
ments produced bySubOpt, compared with near-optimal
alignments produced byprobA [13] and noptalign
[26]. Our method generates less diverse near-optimal
alignments, yet whose position-specific entropy is more
tightly (anti-) correlated with locations in thecore blockof
BAliBASEreference alignments. For this reason, it is pos-
sible that our near-optimal residue pair alignment frequen-
cies may lead to future improvements in sequence align-
ment, for instance, by integrating features from our method
into that of Sierk et al. [18]. Another possible future direc-
tion is to compute near-optimal multiple sequence align-
ments, by extending the pairwise method presented in this
paper to multiple alignments.
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