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Abstract

Consider the network of all secondary structures of a given RNA sequence, where nodes are connected
when the corresponding structures have base pair distance one. The expected degree of the network is
the average number of neighbors, where average may be computed with respect to the either the uniform
or Boltzmann probability. Here we describe the first algorithm, RNAexpNumNbors, that can compute the
expected number of neighbors, or expected network degree, of an input sequence. For RNA sequences
from the Rfam database, the expected degree is significantly less than the CMFE structure, defined
to have minimum free energy over all structures consistent with the Rfam consensus structure. The
expected degree of structural RNAs, such as purine riboswitches, paradoxically appears to be smaller
than that of random RNA, yet the difference between the degree of the MFE structure and the expected
degree is larger than that of random RNA. Expected degree does not seem to correlate with standard
structural diversity measures of RNA, such as positional entropy, ensemble defect, etc. The program
RNAexpNumNbors is written in C, runs in cubic time and quadratic space, and is publicly available at
http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.

Keywords: RNA secondary structure, network degree, small-world, macromolecular network.

1 Introduction

Examples of small-world phenomena abound in the physical sciences. In [26], the neural connections of C.
elegans were shown to have both small mean path length between nodes and to have large clique-like clusters,
both hallmarks of small-world networks. In [23], the gene co-expression network of S. cerevisiae was shown
to have a scale-free, small-world architecture, where genes are linked in the network if they are co-expressed.
The network of metabolic pathways [24, 16] and of folding kinetics for the protein villin [2] were shown as
well to have small-world properties, which collectively suggests a topological robustness that appears to be
intrinsic in biological processes.

In [27], Wuchty showed that the network of secondary structures of E. coli phe-tRNA, with accession
number RF6280 [20], is small-world, by using the program RNAsubopt [28] to analyze the ensemble of low
energy secondary structures of phe-tRNA, having free energy approximately within 8.5 kcal/mol (14 kT) of
the minimum free energy. In this network, two nodes s, t (secondary structures) are linked by an edge if t
can be obtained from s by removing or adding a single base pair, or obtained by a shift move. A shift move,
depicted in Figure 1 of [27], allows one to move one end of a base pair without moving the other.

Small-world networks satisfy a connectivity property, where the average shortest path distance (geodesic
distance) is small relative to the network size – typically logarithmic in network size. In the case of RNA
secondary structures, this property trivially holds, since the number of secondary structures is generally
exponential in the RNA sequence size n [21], while the base pair distance between any two structures (and
so path length) is at most n.

Wuchty showed as well that cluster sizes of the low energy ensemble of secondary structures of phe-tRNA
are larger than that of (Erdös-Renyi) random graphs, and that clustering coefficient C(ν) for phe-tRNA is
inversely proportional to node degree kν of node ν; i.e. C(ν) ∼ 1

kν
. Here, for network node ν, the clustering

coefficient C(ν) is defined as the fraction of pairs of neighbors of ν which are connected by a network edge;
i.e. C(ν) = 2·n

kν ·(kν+1) , where n is the number of pairs of neighbors of ν that are connected by a network edge.
Motivated originally by issues concerning the kinetics of RNA folding, in this paper we study the average

network degree, i.e. the expected number of neighbors of a secondary structure for a given RNA sequence. In
contrast to the work of Wuchty [27], we consider a neighbor of the secondary structure s to be any structure
obtained by adding or deleting a single base pair from s, but not obtained by a shift move. We describe
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the first algorithm, RNAexpNumNbors, that can compute the expected number of neighbors for a given RNA
sequence, where expectation can be taken either with respect to the uniform or the Boltzmann probability.
Using dynamic programming, the C program RNAexpNumNbors runs in cubic time and quadratic space with
respect to input sequence length.

The plan of the paper is as follows. To make basic notions absolutely clear, Section 2 presents an
illustrative example of how to manually compute the expected network degree for a toy 8 nt RNA sequence.
Section 3 shows the inadequacy of this exhaustive method, hence the need for an efficient program such
as RNAexpNumNbors. In this section, we apply RNAexpNumNbors to nine noncoding RNA families from the
Rfam database [10], and determine the Pearson correlation between expected network degree and various
RNA structural measures. Definitions for these measures are given in the Appendix, and the correlations
are displayed in Tables 1 to 5. Section 4 summarizes our main contributions and poses some open questions.
The recursions for our algorithm, RNAexpNumNbors, are described in Section 5, and the detailed derivation
for these recursions are given in the Appendix.

2 Preliminaries

A secondary structure for an RNA nucleotide sequence a = a1, . . . , an is a set s of Watson-Crick or wobble
base pairs (i, j), containing neither base triples nor pseudoknots. The number of base pairs in s is denoted by
|s|. A secondary structure s is compatible with a if for every base pair (i, j) in s, the pair (ai, aj) is contained
in the set of six canonical (Watson-Crick and wobble) base pairs. Throughout this paper, by structure, we
mean a secondary structure which is compatible with an arbitrary, but fixed RNA sequence a.

If s, t are secondary structures of a, then the base pair distance, dBP (s, t), is defined as |s − t| + |t − s|,
i.e. the number of base pairs belonging to s but not t, or vice versa. Structures s, t are said to be neighbors,
if their base pair distance is 1, and to be k-neighbors if dBP (S, T ) = k.

Given an RNA sequence a = a1, . . . , an, the expected number 〈N(a)〉 of neighbors for a is defined by

〈N(a)〉 =
∑

s

P (s) ·N(s) =
∑

s

exp(−E(s)/RT )
Z

·N(s) (1)

where the sum is taken over all secondary structures s of the input sequence a, where P (s) is the probability
of structure s, N(s) is the number of neighbors of s, E(s) is the energy of s, R = 0.001987 kcal K−1 mol−1

and T = 310.15 K. At times we may write Ns in place of N(s), especially in Section 5 and the Appendix.
Often the RNA sequence a is clear from the context and so omitted, and we may correspondingly designate
the expected number of neighbors by 〈N〉.

In this paper, we describe novel, efficient (cubic time, quadratic space) algorithms to compute the expected
number of neighbors, with respect to three energy models. Model A assigns an energy of 0 to each structure.
It follows that the partition function Z =

∑
s exp(−E(s)/RT ) is simply the number of structures, and so

the probability P (s) = exp(−E(s)/RT )
Z is the uniform probability. Model B, first proposed by Nussinov and

Jacobson [15], assigns an energy of −1 to each base pair, so the energy of a structure having k base pairs
is −k. Model C, commonly known as the Turner energy model [13, 29], assigns negative, stabilizing free
energies to stacked base pairs, and positive, destabilizing free energies to hairpin loops, bulges, internal loops
and multiloops. The energy parameters are derived from UV absorption (optical melting) experiments,
except for a multiloop affine energy approximation. In our current software RNAexpNumNbors, we employ
the Turner 1999 energy parameters [13, 29, 22] without dangles. Accounting for dangles, or single-stranded,
stacked nucleotides, would add considerable complexity to our dynamic programming algorithm; indeed, at
present, it is unclear how this might even be done.

Although the Turner energy model is the only physically realistic model, involving enthalpic and entropic
considerations, our dynamic programming method is complicated and more easily explained by first address-
ing model A, then B, then C. To illustrate the definition of expected number of neighbors, given in equation
(1), consider the 8 nt RNA sequence ACGUACGU, all of whose secondary structures can be generated by
the program RNAsubopt [28] – see Figure 1.

