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Abstract

The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known
and well-documented. This broad range of functions is achieved through specific structures that have been (presumably)
optimized through evolution. State-of-the-art methods, such as McCaskill’s algorithm, use a statistical mechanics framework
based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given
sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods
employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the
many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill
partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given
sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy
structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to
specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically
important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation
profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the
deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants
to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting
replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response
element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis
studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations,
which could be verified experimentally. Finally, we provide evidence that the 39 UTR of the GB RNA virus C has been optimized
to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be
long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also
suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are
available at http://RNAmutants.csail.mit.edu/.
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Copyright: � 2008 Waldispühl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PC is partially funded by NSF grant DBI-0543506.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: clote@bc.edu

Introduction

RNA’s ubiquitous role in regulation and development is now

understood to be much more important than previously believed.

Apart from messenger RNA (mRNA), transfer RNA (tRNA) and

ribosomal RNA (rRNA), there are many important enzymatic and

regulatory functions of RNA, and it seems clear that we are far

from having discovered all non-coding RNA (ncRNA) genes (Non-

coding RNA [1,2] is functional RNA that is transcribed, yet does

not code for a protein). Indeed, according to the ENCODE

Consortium [3], RNA is ‘‘pervasively expressed’’ in the human

genome, with approximately 15% of genomic DNA being

transcribed, much of it into RNA of no known function.

The functional diversity of non-coding RNA is enormous,

ranging from translating mRNA into proteins via the genetic code

(tRNA), to catalyzing the peptidyltransferase reaction in append-

ing an amino acid to the growing peptide (rRNA [4]), to directing

the chemical modifications of specific ribosomal nucleotides

(snoRNA [5]), to the down-regulation of protein product (miRNA

[6]), to gene up- or down-regulation by transcriptional and

translational modification (riboswitches [7]), to the regulation of

alternative splicing ([8]). To achieve their function, non-coding

RNAs (except for small RNAs such as miRNA) require a structure

well suited to their role. If we assume that ncRNA sequences have

been adapted, or optimized, by evolution to fulfill a specific

function, it is natural to believe that their structures have been also

optimized or at least conserved. This observation is the basis for a

family of methods for secondary structure determination using

multiple sequence alignment and comparative sequence

analysis [9–12].

RNA is also a molecule governed by fundamental physical laws,

and thus folds according to thermodynamic and kinetic principles.

Algorithms using experimentally derived free energy parameters

[13] for secondary structure prediction have been successfully
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designed, implemented and applied in mfold [14] and RNAfold
[15]. As a consequence, a series of methods combining

thermodynamic principles with evolutionary information [16–19]

has appeared in the last few years.

RNA molecules are not static, forever frozen in a native

structure, but rather transition from one low energy structure to

another (slightly different) low energy structure, due to thermal

fluctuations. In his seminal work, J.S. McCaskill [20] introduced

an algorithm to compute the partition function over all secondary

structures as well as the base pairing probabilities. This approach

has been significantly extended by Ding and Lawrence [21], who

sampled secondary structures from the low energy ensemble.

There is a growing interest in understanding which nucleotides

of structurally important ncRNA are inessential, and may be

modified with no phenotypic change, and which nucleotides play a

critical role in structure, hence function. Indeed, mutagenesis

studies are a popular technique for investigating the structure and

function of both RNA and protein. In silico exploration of

deleterious mutations in RNA secondary structure have thus far

been carried out by exhaustive studies, where an available tool,

such as mfold [22], Vienna RNA Package [23], or Sfold [24],

etc. is applied successively to each 1-point mutant, then to each 2-

point mutant, etc. depending on sequence length and available

computational time; see, for instance Barash [25]. Clearly, this

exhaustive technique cannot be used to study the effect of many

pointwise mutations in a large sequence. In contrast, the current

paper describes an efficient algorithm, RNAmutants, to investigate

the minimum free energy structure MFEk and Boltzmann low

energy ensemble ek of all secondary structures of all k-point

mutants, for each value of k. In addition to detecting deleterious

mutations, RNAmutants could lead to a better understanding of

fast-mutating RNA viruses. By understanding fundamental

properties of functional RNAs and their robustness to mutation,

there may be ultimate applications of our work to the areas of

RNA gene discovery and RNA drug design.

In this paper, we describe a new thermodynamics-based method

for the investigation of the mutational secondary structure

landscape of a given RNA sequence. State-of-the-art thermody-

namics-based, single-molecule methods such as McCaskill’s

algorithm, use a statistical mechanics framework based on the

computation of the partition function over the canonical ensemble of

all possible secondary structures on a given sequence. Unfortu-

nately, methods such as Zuker’s algorithm for minimum free

energy structure [14], McCaskill’s algorithm for the partition

function [20], and the sampling method of Ding and Lawrence

[24], do not permit any modification of the input sequence during

their execution and thus cannot investigate the mutation landscape

of a sequence, except by exhaustive enumeration of all mutated

sequences. Indeed, the highly original work on neutral networks due

to Peter Schuster and the Vienna group [26–28] reposes on such

experiments where RNAfold is applied to all 4n many RNA

sequences of length n. The theory of neutral network is still an

active area of research—see the recent review of Cowperthwaite

and Meyers [29]. It follows that RNAmutants could be useful for

further studies of these networks.