Due to steric constraints, by definition each hairpin loop is required to have at least three unpaired bases.
It follows that the first structure in Figure 1 has 2 neighbors, i.e. either the empty structure, obtained
by removing base pair (1, 8), or the second structure, obtained by adding the base pair(2, 7). The second
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ACGUACGU
(......) 4.40 kcal/mol
((....)) 1.90 kcal/mol
..(....) 5.70 kcal/mol
.(....). 3.60 kcal/mol
........ 0.00 kcal/mol

Figure 1: (Left) All possible secondary structures of the 8-mer ACGUACGU with corresponding free energies
in kcal/mol, computed by RNAeval from the Vienna RNA Package [11] using the Turner 1999 energy model
without dangles [13, 29]. (Right) Graph representation of neighborhood network, where nodes 1,2,3,4,5
respectively represent the secondary structures (......); ((....)); ..(....); .(....).; ......... The
expected number of neighbors corresponds to the expected degree in the graph with respect to the uniform
probability. In computing the expectation with respect to the Boltzmann probability, each node is weighted
by its Boltzmann factor divided by the partition function.

structure has 2 neighbors, obtained by removing base pair (1, 8) or (2, 7). The third structure has only one
neighbor, obtained by removing base pair (3, 8), while the fourth structure has two neighbors, obtained by
either removing base pair (2, 7) or adding base pair (1, 8). In contrast the fifth structure, which is empty,
has 3 neighbors, obtained by adding either base pair (1, 8), (2, 7) or (3, 8). If the energy of each structure is
0, as in Model A, then equation (1) yields 2+2+1+2+3

5 = 2; i.e. the uniform expected number of neighbors is
2.

In Model B, usually called the Nussinov energy model, the partition function Z is the sum of the Boltz-
mann factors exp(−E(s)/RT

Z , hence

Z = exp(1/RT ) + exp(2/RT ) + exp(1/RT ) +
exp(1/RT ) + exp(0/RT ) = 41.8611.

Thus, with respect to the Nussinov energy model, the Boltzmann expected number of neighbors is

〈N〉 =
exp(1/RT )

Z
· 2 +

exp(2/RT )
Z

· 2 +
exp(1/RT )

Z
· 1 +

exp(2/RT )
Z

· 2 +
exp(0/RT )

Z
· 3 =

79.656
41.861

= 1.903.

In the Turner energy model, the free energies of the five structures are 4.4, 1.9, 5.7, 3.6 and 0.0 kcal/mol,
reflecting the fact that the minimum free energy structure for this toy 8-mer is the empty structure. The
partition function is

Z = exp(−4.4/RT ) + exp(−1.9/RT ) + exp(−5.7/RT ) +
exp(−3.6/RT ) + exp(−0/RT ) = 1.049626.

Thus, with respect to the Turner energy model, the Boltzmann expected number of neighbors is

〈N〉 =
exp(−4.4/RT ) · 2

Z
+

exp(−1.9/RT ) · 2
Z

+
exp(−5.7/RT ) · 1

Z
+

exp(−3.6/RT ) · 2
Z

+
exp(−0.0/RT ) · 3

Z
=

3.0992
1.0496

= 2.9526.

In the sequel, the phrase Boltzmann expected number of neighbors will mean that the expected value is
computed with respect to Boltzmann probability using the Turner 1999 energy model without dangles – i.e.
Model C. A future version of RNAexpNumNbors will alternatively support the Turner 2000 parameters.

3 Results

It is straightforward, to automate the previous manual computations, and thus determine the expected num-
ber of neighbors for a given RNA sequence by exhaustively listing all secondary structures and their free ener-
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Figure 2: (Left) Relative frequency of the number of structures for the 32 nt selenocysteine insertion sequence
(SECIS) element fruA, obtained by by exhaustive generation of all secondary structures. The number of
neighbors is given on the x-axis, while the proportion of structures having a given number of neighbors is
given on the y-axis. The expected number of neighbors with respect to the uniform distribution is 10.657
with standard deviation 4.777, while that for the Boltzmann probability is 10.001 with standard deviation
0.058. (Right) Similar analysis for a 27 nt bistable switch. The expected number of neighbors with respect to
the uniform distribution is 9.14 with with standard deviation 4.56, while that for the Boltzmann probability
is 11.92 with standard deviation 0.549.

gies with the program RNAsubopt [28]. This approach is only posssible for a sufficiently small RNA sequence,
since the number of secondary structures is exponential in the sequence length [21]. Binning the output of
RNAsubopt according to the number of neighbors of each secondary structure, we can determine the relative
frequency of structures of the 32 nt selenocysteine insertion sequence (SECIS) element fruA with sequence
CCUCGAGGGG AACCCGAAAG GGACCCGAGA GG and the 27 nt bistable switch with sequence CU-
UAUGAGGG UACUCAUAAG AGUAUCC and two meta-stable structures .......((((((((....))))))))
having -10.30 kcal/mol and ((((((((....))))))))....... having -9.90 kcal/mol.

Figure 2 displays the relative frequency with respect to the uniform probability, that structures for fruA
(left panel) resp. the bistable switch (right panel) have a given number of neighbors. In particular, 110,124
of the 971,299 secondary structures of fruA (11.3%) have exactly 10 neighbors. The analogous computation
with respect to the Boltzmann probability indicates that 99.8% of the structures have exactly 10 neighbors
– of course, this means that essentially all of the low energy structures have 10 neighbors. The expected
number of neighbors for fruA with respect to the uniform distribution is 10.657 (stdev 4.777), while that
for the Boltzmann probability is 10.001 (stdev 0.058). For the 27 nt bistable switch, 30,609 of the 186,105
secondary structures (16.4%) have exactly 6 neighbors, with respect to the uniform probability, while 88.36%
of the structures have 12 neighbors with respect to the Boltzmann probability. The MFE structure having
-10.30 kcal/mol has 12 neighbors, while the meta-stable structure having -9.90 kcal/mol has 11 neighbors.

For larger sequences, one can use RNAsubopt to sample those structures, whose free energy lies within
a user-specified bound of that of the MFE structure. For the 161 nt xanthine phosphoribosyltransferase
(XPT) riboswitch, depicted in Figure 1 of [19], we used RNAsubopt to sample 8212 structures having free
energy within 5 kcal/mol of the MFE. By computing the relative frequency that sampled structures have
exactly k neighbors, we obtain the density plot given in the left panel of Figure 3, which yields the estimated
mean 138.848 (stdev 45.457), compared with the correct value of 153.179 obtained with RNAexpNumNbors.
By increasing the free energy bound of 5 kcal/mol to 10 kcal/mol, one could obtain an improved graph and
somewhat more accurate estimate of the mean; however, this comes at a severe computational cost, since
the number of structures grows exponentially in the free energy bound. (Compare the left panel of Figure 3
with that of Figure 4 from [27].)

We wrote a program in C to count the number of secondary structures for an input RNA sequence
and output a user-specified number of structures, sampled with respect to the uniform distribution. In
this fashion, we generated 8000 structures from the ensemble of all structures of the XPT riboswitch, and
determined an estimate of 70.326 with standard deviation of 16.249 for the uniform expected number of
neighbors of XPT riboswitch. The exact value is 61.040, as determined by RNAexpNumNbors. The right
panel of Figure 3 depicts the graph of uniform distribution of the number of neighbors for XPT.

It follows from this illustrative example that there is no current method, apart from the algorithm
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Figure 3: (Left) Relative frequency of the number of structures for the 161 nt xanthine phosphoribosyltrans-
ferase (XPT) riboswitch, estimated by using RNAsubopt to sample 8212 structures having free energy within
5 kcal/mol of the MFE. Structures were binned according to number of neighbors, yielding a mean of 138.848
with standard deviation of 45.457, compared with the exact value of 153.179 obtained with RNAexpNumNbors.
(Right) Analogous graph, where 8000 structures were uniformly sampled from the ensemble of all structures
for the XPT riboswitch. This data yields an estimate of 70.326 ± 16.249 for the uniform expected number
of neighbors of XPT, compared with the exact value of 61.040 obtained with RNAexpNumNbors.

RNAexpNumNbors of this paper, which can accurately compute the expected number of neighbors for a given
RNA sequence. The dynamic programming recursions are described in Section 5, while full details of the
derivation of the recursions is given in the Appendix.

Analysis of selected Rfam families

In this section, we apply RNAexpNumNbors to compute the expected number of neighbors, both with respect
to the uniform and Boltzmann probability, for noncoding RNA from the Rfam 11.0 database [10]. The nine
Rfam families are 5S ribosomal RNA (RF00001), U2 spliceosomal RNA (RF00004), transfer RNA (RF00005),
type III hammerhead ribozyme (RF00008), Selenocysteine insertion sequence 1 (RF00031), small nucleolar
RNA (RF00045), purine riboswitch (RF00167), HIV primer binding site (RF00375), molybdenum cofactor
riboswitch (RF01055).

Since it is clear that longer RNA sequences in general have a larger number of neighbors, these values
should be normalized for comparative purposes. The left panel of Figure 4 depicts the expected number
of neighbors, normalized by dividing by sequence length, for homopolymers of length 10 to 1000. In this
context, a homopolymer is a sequence, where any two positions i < j can form a base pair, as long as
j − i ≥ 4, which ensures a minimum of at least three unpaired bases in each hairpin loop. Figure 4 clearly
indicates that the normalized expected number of neighbors is asymptotically a constant in the homopolymer
case, with asymptotic value ≈ 0.4724. The center [resp. right] panels of Figure 4 plot the uniform [resp.
normalized uniform] expected number of neighbors pooled from all sequences in the seed alignments of
the nine Rfam families: RF00001, RF00004, RF00005, RF00008, RF00031, RF00045, RF00167, RF00375,
RF01055. Sequence lengths in this pooled set range from 40 nt to 225 nt, with a mean of 104.21 ± 39.96.
No visible pattern emerges in the center panel, corresponding to unnormalized values. In normalizing by
dividing the expected number of neighbors by sequence length, the values appear to be normally distributed
with a mean of 0.3697 ± 0.0091. These arguments justify our normalized expected number of neighbors,
when comparing RNAs of different lengths from different Rfam families.

Table 1 presents the averages, taken over all sequences in the seed alignment of each of nine selected
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Figure 4: (Left) Plot of the normalized expected number of neighbors as a function of sequence length, for
homopolymers of length 1 to 1000 nt, obtained by dividing the expected number of neighbors by sequence
length. Apparent asymptotic value is ≈ 0.4724. (Center) Relative frequency of the expected number of
neighbors pooled from all sequences in seed alignments from nine Rfam families (see text). (Right) Relative
frequency of the normalized expected number of neighbors pooled from all sequences in seed alignments from
nine Rfam families, with a fitted normal distribution.

families in the Rfam 11.0 database [10], of the expected number of neighbors with respect to both the
uniform probability and to the Boltzmann probability. Though small, the different values for the expected
number of neighbors are statistically significant. For instance, the p-value is 2.00723 · 10−46, for the 2-tailed
T-test of equality for the average (uniform) normalized number of neighbors for sequences from the seed
alignment of RF00001 (712 5S rRNA sequences) and RF00005 (960 tRNA sequences).

The normalized expected number of neighbors (Boltzmann probability) appears to be completely uncor-
related with the normalized expected number of neighbors (uniform probability) – taken over the pooled
data from nine Rfam families, the Pearson correlation is only 0.028191, as shown in Table 2. This table con-
siders as well the number of neighbors of the minimum free energy (MFE) structure and the the constrained
minimum free energy (CMFE), where for the latter, we used RNAfold -C from the Vienna RNA Package
[11] to compute the structure having minimum free energy among all structures that are compatible with the
Rfam consensus structure. By this, we mean that the CMFE structure s obtained by RNAfold -C does not
conflict with the constraints; if position k is constrained to be unpaired, then position k must be unpaired in
s, and if (x, y) is constrained to be a base pair, then for every base pair (i, j) ∈ s, we have that if {i, j} and
{x, y} have non-empty intersection, then i = x and j = y, and that it is not the case that x < i < y < j or
i < x < j < y. Note that RNAfold -C does not require that the base pair (x, y) from the constraint belong
to s, but only that s not conflict with the constrained base pair.

As far as we can determine, the expected number of neighbors, equivalent to network degree, seems to
be orthologous to other measures. In particular, there appears to be no relation between length-normalized
Boltzmann expected number of neighbors (EXPB), length-normalized uniform expected number of neigh-
bors (EXPU), GC-content, minimum free energy, sequence length, positional entropy [12], expected number
of base pairs [25], ensemble defect [4], expected base pair distance [9], etc. Table 3 shows the absence of cor-
relation between EXPB and various structural diversity measures (data for other measures not shown). See
the Appendix for definitions of positional entropy, expected number of base pairs, ensemble defect, expected
base pair distance.

Table 4 presents correlations between the expected number of neighbors and other measures, defined as
follows. E: minimum free energy; MFE-EXPB: (number of neighbors of MFE structure minus the Boltzmann
expected number of neighbors) divided by sequence length – i.e. length-normalized; EXPB: Boltzmann
expected number of neighbors, divided by sequence length; MFE-EXPU: (number of neighbors of MFE
structure minus the uniform expected number of neighbors) divided by sequence length; MFE: number of
neighbors of the MFE structure divided by sequence length; SeqLen: sequence length.

Some correlations are obvious; e.g. corr(E,SeqLen) = -0.8621 indicates that as sequence length increases,
the minimum free energy decreases. The correlation of 0.8724 between MFE-EXPB and MFE-EXPU is
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significant and surprising, since there is essentially no correlation between EXPB and EXPU, as shown in
Table 2. The positive correlation of 0.8721 between MFE-EXPB and MFE, and of 0.999436 between MFE-
EXPU and MFE seems surprising. However, since EXPB [resp. EXPU] values of members of a given Rfam
family appear to be close to the family average (see Table 1), taken together this suggests that the value
of MFE essentially defines the values of MFE-EXPB [resp. MFE-EXPU]. Finally, the correlation between
MFE and EXPB is likely due to the fact that MFE-EXPB is small, in general, as shown in Table 5.

Finally, Table 5 compares the number of neighbors of the MFE and CMFE structures with the expected
number. In this table, MFE [resp. CMFE] stands for the length-normalized number of neighbors for the
minimum free energy structure [resp. the structure having minimum free energy among those structures that
are consistent with the Rfam consensus structure]. EXP stands for the length-normalized expected number of
neighbors, as computed by RNAexpNumNbors, and BPdist is the length-normalized base pair distance between
the MFE structure and the CMFE structure. The table shows perhaps surprisingly that the MFE structure
does not have significantly more neighbors than the Boltzmann expected number; however, the CMFE
structure does. The Rfam consensus structure is often taken as the gold standard in RNA benchmarking
studies; however, since Rfam base pairs are inferred only by covariation found in a multiple alignment,
we take the CMFE structure as representative of the native structure. It appears significant that the
CMFE structure has significantly more neighbors than the MFE structure. Another striking observation is
large value of EXPB-MFE for the two riboswitch families present in the collection of Rfam sequences we
investigated – purine riboswitch (RF00167) and molybdenum cofactor riboswitch (RF01055). If this finding
holds up under careful scrutiny of all riboswitch families in Rfam, then perhaps RNAexpNumNbors could be
used as a tool, along with RNAbor [7] and FFTbor [18] to detect conformational switches.

Z-scores

The left panel of Figure 5 depicts the relative frequency for the EXPB value for 1000 random RNAs, where
EXPB denotes the length-normalized Boltzmann expected number of neighbors. The arrow head in the graph
marks the EXPB value for wild type purine riboswitch with EMBL accession code AE005176.1/1159509-
1159606. Random RNA sequences were generated to have the same dinucleotides as that of the wild type
purine riboswitch by using the Altschul-Erikson algorithm [1]. Wild type purine riboswitch with EMBL
accession code AE005176.1/1159509-1159606 has EXPB value 0.782112, while the average EXPB of the
1000 randomized RNAs is 0.837026 with standard deviation 0.253572. It follows that the Z-score for this
riboswitch is z = 0.782112−0.837026

0.253572 = −0.21656 – i.e. most random RNAs have larger EXPB values than
this riboswitch. This situation is in fact typical, as shown by the center panel of Figure 5, which depicts
the relative frequency of Z-scores for the length-normalized expected number of neighbors for 133 purine
riboswitch sequences from the seed alignment of Rfam family RF00167. For each riboswitch sequence, the
expected number x of neighbors was computed, and well as the expeccted number x1, . . . , x100 of 100 random
RNA sequences having the same dinucleotides, obtained by the Altschul-Erikson algorithm. Z-scores were
computed as z = x−µ

σ , where µ is the mean µ and σ is the standard deviation x1, . . . , x100. Z-scores computed
with respect to the Boltzmann probability with overall mean −0.291 appear in blue, while those computed
with respect to the uniform probability with overall mean +0.019 appear in red. It follows that purine
riboswitches tend to have a lower expected number of neighbors than do their randomizations.