Consequently, except for small exhaustive enumeration studies,

such as in the work of Barash [25], no group has been able to

answer questions like the following. What is energetically the most

favorable secondary structure adopted by an arbitrary k-point mutant, possibly

subject to preserving the location of specific binding sites and possibly

constrained by requiring certain positions to be paired resp. unpaired? If an

RNA molecule is under evolutionary pressure to adopt a low energy structure,

subject to certain constraints (binding site, catalytic core), then which positions

are most likely to be mutated and what is the consensus sequence and secondary

structure of the low energy ensemble.

There may be objections to what may seem to be yet another

thermodynamics-based RNA structure algorithm that we present

in this paper, since it is known that RNA secondary structure

prediction algorithms that incorporate comparative genomics

(multiple structural alignments) generally predict structure more

accurately than do single-molecule, thermodynamics-based algo-

rithms such as mfold, RNAfold, and Sfold. See work of Gardner

and Giegerich [30], who show for instance the more accurate

performance of Pfold, a program of Knudsen and Hein [18] that

depends on an explicit evolutionary model and a probabilistic

model for structures.

There are two answers to this objection. First, our program

RNAmutants performs computations and admits biological

applications that no other software can realize, regardless of

whether the software is based thermodynamics or comparative

genomics. Second, recent findings of the ENCODE project

consortium [3] indicate that the human genome is ‘‘pervasively

expressed,’’ with many RNA transcripts of unknown function

having no homology to known RNA families. While comparative

genomics has successfully been used to investigate the structure

and evolution of RNAs for which reliable multiple alignments

exist, only thermodynamics-based methods can be applied to novel

RNAs, such as those reported by the ENCODE consortium. Given

the existence of highly reliable, multiple structural alignments of

RNAs of the same class, it makes sense to apply comparative

genomics methods, such as Pfold of Knudsen and Hein [18], the

phylogenetic stochastic context-free grammar (phylo-SCFG)

program EvoFold of Pedersen et al. [11], or the Bayesian

MCMC program SimulFold of Meyer and Miklós [12]. In the

absence of highly reliable multiple alignments, such as with the

raw data of the encode consortium, thermodynamics-based

algorithms are not just the only alternative, but such algorithms

in general perform rather well. Indeed, on average, the predicted

MFE structure contains 73% of known base-pairs when tested on

domains of fewer than 700 nt; cf. Mathews et al. [31].

In previous work [32], we introduced a novel formal grammar

framework (AMSAG) to compute the d-superoptimal structure. By

d-superoptimal structure, we mean the minimum free energy

(MFE) structure among all sequences v9 with a string edit cost of

at most d from the input sequence v (i.e., v9 such that d(v,v9)#d
for a given edit distance d). Hence, in principle AMSAG can

handle any edit operation (e.g., mutation, insertion, and deletion).

Author Summary

Evolution is a central concept in biology. This phenome-
non can be observed at all levels of the organization of
life—from single molecules to multicellular organisms.
Here, we focus our attention on the implication of
evolution at the level of nucleic acid sequences. In this
context, RNA sequences presumably have been optimized
by evolution to achieve specific functions. These functions
are supported by a structure that can be determined using
thermodynamics-based models and energy minimization
techniques. In this work, we develop efficient algorithms
for predicting energetically favorable mutations and study
their impact on the stability of the structure. We use these
techniques to reveal sequences under evolutionary pres-
sure and design new methods to predict lethal mutations.
Applications of our tool lead to a better understanding of
the mutational process of some key regulatory elements of
two important pathogenic RNA viruses—human immuno-
deficiency virus and hepatitis C virus.

Algorithms for Probing the RNA Mutation Landscape
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However, in addition to the difficulty of estimating good edit costs,

the time required to compute the d-superoptimal structures can be

prohibitive, even for small values of d.

To overcome these problems, in subsequent work [33], we

refined the problem by restricting our sequence search space to k-

mutants (i.e., sequences differing of exactly k mutations with the

input sequence). This simplification allowed us to design and

implement an efficient algorithm to compute the partition function

over all secondary structures of all k -point mutants, with respect to

the Nussinov energy model [34]. (The Nussinov energy model

ascribes an energy of 21 per base pair, while ignoring any

destabilization due to loops. In contrast, the Turner energy model

[13] ascribes experimentally measured, context-dependent free

energies for base stacking, as well as positive, destabilizing free

energies for various types of loops: hairpins, bulges, internal loops

and multiloops. It is well-known that the Nussinov energy model is

too simplistic to permit reasonable applications of the kind

presented in this paper.)

However, due to AMSAG’s generality, it is technically difficult to

incorporate the full Turner energy model [13] into the AMSAG

framework. In order to circumvent these difficulties, we have

designed new multiple recursions, allowing for a technical

breakthrough to develop RNAmutants, a unified algorithm to

compute the minimum free energy structure MFE(k) and partition

function Z(k) over all k-point mutants of a given RNA sequence,

even admitting constraints of two forms—sequence identity con-

straints (certain positions, such as those known to be important for

protein binding are not allowed to mutate), and structural

constraints (certain positions are required to pair or to be unpaired).

RNAmutants uses the state-of-the-art Turner energy model [13]

without dangles. (A dangle is a single-stranded nucleotide, occurring

either 59 or 39 to a base pair. This energy model corresponds to

RNAfold -d 0 in the Vienna RNA Package. In a first

implementation with dangles, the computational overhead caused

by including dangles was so prohibitive that we decided not to

implement them in the final version of RNAmutants.)