The right panel of Figure 5 depicts the relation between MFE-EXPB and its Z-scores, described as
follows. For each purine riboswitch a, the length-normalized difference MFE-EXPB between the number
of neighbors of the MFE structure and the Boltzmann expected number was computed, as well that for
100 random RNA sequences a1, . . . ,a100 having the same dinucleotides, obtained by the Altschul-Erikson
algorithm. Let x be the MFE-EXPB value for a), and let µ [resp. σ] denote the mean [resp. standard
deviation] for the MFE-EXPB values of the random RNAs. The Z-scores z = x−µ

σ of purine riboswitches
α are highly correlated with the values MFE-EXPB, with r = 0.9606. The right panel of Figure 5 clearly
indicates that MFE-EXPB for purine riboswitches is about two times larger in absolute value than than for
randomized RNAs.
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Figure 5: (Left) Distribution of length-normalized Boltzmann expected number of neighbors (EXPB) values
for 1000 random RNAs, where the arrow head marks the EXPB value wild type purine riboswitch with
EMBL accession code AE005176.1/1159509-1159606. Random RNA sequences were generated to have the
same dinucleotides as that of the wild type purine riboswitch by using the Altschul-Erikson algorithm [1].
(Center) Histogram of Z-scores, given by the formula (‘wild type EXPB’ - ‘mean EXPB of random RNA’)
divided by ‘stdev EXPB of random RNA’, for the length-normalized expected number of neighbors for the
133 purine riboswitches from the seed alignment of Rfam family RF00167. For each riboswitch, its expected
number x of neighbors was computed, as well as the mean µ and standard deviation σ of the expected number
of neighbors for 100 random RNA sequences having the same dinucleotides, obtained by the Altschul-Erikson
algorithm. Z-scores for expectations with respect to the Boltzmann [resp. uniform] probability appear in blue
[resp. red], with an overall mean of −0.291 [resp. +0.019]. (Right) Scatter plot of Z-scores for MFE-EXPB,
where for a given RNA sequence a, MFE-EXPB is defined as the length-normalized number of neighbors
of the MFE structure minus the length-normalized expected number of neighbors. For each riboswitch,
MFE-EXPB was computed, as well as that for 100 random RNA sequences having the same dinucleotides,
obtained by the Altschul-Erikson algorithm. Corresponding Z-scores z = x−µ

σ were computed, where x is
MFE-EXPB and µ, σ are respectively the mean, standard deviation of corresponding MFE-EXPB values for
the randomized RNAs. Pearson correlation is 0.9606.
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4 Discussion

Understanding the network topology of macromolecules is important, both for folding kinetics and for com-
putational approaches to determine the native structure of protein and RNA. In this paper, we consider the
network of all secondary structures of a given RNA sequence, where nodes are connected when the corre-
sponding structures have base pair distance one. We describe the first algorithm to compute the expected
network degree, where expectation is computed with respect to either the uniform or Boltzmann probability.
Using dynamic programming, our C-program RNAexpNumNbors runs in cubic time with quadratic memory
requirements, although the network size is exponential in input RNA sequence length.

Our network is related, but different from that of [27], in which nodes (secondary structures) s, t are
linked by an edge if t can be obtained from s by adding or removing a base pair, or by by a shift move. In
contrast to Wuchty’s observation, that the clustering coefficient C(ν) for phe-tRNA is inversely proportional
to node degree kν of node ν, for our network, C(ν) = 0 for all nodes ν. Indeed, if s, t and s, u are neighbors,
then dBP(s, t) = 1 and dBP(s, u) = 1, so it follows that dBP(t, u) = 2 – no two neighbors of s are connected
by an edge. At present, it is unclear whether RNAexpNumNbors can be extended to allow shift moves, a topic
we hope to explore in future work.

Using RNAexpNumNbors, we analyzed a number of noncoding RNAs from the Rfam database. We have
shown that for such RNAs, the expected degree is generally less than the degree of the minimum free energy
(MFE) structure, which in turn is less than the degree of the minimum free energy structure constrained
to be consistent with the Rfam consensus structure (CMFE). This observation is consistent with what one
knows from Markov state models formed by clustering structures from molecular dynamics snapshots [2].
However, the expected degree of structural RNAs, such as purine riboswitches, paradoxically appears to
be smaller than that of random RNA, yet the difference between the degree of the MFE structure and the
expected degree is larger than that of random RNA. Expected degree does not seem to correlate with any
structural diversity measure of RNA, such as positional entropy, ensemble defect, etc. Moreover, there is
no correlation (-0.054286) between the expected number of neighbors and folding time, nor any corrlation
(-0.036524) between the MFE-EXPB and folding time, as measured by Kinfold [6] using a carefully chosen
benchmarking set of 1000 20-mers from [17].

We close this paper by posing a few questions. One can argue that the collection of neighbors of a given
structure s constitutes a conformational breathing space for thermal movement while retaining functionality.
Hence, the term S = kB · log N(s) is a form of configurational entropy, which is not currently accounted for
in RNA secondary structure models. Can one define the free energy term c · T · S, for absolute temperature
T , where c is an appropriate weight with respect to the Turner energy parameters? Would such an addi-
tional energy contribution improve structure prediction? Does expected network degree play a role in RNA
molecular evolution? Can the algorithm RNAexpNumNbors be extended to allow shift moves, or to apply to
k-neighbors, for k > 1? Finally, in reference to Figure 4, can one prove the existence of an asymptotic limit
lim|a|→∞

〈N(a)〉
|a| for homopolymers a, using the algebraic combinatorial techniques of [5, 3, 8]?

5 Methods

In this section, we provide recursions for efficient dynamic programming algorithms for the expected number
〈Ns〉 of neighbors of secondary structure s, where s varies over all secondary structures of a given RNA se-
quence a. For clarity of exposition, we present three different algorithms, depending on the probability model
for secondary structures (uniform model versus Boltzmann with Nussinov energy model versus Boltzmann
with Turner energy model).

5.1 Model A: uniform probability distribution

In this subsection, 〈Ns〉 is formally defined as follows

〈Ns〉 =
∑

s Ns

Z
(2)

where Ns denotes the number of secondary structures, whose base pair distance with s is 1, and Z denotes
the total number of secondary structures of given RNA sequence a, and the summation is taken over all
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secondary structures s of a. For any secondary structure s, let |s| denote the number of base pairs in s.
Suppose that a = a1, . . . ,an. For 1 ≤ i ≤ j ≤ n, define a[i, j] = ai, . . . ,aj , and define SS(a[i, j]) to be

the collection of secondary structures of a[i, j]. Define

Qi,j =
∑

s∈SS(a[i,j])

Ns. (3)

Similarly, let Zi,j =
∑

s∈SS(a[i,j]) 1; i.e. Zi,j denotes the number of secondary structures of a[i, j].

Base Case: For j − i ∈ {0, 1, 2, 3}, Qi,j = 0 and Zi,j = 1.

Inductive Case: Let BP (i, j,a) be a boolean function, taking the value 1 if positions i, j can form a base
pair for sequence a, and otherwise taking the value 0. Assume that j − i > 3.

Subcase A: Consider all secondary structures s ∈ a[i, j], for which j is unpaired. For each structure s in
this subcase, the number Ns of neighbors of s is constituted from the number of structures obtained from
s by removal of a single base pair, together with the number of structures obtained from s by addition
of a single base pair. If the base pair added does not involve terminal position j, then total contribution
to
∑

s∈SS(a[i,j]) Ns is Qi,j−1. It remains to count the contribution due to neighbors t of s, obtained from

s ∈ SS(a[i, j]) by adding the base pair (k, j). This contribution is given by
∑j−4

k=i BP (k, j,a)·Zi,k−1·Zk+1,j−1,
where Zi,i−1 is defined to be 1. Thus the total contribution to Qi,j from this subcase is

Qi,j−1 +
j−4∑
k=i

BP (k, j,a) · Zi,k−1 · Zk+1,j−1.

Subcase B: Consider all secondary structures s ∈ a[i, j] that contain the base pair (k, j) for some k ∈
{i, . . . , j − 4}. For secondary structure s in this subcase, the number Ns of neighbors of s is constituted
from the number of structures obtained by removing base pair (k, j) together with a contribution obtained
by adding/removing a single base pair either to the region [i, k − 1] or to the region [k + 1, j − 1]. Setting
Qi,i−1 to be 0, these contributions are given by

j−4∑
k=i

BP (k, j,a) · [Zi,k−1 · Zk+1,j−1 + Qi,k−1 · Zk+1,j−1 + Zi,k−1 ·Qk+1,j−1] .

In the current subcase, the contribution to Zi,j is
∑j−4

k=i BP (k, j,a) · Zi,k−1 · Zk+1,j−1.
Finally, taking the contributions from both subcases together, it follows that

Qi,j = Qi,j−1 +
j−4∑
k=i

BP (k, j,a) · [2 · Zi,k−1 · Zk+1,j−1 + Qi,k−1 · Zk+1,j−1 + Zi,k−1 ·Qk+1,j−1] (4)

Zi,j = Zi,j−1 +
j−4∑
k=i

BP (k, j,a) · Zi,k−1 · Zk+1,j−1. (5)

It follows that the expected number 〈Ns〉 of neighbors Ns of structures s of a is Q1,n

Z1,n
.

We should remark that the recursion for Zi,j is well-known and due originally to Waterman, where in
[21] the asymptotic number of secondary structures of a homopolymer is determined. However, to the best
of our knowledge, the recursions and related dynamic programming algorithm for 〈Ns〉 are new. We have
implemented the dynamic programming algorithm corresponding to equations (3) and (4), as well as an
algorithm proceeding by brute force enumeration as a cross-check of the first algorithm. Subsequently, we
have cross-checked the recursions for Models B and C by setting energy terms to zero and comparing the
results with our implementation for Model A.

Now we give the recursions for a dynamic programming algorithm to compute 〈N〉 =
∑

s P (s) · N(s),
where the sum is taken over all secondary structures s of the input RNA sequence a = a1, . . . , an, N(s) is the
number of structures of a that differ by one base pair from s, and P (s) =

∑
exp(−E(s)/RT ) is the Boltzmann

probability of structure s, where E(s) is alternately the Nussinov base pairing energy model or the Turner
base stacking energy model. We provide derivations for the recursions in the Appendix.
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Model B: Base pairing energy

Here we consider the Nussinov energy model [15], where each base pair of a secondary structure contributes
an energy of −1. It follows that for secondary structure s of a = a1, . . . ,an, E(s) = −1 · |s|, where |s| denotes
the number of base pairs in s. For this model, the expected number of neighbors 〈Ns〉 is defined by

〈Ns〉 =

∑
s∈SS(a) Ns · exp(−E(s)/RT )

Z
=

∑
s∈SS(a)

Ns · P (s) (6)

(7)

where P (s) = exp(−E(s)/RT )
Z denotes the Boltzmann probability of structure s. (In the previous section, the

uniform probability of s was 1/Z, where Z denoted the number of structures.) In contrast to the previous
subsection, here we define Q, Z as follows

Qi,j =
∑

s∈SS(a[i,j])

Ns · exp(−E(s)/RT ) (8)

Zi,j =
∑

s∈SS(a[i,j])

exp(−E(s)/RT ).

In [15], the energy function Ei,j is defined to be −1 if positions i, j can form a base pair, and otherwise
Ei,j = 0. A slightly better refinement is the following energy function that one could adopt:

Ei,j =


−3 if ai, aj = GC or ai, aj = CG
−2 if ai, aj = AU or ai, aj = UA
−1 if ai, aj = GU or ai, aj = UG
0 otherwise.

Base Case: For 1 ≤ i ≤ n and j = i− 1, define Zi,j = 1 and Qi,j = 0. For j ∈ {i, . . . , i+3}, define Zi,j = 1
and ZBi,j = ZMi,j = ZM1i,j = 0 and QBi,j = QMi,j = QM1i,j = 0.

Inductive Case: For i + 3 < j,

Qi,j = Qi,j−1 +
j−4∑
k=i

bp(k, j) ·
[
Zi,k−1Zk+1,j−1

(
1 + exp

(
−Ek,j

RT

))]
+

j−4∑
k=i

bp(k, j) · exp
(
−Ek,j

RT

)
· [Qi,k−1Zk+1,j−1 + Zi,k−1Qk+1,j−1]

Zi,j = Zi,j−1 +
j−4∑
k=i

bp(k, j) · exp
(
−Ek,j

RT

)
· Zi,k−1 · Zk+1,j−1.

Model C: Turner energy

Define the following helper functions:

arc1(i, j) = |{(x, y) : bp(x, y) = 1, i ≤ x < y ≤ j, x + 3 < y}|
arc2(i, j, `, r) = |{(x, y) : bp(x, y) = 1, i < x < `, r < y < j}|
arc3(i, j, `, r) = arc1(i + 1, `− 1) + arc1(r + 1, j − 1) + arc2(i, j, `, r).

Note the occurrence of inequality ≤ in arc1, in contrast to the occurrence of strict inequality < in arc2.
Clearly, arc1(i, j) is the number of potential base pairs in the input RNA sequence a1, . . . , an that are found
in the interval [i, j]. In contrast, arc2(i, j, `, r) is the number of potential base pairs (x, y), where x occurs in
the left bulge and y occurs in the right bulge of a reference structure; i.e. the number of potential base pairs
that ‘bridge’ an internal loop. Finally, arc3(i, j, `, r) is the number of potential base pairs occurring in the
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left bulge, right bulge or ‘bridging’ the internal loop. Of course, it is possible that ` = i+1 [resp. r = j− 1],
in which case there is no left bulge [resp. right bulge] and hence no internal loop.

Base Case: For 1 ≤ i ≤ n and j = i− 1, define Zi,j = 1 and Qi,j = 0. For j ∈ {i, . . . , i+3}, define Zi,j = 1
and ZBi,j = ZMi,j = ZM1i,j = 0 and QBi,j = QMi,j = QM1i,j = 0.

Inductive Case: For i + 3 < j,

Qi,j = Qi,j−1 +
j−4∑
k=i

bp(k, j) · [Zi,k−1Zk+1,j−1 + Qi,k−1ZBk,j + Zi,k−1QBk,j ]

QBi,j = Ai,j + Bi,j + Ci,j

Ai,j = exp
(
−H(i, j)

RT

)
· [1 + arc1(i + 1, j − 1)]

Bi,j =
min(i+31,j−5)∑

`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−I(i, j, `, r)

RT

)
· [ZB`,r (1 + arc3(i, j, `, r)) + QB`,r]

Ci,j =
j−5∑

r=i+5

exp
(
−a + b

RT

)
· [QMi+1,r−1ZM1r,j−1 + ZMi+1,r−1QM1r,j−1]

QM1i,j =
j∑

k=i+4

exp
(
−c(j − k)

RT

)
· [QBi,k + ZBi,k · arc1(k + 1, j)]

QMi,j =
j−5∑
r=i

exp
(
−b + c(r − i)

RT

)
·QM1r,j + ZM1r,j · arc1(i, r − 1) +

j−5∑
r=i

[QMi,r−1ZM1r,j + ZMi,r−1QM1r,j ]

Finally, to accelerate the computation of the functions arc1, arc2, the 4 × n × n array ARC should be
precomputed, where if a = a1, . . . , an denotes the input RNA sequence, then

ARC[α, i, j] =


|x ∈ [i, j] : ax = U | if α = 0
|x ∈ [i, j] : ax = G| if α = 1
|x ∈ [i, j] : ax ∈ {C,U}| if α = 2
|x ∈ [i, j] : ax ∈ {A,G}| if α = 3.

If index(α) = 0, 1, 2, 3 respectively for values α = A,C,G,U , then arc1(i, j) =
∑j−4

k=i ARC[index(ak), k+4, j]
and arc2(i, j, `, r) =

∑`−1
k=i+1 ARC[index(ak), r + 1, j − 1].

Note that in the implementation of Bi,j , the first sum
∑min(i+31,j−5)

`=i+1 is implemented by the FOR loop

for ` = i + 1 to min(i + 31, j − 5)

while the second sum
∑max(j−31,i+5)

r=j−1 is implemented by the reverse FOR loop

for r = j − 1 down to max(j − 31, i + 5)

and although not written explicitly in the expression for Bi,j , there is a check that (`−i−1)+(j−r−1) ≤ 30.
This follows the convention in Vienna RNA Package that internal loops have size bounded by 30.