Using our partition function, we explore the mutation landscape

of a given RNA sequence by sampling not from the uniform

distribution of k-point mutants, but rather from the Boltzmann

distribution of low energy k-point mutants.

RNAmutants naturally extends the classical RNA secondary

structure model. Instead of considering the set of secondary

structures that can be built on the input sequence alone, as do

mfold, RNAfold, and Sfold, we consider all secondary structures

of all sequences with at most k mutations. In other words, given an

RNA sequence of length n and an integer kmax#n, we compute the

partition function Zk over all secondary structures of all k-point

mutants, for all 0#k#kmax. When k = 0, we obtain McCaskill’s

partition function. The approach is illustrated in Figure 1.

We then extend the range of techniques developed in previous

work [32,33] for mutant RNAs and present a sampling algorithm

allowing us to sample mutant sequences, together with their

sampled secondary structure, from the low energy ensemble. A

novelty of our algorithm is to sample mutations according to their

weight in the Boltzmann ensemble. This result generalizes the

RNA secondary structure sampling algorithm of Ding and

Lawrence [21]. From sampling, we derive a novel method to

predict mutations disrupting the secondary structure of the

original sequence (a.k.a. deleterious mutations).

Here, we provide a technical breakthrough far beyond brute

force computational techniques in the work of Barash [25] and of

Shu et al. [35]. Since there are
n

k

� �
:3k, or roughly nk, many k-

point mutants of an RNA sequence of length n, any method

relying on exhaustive listing of all k-point mutants has only a

limited range of applicability.

We tested our algorithms on six different families of RNA

sequences from Hepatitis C and Human Immunodeficiency viruses

available in the Rfam database [9], as well as the 39 UTR of GB

virus C. We then compared our results with experimental studies

[36–39], to investigate the robustness of RNA structures and the

nature of deleterious mutations. We performed five types of

computational experiments, thus showing the range of possibilities

afforded by RNAmutants. First, we demonstrate the computational

efficiency of RNAmutants by computing the partition function over

all possible mutants (i.e., all k-mutants, for 0#k#n, where n is

sequence length), and by sampling we estimate the probability of

mutation of each nucleotide of the given sequence. Second, we

analyze the robustness of RNA structures to point-wise mutations of

the wild-type sequence, over a collection of 2806 sequences taken

from five different families of RNA elements from hepatitis C virus

(HCV) and human immunodeficiency virus (HIV). From our

analysis of HCV and HIV, we make some observations concerning

possible application to RNA gene discovery and drug design. Third,

using previously published experimental results [39], we evaluate

the accuracy of our predictions of deleterious mutation predictions

for the hepatitis C virus cis-acting replication element (HCV CRE).

We suggest new possible mutation sites which have not been

previously detected or tested. Fourth, we show how our techniques

can be used to identify regions that have been constrained during

evolution to conserve patterns preserving the (functional) structure

of a given RNA. In this fashion we can predict nucleotide sites likely

to be under purifying selective pressure. Taken altogether, our

applications of RNAmutants provide a better identification and

understanding of those critical areas of an RNA secondary

structure. Finally, by scanning of the 39 UTR of the GB RNA

virus C with a fixed size frame, we show how RNAmutants can be

used to perform genome-scale analysis and offer a novel insight

inside the genome structure that cannot be achieved through other

approaches. More specifically, we provide evidence that the

sequence has been optimized to preserve evolutionarily conserved

stem regions from a deleterious effect of pointwise mutations.

Methods

We present in this section the theoretical results achieved in this

paper.

McCaskill’s Partition Function
We build our algorithms upon the seminal McCaskill’s

recursions [20]. Hence, for the benefit of the reader, we give a

brief presentation of McCaskill’s algorithm.

Given RNA nucleotide sequence a1,…,an, we will use the

standard notation H to denote the free energy of a hairpin, I to

denote the free energy of an internal loop (combining the cases of

stacked base pair, bulge, and proper internal loop), while the free

energy for a multiloop containing Nb base pairs and Nu unpaired

bases is given by the affine approximation a+b Nb+c Nu.

For RNA sequence a1,…,an, for all 1#i#j#n, the McCaskill

partition function Z(i,j) is defined by SS e2E(S)/RT, where the sum is

taken over all secondary structures S of a[i, j], E(S) is the free

energy of secondary structure S, R is the universal gas constant,

and I is absolute temperature.

Definition 1 (McCaskill’s partition function)

N Z(i, j): partition function over all secondary structures of a[i, j].

N ZB (i, j): partition function over all secondary structures of a[i, j], which

contain the base pair (i, j).

Algorithms for Probing the RNA Mutation Landscape
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N ZM (i, j): partition function over all secondary structures of a[i, j], subject

to the constraint that a[i, j] is part of a multiloop and has at least one

component.