It is worth noting that if all energy terms are set to zero, then Qi,j in this section is not necessarily
equal to Ni,j , in the treatment of the uniform probability case. This is because we have ignored structural
neighbors formed by addition of a base pair (x, y) in a multiloop structure s closed by base pair (i, j), where
i < x < ` < r < y < j, while (`, r) ∈ s; i.e. the base pair (x, y) spans one or more components of a
multiloop and connects the previously unpaired positions x, y in the multiloop s. We are obliged to ignore
such potential structural neighbors because of technical treatment of multiloops in the McCaskill partition
function [14]. Nevertheless, when using the Turner energy parameters, in practice there should be only a
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small discrepancy with the true value of Qi,j as computed by brute force. This is because we expect both
the number of unpaired bases and the number of components in a multiloop to be small, so there will be
few occasions where this special case might arise (otherwise, this is energetically unfavorable, and hence the
Boltzmann probability would be small).
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Appendix

1. RNA structural measures

In the main text, we determined the correlation between the expected network degree and the following RNA
structural measures: expected number of base pairs, expected base pair distance, ensemble defect, positional
entropy. In our correlations in the main text, each of these measures was length-normalized by dividing
the value by sequence length. These structural measures can be defined from the base pairing probabilities,
computed by McCaskill’s algorithm [14] and implemented in RNAfold -p [11]. Let

pi,j =
∑

{s:(i,j)∈s}

P (s) =

∑
{s:(i,j)∈s} exp(−E(s)/RT )

Z
(9)

where P (s) is the Boltzmann probability of structure s of a given RNA sequence a = a1, . . . ,an, E(s) is
the Turner 1999 energy of secondary structure s [13, 29], R ≈ 0.001987 kcal mol−1 K−1 is the universal gas
constant, T = 310.15 is absolute temperature, and the partition function Z =

∑
s exp(−E(s)/RT ), where

the sum is taken over all secondary structures s of a. Symmetrize the base pair probabilities, by defining
pj,i = pi,j for 1 ≤ i, j ≤ n, i 6= j, and define pi,i = 1 −

∑
i 6=j pi,j to be the probability that position i is

unpaired. Let s0 denote the minimum free energy structure of input RNA sequence a.

1. Expected number of base pairs (ExpNumBP) is defined by
∑

1≤i<j≤n pi,j .

2. Expected base pair distance (ExpBPDist) to the MFE structure s0 of input RNA sequence a is defined
by
∑

1≤i<j≤n I[(i, j) 6∈ s0] · pi,j + I[(i, j) ∈ s0] · (1− pi,j), where I denotes the indicator function.

3. Ensemble defect (EnsDef) is the expected number of nucleotides whose base pairing status differs from
the MFE structure s0, defined by n−

∑
i 6=j pi,j · I[(i, j) ∈ s0]−

∑
1≤i≤n pi,i · I[i unpaired in s0], where

I is the indicator function.

4. Total positional entropy (H) is defined by 〈H(a)〉 =
∑n

i=1 {− (pi,i · ln pi,i + (1− pi,i) · ln(1− pi,i))},
where 0 · ln 0 is defined to be 0.

2. Expected number of neighbors for Boltzmann distribution

In this section, we provide full details on the derivation of the recursions from Section 5. By setting all energy
terms to zero in the recursions for Models A, B and C, we should obtain the same value as in the uniform
probability case. In testing RNAexpNumNbors, this is indeed the case, except for a very slight undercount in
multiloops in Model C. For the reasons explained at the end of the Appendix, this will make little difference
when using the Turner energy parameters, since multiloops are energetically unfavorable.

Throughout this section, a = a1, · · · , an denotes an arbitrary but fixed RNA sequence. Below, we justify
the recursions given for 〈Q(s)〉 =

∑
s BF (s) ·N(s), where the sum is taken over all secondary structures s of

RNA sequence a, N(s) is the number of structures of a that differ by one base pair from s, and the Boltzmann
factor BF (s) of s is defined by exp(−E(s)/RT ), where E(s) is the free energy of s. Recursions are also given
for the partition function Z(s) =

∑
s exp(−E(s)/RT ), where the sum is taken over all secondary structures

of a. It follows that the expected number of structural neighbors

〈N〉 =
∑

s

BF (s) ·N(s) =
Q(s)
Z(s)

For 1 ≤ i ≤ j ≤ n, the collection of all secondary structures of a[i, j] = ai, . . . , aj is denoted ss[i, j]. In
contrast, if s is a secondary structure of a1, . . . , an, then s[i, j] is the restriction of s to the interval [i, j],
defined by s[i, j] = {(x, y) : i ≤ x ≤ y ≤ j, (x, y) ∈ s.

We give separate algorithms for the expected number 〈N〉 of structural neighbors, depending on whether
the free energy E(s) is computed with respect to the Nussinov base pairing energy model or the Turner base
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stacking energy model. However, the initial portion of the derivation is common to both energy models.
Define

QBi,j =
∑

s∈ss[i,j]
(i, j) ∈ s

BF (s)N(s)

ZBi,j =
∑

s∈ss[i,j]
(i, j) ∈ s

BF (s).

1.1 Initial derivation shared by energy Model B and C

For notational convenience, we define Qi,i−1 = 0 and Zi,i−1 = 1. If i ≤ j < i + 4, then for any secondary
structure s, there are no structural neighbors of s[i, j] and so Qi,j = 0. As well, the only secondary structure
on [i, j] is the empty structure, so Zi,j = 1.

Now assume that i + 4 ≤ j. Since

Qi,j =
∑

s∈ss[i,j]
j unpaired in s

BF (s)N(s) +
j−4∑
k=i

∑
s∈ss[i,j]
(k, j) ∈ s

BF (s)N(s).

we treat each sum in a separate case. Let bp(k, j) be a boolean valued function with the value 1 if k can
base-pair with j; i.e. akaj ∈ {AU,UA,CG,GC,GU, UG}. For secondary structure s ∈ ss[i, j], let bp(k, j, s)
be a boolean function with value 1 if it is possible to add the base pair (k, j) to s and obtain a valid secondary
structure; i.e. without creating a base triple or pseudoknot.

Case 1: j is unpaired in [i, j]. For s ∈ ss[i, j] in which j is unpaired, s = s[i, j − 1] and BF (s) =
BF (s[i, j − 1]). The contribution to Qi,j in this case is given by

Ai,j =
∑

s∈ss[i,j]
j unpaired in s

BF (s)N(s)

=
∑

s∈ss[i,j−1]

BF (s)

N(s) +
∑

i ≤ k ≤ j − 4, k unpaired in s
bp(k, j, s) = 1

1


= Qi,j−1 +

j−4∑
k=i

bp(k, j)
∑

s1∈ss[i,k−1]

∑
s2∈ss[k+1,j−1]

BF (s1) ·BF (s2)

= Qi,j−1 +
j−4∑
k=i

bp(k, j) · Zi,k−1 · Zk+1,j−1

The term 1 on the right side of line 2 arises from neighbors of s obtained by adding the base pair (k, j) to
s. In line 3, note that if s ∈ ss[i, j] is a structure in which both k, j are unpaired and bp(k, j, s) = 1, then
BF (s) = BF (s1) ·BF (s2).
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Case 2: j is paired in [i, j]. The contribution to Qi,j in this case is given by

Bi,j =
j−4∑
k=i

∑
s∈ss[i,j]
(k, j) ∈ s

BF (s)N(s) =
j−4∑
k=i

∑
s∈ss[i,j]
(k, j) ∈ s

BF (s) [N(s[i, k − 1]) + N(s[k, j])]

=
j−4∑
k=i

bp(k, j) ·


∑

s1∈ss[i,k−1]

∑
s2∈ss[k,j]
(k, j) ∈ s2

BF (s1) ·BF (s2) [N(s1) + N(s2)]


=

j−4∑
k=i

bp(k, j) ·


∑

s1∈ss[i,k−1]

BF (s1)N(s1)
∑

s2∈ss[k,j]
(k, j) ∈ s2

BF (s2)+

∑
s1∈ss[i,k−1]

BF (s1)
∑

s2∈ss[k,j]
(k, j) ∈ s2

BF (s2)N(s2)


=

j−4∑
k=i

bp(k, j) · {Qi,k−1 · ZBk,j + Zi,k−1 ·QBk,j} .