N ZM1 (i, j): partition function over all secondary structures of a[i,

j], subject to the constraint that a[i, j] is part of a multiloop and

has at exactly one component. Moreover, it is required that i base-

Figure 1. Schematic representation of the k-mutant Boltzmann ensemble sampled by RNAmutants. The input RNA sequence is
represented at the center while the k-neighbourhoods (Here k = 1, 2) are represented by concentric rings. Each individual RNA sequence is
associated with a set of secondary structures that can be mapped onto it (the boxed structures). These comprise the set of structure that have to be
enumerated to compute the Boltzmann partition function).
doi:10.1371/journal.pcbi.1000124.g001
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pair in the interval [i, j]; i.e., (i, r) is a base pair, for some

i,r#j.

Before continuing, we remark here that in our implementation

of McCaskill’s algorithm and its far-reaching extension, RNAmu-
tants, we parse the free energy parameters from tables of mfold
2.3 for all temperatures 0 to 100 in degrees Celsius (for reliable free

energies at temperatures other than 37 uC). RNAmutants also

allows the user to choose to apply the newer mfold 3.0 energy

parameters at 37 uC. Affine parameters a, b, and c for multiloops

are taken from mfold tables as well.

With this, we have the unconstrained partition function

Z i, jð Þ~Z i, j{1ð Þz
Xj{h{1

r~i

Z i, r{1ð Þ:ZB r, jð Þ ð1Þ

The constrained partition function closed by base pair (i, j) is given

by

ZB i, jð Þ~e{H i, jð Þ=RIz
X

iƒ‘ƒrƒj

e{I i,‘,r, jð Þ=RIz

e{ azbð Þ=RI :
Xj{h{2

r~iz1

ZM iz1, r{1ð Þ:ZM1 r, j{1ð Þ
 ! ð2Þ

The multiloop partition function with a single component and

where position ii is required to base-pair in the interval [i, j] is

given by

ZM1 i, jð Þ~
Xj

r~izhz1

ZB i, rð Þ:e{c j{rð Þ=RI ð3Þ

Finally, the multiloop partition function with one or more

components, having no requirement that position i base-pair in

the interval [i, j] is given by

ZM i, jð Þ~
Xj{h{1

r~i

ZM1 r, jð Þ:e{ bzc r{ið Þð Þ=RIz

Xj{h{1

r~izhz1

ZM i, r{1ð Þ:ZM1 r, jð Þ:e{b=RI

ð4Þ

See Figure 2 for a pictorial representation of the recursions of

McCaskill’s (original) algorithm [20]; note that the recursions are

are not quite the same as those given in [15].

Partition Function for Mutant RNA
We now turn to our mutational partition function and show

how to generalize the original McCaskill’s recursions.

In the following, a base pair between nucleotide ai and aj is

denoted by the ordered pair (i, j). When we wish to consider the

nucleotides of this base pair, we write Æx, yæ, where x = ai, y = aj. In

short, round brackets connote nucleotide positions, while angle

brackets connote nucleotides.

Since we consider mutations, we need to introduce energy

parameters for hairpins, stacked base pairs, bulges, and internal

loops, in which nucleotides and sometimes their neighboring

nucleotides are explicitly given. Parameters for multiloops remain

unchanged. This is done in the following definition.

Definition 2 (Generalized free energy parameters)

Let x,x9,y,y9,u,u9,v,v9 denote nucleotides, and ,, ,1, ,2 denote lengths.

N hairpin(x,u,v,y, ,): Free energy of a hairpin closed with the base pair Æx, yæ
and with the nucleotides u and v at the leftmost and rightmost extremities of

the loop of size ,.

N stack(x,u,v,y): Base stacking free energy when the base pair Æx, yæ stacks on

the base pair Æu, væ.

N bulge(x,u,v,y, ,): Free energy of a bulge closed between base pairs Æx, yæ
and Æu, væ and having , nucleotides in the bulge.

N internal(x,x9,u9,u,v,v9,y9,y, ,1, ,2): Free energy of an internal loop closed

between base pairs Æx, yæ, Æu, væ, where x9, y9 (resp. u9, v9) are the

immediate neighbors of (x, y) (resp. u, v) within the loop. The length of the

left (resp. right) loop is ,1 (resp. ,2).

Free energy parameters used in the functions in Definition 2

come from the most current nearest-neighbor model described in

[13].

Our recursions require the following notation. Let N denote the

set of RNA nucleotides A, C, G, and U, and let B denote the set of

Watson–Crick and wobble pairs AU, UA, GC, CG, GU, and UG.

The number of k-point mutants of a given RNA sequence of length

n is clearly equal to

M n, kð Þ~
n

k

� �
:3k provided 0ƒkƒn

0 else

8<
:

We use the Kronecker delta function, defined by

dx, y~
1 if x~y

0 otherwise

�

As well, let sx,y = 12dx,y. As we will see in the following, these

notations allow to keep the structure of the McCaskill algorithm

[20] unchanged and thus generalize its principle. In consequence,

we use the same partition function arrays given in definition 1, but

extend them to keep track of the number of mutations k and the

nucleotides x and y at the extremities of the sequence (i.e., at index

i and j). In other words, we add the fields k, x, and y to the partition

function arrays.

We now begin the recursion equations. Given RNA sequence

a1,…,an, the k-point mutant partition function for interval [i, j]

with nucleotide x at position i (ai = x) and nucleotide y at position j

(aj = y) is given by

Z k,i,j,x,yð Þ~
Xj{h{1

r~i

X
u, v[N

XK

k0~0

Z k0,i,r{1,x,uð Þ:ZB k{k0,r,j,v,yð Þ

z
X
u[N

Z k{saj{1,u,k,j{1,x,u
� � ð5Þ

where K~k{sar{1,u{sar,v. In the sequel, we show how to

compute ZB.