Putting together the contributions from both cases, we have

Qi,j = Qi,j−1 +
j−4∑
k=i

bp(k, j) [Zi,k−1Zk+1,j−1 + Qi,k−1ZBk,j + Zi,k−1QBk,j ] . (10)

1.2 Model B: Base pairing energy

In the Nussinov energy model, where the energy of base pair (k, j) is denoted E(k, j), we clearly have the
following.

QBi,j =
∑

s∈ss[i,j]
(i, j) ∈ s

BF (s)N(s)

=
∑

s∈ss[i,j]
(i, j) ∈ s

BF (s) [1 + N(s[i + 1, j − 1])]

= ZBi,j + exp(−E(i, j)/RT ) ·Qi+1,j−1

ZBi,j = exp(−E(i, j)/RT ) · Zi+1,j−1.

The term 1 arises from those neighbors of s, obtained by removal of the base pair (i, j) while the term
N(s[i + 1, j − 1]) arises from neighbors of s obtained by removal/addition of a base pair within [i + 1, j − 1].
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We now substitute the expressions for QBk,j and ZBk,j into equation (10).

Qi,j = Qi,j−1 +
j−4∑
k=i

bp(k, j) [Zi,k−1Zk+1,j−1 + Qi,k−1ZBk,j + Zi,k−1QBk,j ]

= Qi,j−1 +
j−4∑
k=i

bp(k, j)
{

Zi,k−1Zk+1,j−1 + Qi,k−1Zk+1,j−1 · exp
(
−E(k, j)

RT

)
+

Zi,k−1

[
Zk+1,j−1 · exp

(
−E(k, j)

RT

)
+ Qk+1,j−1 · exp

(
−E(k, j)

RT

)]}
= Qi,j−1 +

j−4∑
k=i

bp(k, j)
{

Zi,k−1Zk+1,j−1

(
1 + exp

(
−E(k, j)

RT

))
+

exp
(
−E(k, j)

RT

)
· [Qi,k−1Zk+1,j−1 + Zi,k−1Qk+1,j−1]

}
Note that if we set all base pair energies E(k, j) to 0, then we obtain the same expression as derived for the
uniform probability distribution.
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Figure 6: Feynman diagram which illustrates the recursions for McCaskill’s algorithm [14].

1.3 Model C: Turner nearest neighbor energy model

In the nearest neighbor energy model [30, 22], free energies are defined not for base pairs, but rather for
loops in the loop decomposition of a secondary structure. In particular, there are stabilizing, negative free
energies for stacked base pairs and destabilizing, positive free energies for hairpins, bulges, internal loops,
and multiloops.

In this section, free energy parameters for base stacking and loops are from the Turner 2004 energy model
[22]. As in the previous subsection, Q,Z are defined, but now with respect to the Turner model, rather than
the Nussinov model.

Qi,j =
∑

s∈ss[i,j]

Ns · exp(−E(s)/RT ) (11)

Zi,j =
∑

s∈ss[i,j]

exp(−E(s)/RT ).
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It follows that Z = Z1,n is the partition function for secondary structures (the Boltzmann weighted counting
of all structures of a) and

〈Ns〉 =
Q1,n

Z1,n
=

∑
s∈ss[1,n]

Ns · P (s) =
∑

s∈ss[1,n]

Ns ·
exp(−E(s)/RT )

Z
. (12)

To complete the derivation of recursions for 〈Ns〉, we must define QBi,j and ZBi,j in equation (10) for the
Turner model.

To provide a self-contained treatment, we recall McCaskill’s algorithm [14], which efficiently computes
the partition function. For RNA nucleotide sequence a = a1, . . . ,an, let H(i, j) denote the free energy of
a hairpin closed by base pair (i, j), while IL(i, j, i′, j′) denotes the free energy of an internal loop enclosed
by the base pairs (i, j) and (i′, j′), where i < i′ < j′ < j. Internal loops comprise the cases of stacked base
pairs, left/right bulges and proper internal loops. The free energy for a multiloop containing Nb base pairs
and Nu unpaired bases is given by the affine approximation a + bNb + cNu.

Definition 1 (Partition function Z and related function Q)

• Zi,j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j].

• ZBi,j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which contain the
base pair (i, j).

• ZMi,j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which are contained
within an enclosing multiloop having at least one component.

• ZM1i,j =
∑

s exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which are con-
tained within an enclosing multiloop having exactly one component. Moreover, it is required that (i, r)
is a base pair of x, for some i < r ≤ j.

• Qi,j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j].

• QBi,j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which contain
the base pair (i, j).

• QMi,j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which are
contained within an enclosing multiloop having at least one component.

• QM1i,j =
∑

s Ns · exp(−E(s)/RT ) where the sum is taken over all structures s ∈ ss[i, j] which are
contained within an enclosing multiloop having exactly one component. Moreover, it is required that
(i, r) is a base pair of s, for some i < r ≤ j.

For j− i ∈ {0, 1, 2, 3}, Z(i, j) = 1, since the empty structure is the only possible secondary structure. for
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j − i > 3, we have

Zi,j = Zi,j−1 + ZBi,j +
j−4∑

r=i+1

Zi,r−1 · ZBr,j

ZBi,j = exp(−HP (i, j)/RT ) +
∑

i≤`≤r≤j

exp(−IL(i, j`, r)/RT ) · ZB`,r +

exp(−(a + b)/RT ) ·

(
j−θ−2∑
r=i+1

ZMi+1,r−1 · ZM1r,j−1

)

ZM1i,j =
j∑

r=i+θ+1

ZBi,r · exp(−c(j − r)/RT )

ZMi,j =
j−θ−1∑

r=i

ZM1(r,j · exp(−(b + c(r − i))/RT ) +

j−θ−1∑
r=i+θ+2

ZMi,r−1 · ZM1r,j · exp(−b/RT ).

See Figure 6 for a pictorial representation of the recursions of McCaskill’s algorithm [14],

Base Case: For j − i ∈ {−1, 0, 1, 2, 3}, Qi,j = QBi,j = 0, Zi,j = 1, ZBi,j = ZMi,j = ZM1i,j = 0.

Inductive Case: Assume that j − i > 3. Define

arc1(i, j) = |{(x, y) : bp(x, y) = 1, i ≤ x < y ≤ j, x + 3 < y}|
arc2(i, j, `, r) = |{(x, y) : bp(x, y) = 1, i < x < ` < r < y < j}|
arc3(i, j, `, r) = arc1(i + 1, `− 1) + arc1(r + 1, j − 1) + arc2(i, j, `, r).

Case A: (i, j) closes a hairpin.

In this case, the contribution to QBi,j is given by

Ai,j = exp
(
−H(i, j)

RT

)
· [1 + arc1(i + 1, j − 1)] .

The term 1 arises from the neighbor of s = {(i, j)} by removing base pair (i, j). The term arc1(i, j) arises
from neighbors of s obtained by adding a base pair in the region [i + 1, j − 1].

Case B: (i, j) closes a stacked base pair, bulge or internal loop, whose other closing base pair is (`, r), where
i < ` < r < j.

In this case, the contribution to QBi,j is given by the following

Bi,j =
min(i+31,j−5)∑

`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−IL(i, j, `, r)

RT

)
·
∑

s∈ss[`,r]
(`, r) ∈ s

BF (s) [1 + arc3(i, j, `, r) + N(s)]

=
min(i+31,j−5)∑

`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−IL(i, j, `, r)

RT

)
· ZB`,r · [1 + arc3(i, j, `, r)] +

min(i+31,j−5)∑
`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−IL(i, j, `, r)

RT

)
·QB`,r

=
min(i+31,j−5)∑

`=i+1

max(j−31,i+5)∑
r=j−1

exp
(
−IL(i, j, `, r)

RT

)
· [ZB`,r · (1 + arc3(i, j, `, r)) + QB`,r] .
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In the summation notation
b∑

i=a

, if upper bound b is smaller than lower bound a, then we intend a loop of

the form: FOR i = b downto a.

Case C: (i, j) closes a multiloop.