To compute ZB, we need first to compute the partition functions

for hairpins ZH, for stacked base pairs ZS , for bulges ZB, for

internal loops ZI , for multiloops of exactly one component, and

form multiloops of at least one component.

The partition function for a hairpin is given by

ZH k,i,j,x,yð Þ~
X

u, v[N

e{hairpin x,u,v,y,j{i{1ð Þ=RI :M j{i{3,k0ð Þ ð6Þ

where k0~k{saiz1,u{saj{1,v. The partition function for a stacked

base pair is given by

Algorithms for Probing the RNA Mutation Landscape
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ZS k,i,j,x,yð Þ~
X

u, vð Þ[B

e{stack x,u,v,yð Þ=RI :

ZB k{saiz1,u{saj{1,v,iz1,j{1,u,v
� � ð7Þ

The partition function for a bulge is computed by summing over

all possible opening base pairs Æu, væMB at one extremity of the

bulge, over all bulge sizes b, and over the number m of mutations

in the bulge. The location of the bulge (left or right) must be

distinguished. To simplify the notations we let D denote j2i232h.

ZB k,i,j,x,yð Þ~

X
u,vð Þ[B

XD
b~1

Xmin b,kð Þ

m~0

M b, mð Þ:e{bulge x,u,v,y,bð Þ=RI :

ZB k1,izbz1,j{1,u,vð ÞzZB k2,iz1,j{b{1,u,vð Þ
� �

ð8Þ

where k1~k{saizbz1,u{saj{1,v{m and k2~k{saiz1,u{

saj{b{1,v{m. The recursion associated with an internal loop is an

extension of that for bulges. We sum over all possible base pairs Æu,

væMB at the extremity of the internal loop and consider all possible

nucleotides x9, u9, v9, y9 adjacent to the base pairs defining the loop.

All possible lengths for the left (,1) and right (,2) portions of the

internal loop are considered, and we distribute 0#m#min(,1 + ,2,k)

mutations within the loop, the remaining mutations left for the

component closed by (u, v). Since there are special energy

parameters for 161, 162, 261 (and 262) internal loops, these

cases are treated independently; i.e., when x9 = u9 or v9 = y9. For

readability, we suppress these latter loop details, although they are

handled correctly in the program RNAmutants. Denote D9 =

j2i272h. The partition function for internal loops is given by

ZI k,i,j,x,yð Þ~
X
u,vð Þ[B

X
x0,u0 ,v0,y0[N

XD0
‘1~0

XD0{‘1

‘2~0

Xmin ‘1z‘2,kð Þ

m~0

M ‘1z‘2,mð Þ:e{internal x,x0u0,u,v,v0,y0,y,‘1,‘2ð Þ=RI :

ZB k0,iz‘1z3,j{‘2{3,u,vð Þ

ð9Þ

where k0~k{saiz1,x0{saj{1,y0{saiz‘1z2,u0 saj{‘2{2,v0{m.

Figure 2. Feynman diagram of original recursions from McCaskill’s algorithm [20] to compute the partition function and extension
(in red) to RNAmutants recursions. Sequence index are given below the diagram. Shaded half-disks represent secondary structures with at least
one base pair and correspond to recursive calls of the partition function computations. The labels give the type of the recursion. The dashed arc lines
represent base pairs. The extensions brought by RNAmutants to the McCaskill recursions are highlighted in red and address the labeling of the
mutant sequence. The distribution of the mutations is determined using the recursive equations described in the section Partition Function for
Mutant RNA in Methods. Wavy lines represent ensembles of sequences with a fixed number of mutations and an empty secondary structure. While
dashed lines are mutant sequences to be recursively determined.
doi:10.1371/journal.pcbi.1000124.g002
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We now focus on the formation of multiloops, first considering

the computation of ZM1 for multiloops having a single component.

The definition of ZM1(k,i,j,x,y) requires that position i base-pair in

the interval [i, j], so we consider all intermediate positions i,r#j

which might base-pair with i, and distribute the required k

mutations among the component closed by (i, r) and the unpaired

bases in the interval [r+1, j]. This yields

ZM1 k,i,j,x,yð Þ~
Xj

r~izhz1

X
u[N

Xk{sar ,u

k0~0

e{c j{rð Þ=RI :

ZB k0,i,r,x,uð Þ:M j{r,k{k0ð Þ

ð10Þ

Now we consider the partition function ZM (k,i,j,x,y) for multiloops

of one or more components, without the requirement that position

i base-pair. There are two cases to consider. First, we determine an

intermediate position i#r,j for which there is a multiloop with

exactly one component closed by base pair (r, s) for some r,s#j,

and all bases in the intervals [i, r21] and [s+1, j] are unpaired.

This case is handled by a recursive call to ZM1, where we distribute

the k mutations among the intervals [i, r21] and [r, j]. In the

second case, we determine a multiloop of one component closed

by a base pair of the form (r, s) where i,r,s,j and recursively

consider the multiloop on the interval [i, r21]. Again, k many

mutations must be distributed between the left and right multi-

loops. This yields the following

ZM k,i,j,x,yð Þ~

Xj{h{1

r~i

X
u[N

XK1

k1~0

e{ bzc r{ið Þð Þ=RI :ZM1 k1,r,j,u,yð Þ:M r{i,k{k1ð Þ
 !

z
Xj{h{1

r~izhz1

X
u, v[N

XK2

k2~0

e{b=RI :ZM k2,i,r{i,x,uð Þ:ZM1 k{k2,r,j,v,yð Þ
 !ð11Þ

where K1~k{sar,u and K2~k{sar{1,u{sar,v.

We can now formalize the recursion for the constrained

partition function ZB(k,i,j,x,y) closed by base pair (i,j). This function

is defined by

ZB k,i,j,x,yð Þ~ZH k,i,j,x,yð ÞzZI k,i,j,x,yð Þz

e{ azbð Þ=RI
Xj{h{2

r~izi

X
x0, u, v, y0[N

XK

k0~0

 

ZM k0,iz1,r{1,x0,uð Þ:ZM1 K{k0,r,j{1,u,y0ð Þ
� ð12Þ

where K~k{saiz1,x0{sar{1,u{sar,v{saj{1,y0 .

For a given RNA sequence of length n, we define the partition

function for k-point mutants by

Z k,i,jð Þ~
X

x,y[N

Z k,i,j,x,yð Þ

Finally, given a length n RNA sequence, the (complete) partition

function for mutants is given by

Z~
Xn

k~0

Z k,1,nð Þ

Figure 2 illustrates these recursive equations using Feynman

diagrams. Drawing on analogous notions from thermodynamics,

we may consider McCaskill’s partition function [20] to be over the

canonical ensemble of all secondary structures of a given RNA

sequence, while the (complete) mutant partition function is over

the grand canonical ensemble of all secondary structures of all mutants

of the given sequence.

Computational Complexity
The computation of the complete partition partition of the

grand canonical ensemble of a sequence of length n is achieved in

time O(n5) and space O(n3). Compared to the original complexity of

the McCaskill partition function algorithm (O(n3) in time and O(n2)

in space), the increase of the complexity in space can be imputed

to the necessity to add a parameter in the dynamic array to

memorize the exact number of mutations occurring between two

index i and j. While the increase in the time complexity results

from the enumeration of all configurations obtained from the

concatenation of these two arrays in Equation 11.

In practice the enumeration of the eight index at the extremities

of the internal loops in Equation 9 generates a large constant

overweighting this recursion. The growth of the weight of this

phenomena in the time complexity saturates once more than eight

mutations are performed since no more mutation can be

performed in the configuration. However, the constant remains

large and for usual RNA sequence lengths (few hundreds) the time

complexity may be dominated by this term.

Curves illustrating time performances of RNAmutants in

function of the number of mutations performed for a fixed size

input or of the length of the input sequence are given in Figure 3.

Figure 3A shows the time required for each value of k for a 37

nucleotide sequence (Hepatitis C virus stem-loop IV). Statistics

have been computed for the 110 sequences of the Rfam seed of the

Hepatitis C virus stem-loop IV.

Figure 3B shows the time required to compute the complete

partition function over all mutants of a given length N. We

computed the statistics over five random sequences of size

0#N#37. The experimental complexity progressively converges

toward the theoretical bound of O(n5). The gap observed between

the two curves for small values of N can be explained by (i) the

combinatorial explosion of the internal loops configurations

detailed above and (ii) the fact that the maximum length of

internal loops is not reached. (This upper bound is usually set to 30

and is used to justify a time complexity of O(n5).)

Sampling RNA k-Mutants
The sampling procedure follows the classical stochastic

backtracking method introduced by Ding and Lawrence [21].

Complexity improvements using the boustrophedon technique

recently introduced by Ponty [40] may also be adapted, but for

purposes of clarity, such improvements are not discussed here. (In

work of Ding and Lawrence [21], sampling RNA secondary

structures, given the McCaskill partition function, has worst-case

run time O(n2), where n is RNA sequence length. In contrast, Ponty

[40] shows how the boustrophedon sampling method requires run

time O(n log n) in the worst case. In addition, Ponty proves an

average-case run time improvement from O(n !n) to O(n log n).)

The main novelty of our sampling algorithm is that in addition

to a sample secondary structure traditionally output by RNA

sampling algorithms [21,40,41], it also outputs a sample k-mutant

RNA sequence. Indeed, the algorithm will output of a series of

sequences with k mutations, together with secondary structures for

these sequences.

Algorithms for Probing the RNA Mutation Landscape
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Once the partition function is computed and the dynamic

programming tables are filled, we proceed to a stochastic

backtracking using the values stored in the arrays, together with

the equations given in the previous section, to (randomly) decide

which parameters will be used for each recursive calls.

The algorithm uses three functions to sample each basic type of

secondary structure motif (e.g., exterior loop, stem and multiloop).

An overview of the complete procedure is given in Figure 4. The

process starts by randomly choosing the initial parameters x (the

leftmost nucleotide) and y (the rightmost nucleotide) and eventually

k (number of mutations). In contrast, if desired, for fixed value of k,

one can sample precisely the Boltzmann weighted k-point mutants.

The probability of such a configuration is given by

Z k,1,n,x,yð Þ=Z. Then, we sample the exterior loop with the

function sampleExteriorLoop and recursively call the function

sampleStem to build each type of loop (i.e. hairpin, stacked pair,

bulge and internal loop). An exception is for multiloops which use

the function sampleMultiLoop. The recursions end each time when a

hairpin is created inside the function sampleStem.