In this case, the contribution to QBi,j is given by the following

Ci,j =
∑

s∈ss[i,j],(i,j)∈s
(i, j) closes a multiloop

BF (s)N(s)

=
j−5∑

r=i+5

exp
(
−a + b

RT

)
·

∑
s1∈ss[i+1,r−1],s2∈ss[r,j−1]

r base-paired in s2

BF (s1) ·BF (s2) · [1 + N(s1) + N(s2)]

=
j−5∑

r=i+5

exp
(
−a + b

RT

)
·

∑
s1∈ss[i+1,r−1]

BF (s1)
∑

s2∈ss[r,j−1]
r base-paired in s2

BF (s2) +

j−5∑
r=i+5

exp
(
−a + b

RT

)
·

∑
s1∈ss[i+1,r−1]

BF (s1)N(s1)
∑

s2∈ss[r,j−1]
r base-paired in s2

BF (s2) +

j−5∑
r=i+5

exp
(
−a + b

RT

)
·

∑
s1∈ss[i+1,r−1]

BF (s1)
∑

s2∈ss[r,j−1]
r base-paired in s2

BF (s2)N(s2)

= exp
(
−a + b

RT

)
·

j−5∑
r=i+5

[ZMi+1,r−1 · ZM1r,j−1+

QMi+1,r−1 · ZM1r,j−1 + ZMi+1,r−1 ·QM1r,j−1] .

Now QBi,j = Ai,j + Bi,j + Ci,j . It nevertheless remains to define the recursions for QM1i,j and QMi,j .
These satisfy the following.

QM1i,j =
j∑

k=i+4

∑
s∈ss[i,k]
(i, k) ∈ s

exp
(
−c(j − k)

RT

)
·BF (s) · [N(s) + arc1(k + 1, j)]

=
j∑

k=i+4

exp
(
−c(j − k)

RT

)
· [QBi,k + ZBi,k · arc1(k + 1, j)] .

QMi,j =
j−5∑
r=i

exp
(
−b + c(r − i)

RT

)
· [QM1r,j + ZM1r,j · arc1(i, r − 1)] +

j−5∑
r=i

exp
(
− b

RT

)
· [QMi,r−1ZM1r,j + ZMi,r−1QM1r,j ] .

Suppose that s = {(i, j), (i1, j1), . . . , (ik, jk)} is a multiloop closed by (i, j), where i < i1 < j1 < i2 < j2 <
· · · < ik < jk < j. Then note that we do not count neighbors of s obtained by adding a base pair (x, y) to
the multiloop s, where i < x < i` < j` < y. Due to McCaskill’s trick in the treatment of multiloops in the
partition function [14], the treatment of such structural neighbors appears to be impossible while retaining
the run time O(n3). Nevertheless, multiloops are energetically costly due to entropic considerations, and
so penalized in the Turner energy model. For this reason, multiloops are generally small, without many
unpaired bases x, y capable of forming such base pairs. If a multiloop is of sufficient size to permit such
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unpaired bases x, y, then the multiloop free energy is likely to be large, so when the contribution is weighted
by the Boltzmann factor of s, the net contribution to 〈N〉 will be negligeable.
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Rfam Num Seq EXPU EXPB
RF00001 712 0.367082± 0.006445 0.442810± 0.057727
RF00004 208 0.373414± 0.004549 0.611431± 0.116160
RF00005 960 0.373047± 0.009376 0.507313± 0.122405
RF00008 84 0.363520± 0.012268 0.413163± 0.085666
RF00031 61 0.369005± 0.008448 0.572074± 0.168601
RF00045 66 0.371720± 0.005207 0.513964± 0.068067
RF00167 133 0.364369± 0.009093 0.731829± 0.258182
RF00375 130 0.356841± 0.005719 0.382784± 0.058189
RF01055 160 0.368760± 0.007053 0.566054± 0.124462

Table 1: Normalized expected number of neighbors of sequences in the seed alignment of various Rfam
families [10], given as the mean plus or minus one standard deviation of values computed for each family.
Column 1 contains the Rfam family name of the noncoding RNA investigated. Column 2 contains the
number of sequences in the family; columns 3 and 4 respectively contain the average, taken over each Rfam
family, of the expected number of neighbors of each sequence, normalized by dividing by sequence length,
denoted respectively EXPU and EXPB. Computations were performed using RNAexpNumNbors with respect
to the uniform probability (EXPU in column 3) and Boltzmann probability (EXPB in column 4). The
table clearly shows that the Boltzmann expected number of neighbors is generally larger than the uniform
expected number of neighbors.
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CMFE EXPB EXPU MFE
CMFE 1.000000 0.384740 0.105773 0.327990
EXPB 0.384740 1.000000 0.028191 0.777432
EXPU 0.105773 0.028191 1.000000 -0.003397
MFE 0.327990 0.777432 -0.003397 1.000000

Table 2: Pearson correlation between the length-normalized number of neighbors of the MFE structure,
CMFE structure and the uniform or Boltzmann expected value. Correlations were computed over the pooled
sequences from all nine Rfam families investigated. Headers are explained as follows. MFE: normalized num-
ber of neighbors for the MFE structure; CMFE: normalized number of neighbors for the CMFE structure,
i.e. the structure having minimum free energy that is consistent with the Rfam consensus structure; EXPB:
normalized expected number of neighbors with respect to Boltzmann probability; EXPU: normalized ex-
pected number of neighbors with respect to uniform probability. Note the complete absence of correlation
between EXPB and EXPU. Results are similar when analyzing Rfam family RF00001 (5S rRNA), both
normalized and unnormalized (data not shown); i.e. the lack of correlation is not due to any pooling effect
of different families. Although Table 1 shows that the Boltzmann expected number of neighbors is greater
than the uniform expected number of neighbors, there appears to be no correlation between these values.

H EnsDef ExpBPdist ExpNumBP ExpNumNbors
H 1.000000 0.716498 0.699402 -0.471001 -0.000638
EnsDef 0.716498 1.000000 0.997092 -0.306858 -0.024428
ExpBPdist 0.699402 0.997092 1.000000 -0.285362 -0.027360
ExpNumBP -0.471001 -0.306858 -0.285362 1.000000 -0.006972
ExpNumNbors -0.000638 -0.024428 -0.027360 -0.006972 1.000000

Table 3: Correlations of various measures that depend on the Boltzmann ensemble of all secondary structures
of a given RNA sequence. All measures have been normalized by dividing by sequence length. Column and
row headers are explained as follows. H: average positional entropy, EnsDef: ensemble defect to MFE
structure, ExpBPdist: expected base pair distance to MFE structure, ExpNumBP: expected number of base
pairs, ExpNumNbors: expected number of neighbors. See Appendix for definitions of these measures.
.

E MFE-EXPB EXPB MFE-EXPU MFE SeqLen
E 1.000000 0.088782 0.138171 0.135036 0.132890 -0.862103
MFE-EXPB 0.088782 1.000000 0.370294 0.872449 0.872135 -0.000543
EXPB 0.138171 0.370294 1.000000 0.775958 0.777432 0.125386
MFE-EXPU 0.135036 0.872449 0.775958 1.000000 0.999436 0.065343
MFE 0.132890 0.872135 0.777432 0.999436 1.000000 0.065674
SeqLen -0.862103 -0.000543 0.125386 0.065343 0.065674 1.000000

Table 4: Correlations for data pooled from all nine Rfam families. Column headers designate the following. E:
minimum free energy; MFE-EXPB: (number of neighbors of MFE structure minus the Boltzmann expected
number of neighbors) divided by sequence length – i.e. length-normalized; EXPB: Boltzmann expected
number of neighbors, divided by sequence length; MFE-EXPU: (number of neighbors of MFE structure
minus the uniform expected number of neighbors) divided by sequence length; MFE: number of neighbors
of the MFE structure divided by sequence length; SeqLen: sequence length.

23



FASTA MFE-EXP CMFE-MFE CMFE-EXP BPdist
RF00001 0.0293± 0.0881 0.2006± 0.5482 0.2300± 0.5527 0.1884± 0.1614
RF00004 0.0543± 0.1872 0.2863± 0.6817 0.3406± 0.6945 0.2082± 0.1243
RF00005 0.0447± 0.1863 0.4260± 0.6458 0.4707± 0.6195 0.2631± 0.1265
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