Using Sampling To Predict Deleterious Mutations
A deleterious mutation in RNA is a nucleotide mutation which

alters the structure or function of the molecule. For example, the

catalytic core of the Tetrahymena thermophila group I intron contains

a well-defined guanosine binding pocket, whose geometry depends

on the secondary and tertiary structure adopted by the intron.

Disruption of binding ability caused by a mutation leading to a

different structure would be termed deleterious.

The prediction of deleterious mutations has recently emerged as

a useful and promising research direction [25,35]. With the

exception of the present paper, all current techniques rely on

exhaustively enumerating all possible pointwise mutants, followed

by the application of available software such as mfold [22],

RNAfold [23], or Sfold [24]. Unlike the approach using

RNAmutants, such approaches are limited and cannot be applied

to long sequences and/or with more than one or two mutations.

Consequently, such traditional approaches could well miss

potentially critical mutations or groups of mutations.

Our method is described as follows. Given a wild-type sequence

and its native structure (by native structure, we mean either the

secondary structure inferred from the X-ray crystal, or in the

absence of crystal structures, the secondary structure inferred by

comparative sequence analysis. Often we take the Rfam consensus

structure as the native structure), we use RNAmutants to sample

an ensemble of 1000 k-point mutant sequences and their

structures, for each value of k, from 0 to the maximum number

of mutation allowed, denoted by kmax. (If not stipulated as part of

the input, then kmax = n.) To ensure the pertinence of our

approach, we first verify that the centroid secondary structure at

level 0 (i.e., no mutation) is close to the native structure. Here, by

centroid structure, not to be confused with Rfam consensus

structure, we mean the secondary structure consisting of those

base pairs, whose frequency of occurrence in the sampled set is

strictly greater than 0.5. Then, at each level 1#k#kmax, we probe

the samples and extract the sequence and structure such that the

base pair associated with the mutation does not belong to the

native structure. Alternative experiments or more flexible criteria

can be adopted, but the latter seemed to give the best compromise

between the number of candidates and the relevance of the

structural deterioration.

We measured the deleterious effect of a base pair in the mutant

structure, which does not occur in the native structure, by using a

value called the break number. The break number is computed as

the number of base pairs that must be removed from the native

structure to prevent the formation of a pseudoknot or base triple, if

we force the presence of the base pair created by the mutation. In

this fashion we quantify the deleterious effect induced by the newly

created base pair. A break number of 0 indicates that the new base

pair is compatible with the native structure and does not create

any pseudoknot or base triple. In lieu of measuring break number,

we could have computed the base pair distance between mutant

and native structure; however, two topologically very similar

Figure 3. Time complexity measured for all Hepatitis C virus (HCV) stem-loop IV (SLIV) sequences from the Rfam seed alignment. (A)
The x-axis represents the maximum number k of mutations, while the y-axis represents the time (in seconds) required by RNAmutants to compute
the partition function Zi for each 0#i#k, and to sample 10 sequences and structures from the corresponding Boltzmann ensemble. Input length of
HCV SLIV sequences is 37 nt. The average time over all 110 seed sequences of HCV SLIV is indicated by tick marks, while error bars represent 61
standard deviation. (B) The x-axis represents the length of the input sequence, while the y-axis represents the time (in seconds) required by
RNAmutants to compute the complete partition function Z for all mutants (i.e., all possible sequence of a given length). A logarithmic scale is used
for both axis. For each length, the average time over five random sequences is indicated by tick marks, while error bars represent 61 standard
deviation. For comparison, a curve y = K?x5 representing the theoretical bound of the time complexity is also plotted.
doi:10.1371/journal.pcbi.1000124.g003
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structures can have large base pair distance. For instance, both of

the structures

GGGGGGGGACCCCCCCC GGGGGGGGACCCCCCCC
((((((.....)))))) .((((((....))))))

are very similar, and both have free energy of 213.80 kcal/mol,

yet their base pair distance is 12. For this reason, we introduce and

use break number.

Deleterious mutations extracted from the sample set are ranked

according to their deleterious effect, i.e., in decreasing order,

sorted by break number. A ranking based on the frequency of

occurrence of the mutation would not have been necessarily a wise

choice. Indeed, this approach would have highlighted those

mutations that lower folding energy, since these would the largest

weight in the Boltzmann ensemble. Deleterious mutations that

break the native structure do not necessarily improve the MFE in

Figure 4. Overview of the sampling procedure. Dashed lines represent the regions which must be recursively sampled. The recursive calls are
indicated by an arrow, and labeled when multiple recursive calls are performed. Wavy lines show the base pairs created duringthe execution of the
algorithm. Dots indicate nucleotides sampled in the function and are never involved in a recursive call. The number of mutations is determined using
the recursive equations of the section Partition Function for Mutant RNA in Methods.
doi:10.1371/journal.pcbi.1000124.g004
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the first steps and hence would appear with a lower frequency in

the sample set.

Results/Discussion

We present here the results of our computational experiments,

compare them with previously published experimental results, and

discuss their significance.

Evaluation of the Nucleotide Mutation Propensity and
Exploration of the Complete Mutation Landscape

We illustrate in this section the computational efficiency of

RNAmutants by exploring the full mutation landscape of a family

of RNA sequences (i.e., we compute the partition function Zk for

all 0#k#n). By sampling, we estimate the probability of mutation

of each nucleotide by evaluating its effect on the thermodynamic

stability of the structure of all k-mutants. Additionally, we compute

the MFE and the free ensemble energy for all k-mutants.

We tested our software on 110 sequences of Hepatitis C virus

stem-loop IV (HCV SLIV), each comprising 37 nucleotides, taken

from the seed alignment of Rfam [9]. For each sequence, we

compute the (complete) partition function over all possible

mutants. In the case of the Hepatitis C virus stem loop IV, this

represents a total of
P37

k~1M 37, kð Þ (< 1.961013) sequences.

Then, for each sequence and each value of 1#k#37, we sample

1,000 k-point mutants and structures. Per HCV SLIV sequence,

this procedure requires about 3 h on a 2.6 GHz AMD 64 byte

processor with 250 Mb. The same operation is of course

impossible using any classical software such as mfold [14] or

RNAfold [15].

We show the results in Figure 5. Figure 5A depicts the mutation

profile, which gives the probability of mutation of a residue at a

level k (i.e., among all k-point mutants). Here, the profile is

displayed as a 37 6 37 matrix with position in the sequence

(sequence index) on the x-axis and the level k on the y-axis. The

probability of mutation observed over samples is represented as a

gray level. A probability of 1 is displayed as a black entry while a

probability of 0 is displayed as white. Below the matrix, we also

give the sequence logo and the consensus secondary structure from

the Rfam seed alignment.

The mutation profile allows us to identify fragile and robust

positions in the sequence. In the case of Hepatitis C virus stem-

loop IV (HCV SLIV), the secondary structure given by the

consensus Rfam seed alignment is a single stem with a tight

hairpin loop, without any structural irregularity such as a bulge or

internal loop. Such a secondary structure for HCV SLIV is

energetically favorable and cannot be drastically improved. Thus,

the mutations will tend to conserve the structure and improve the

base stacking free energies, while preserving the same base-paired

positions. Since the stacking of GC base pairs provides the lowest

stacking free energy, all non-GC base pairs will tend to be

substituted by GC in the first steps. The sequence logo in Figure

5A confirms this intuition, showing that positions with a clear

preference for the nucleotide U, and base-paired with a G in the

Figure 5. Complete mutation landscape of Hepatitis C virus stem-loop IV (HCV SLIV). (A) Mutation profile of HCV SLIV, averaged over all
110 seed sequences from Rfam, which depicts the probability of mutation of a residue at a level k (i.e. among all k-point mutants). This profile
corresponds to a 37637 matrix M = (mx,y), where x denotes the position within the input HCV SLIV sequence (x-axis) and y denotes the mutation level
or number of mutations (y-axis). Mutation frequency computed from sampled structures is represented as a gray level: probability of 1 is depicted as
black while probability of 0 is depicted as white, and values of y increase from bottom to top. Sequence logo and the consensus secondary structure
from the Rfam seed alignment appear below the mutation profile. (B) Superposition of k-superoptimal free energy and k-mutant ensemble free
energy, as computed by RNAmutants; the x-axis represents the number of mutations and the y-axis represents free energy in kcal/mol. Note that
the k-mutant ensemble free energy 2RI ln Zk is lower than the k-superoptimal free energy, a situation analogous to the fact that the ensemble free
energy 2RI?ln Z is lower than the minimum free energy in the output of RNAfold. This may seem paradoxical, unless one realizes that ensemble free
energy is not the same as the mean free energy m =SS E(S)?exp(2E(S)/RI)/Z, the latter which can be computed by the method of [53] or by the classical
statistical mechanics formula m~RI2 L

LI
ln Z [33].

doi:10.1371/journal.pcbi.1000124.g005
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consensus structure are the first to mutate. Subsequently the

nucleotide A tends to be affected, while C and G are relatively well

conserved.

All columns present a strictly monotone gradient of color from

white to black, thus suggesting that preferred mutation sites are

independent and ordered. In addition, the mutation profile shows

an alternation of white columns (groups of residues which start to

mutate with small value of k) and black columns (groups of

residues which mutate late). Here, it appears that base-paired

positions evolve simultaneously (see, for instance, the motif AU at

index 13–14 and UA at index 22–23), presenting examples of

compensatory mutations. This phenomenon reveals a stability in

the base-pairing of the regions involved, certain to be of interest

in RNA design.

In Figure 5B we plot the superposed curves of k-superoptimal

free energies and k-mutant ensemble free energies, as computed by

RNAmutants; the x-axis represents the number of mutations and

the y-axis the energy in kcal/mol. Here, k-superoptimal free energy

is defined as the minimum free energy (MFE) over all mutants

having k mutations [33], while k-mutant ensemble free energy is

defined by 2RI log (Zk). (In work of Waldispühl et al. [32] and

Clote et al. [33], the k-superoptimal structure is defined to be the

MFE structure over all #k-point mutants, while in the present

paper, it is defined to be the MFE structure over all k-point

mutants. The current usage seems more appropriate.) These

results provide a novel insight into preferential mutation sites as

well as structural impacts caused by mutations.

We now analyze the curves of Figure 5B. While the ensemble

free energy curve resembles a parabola, the superoptimal free

energy curve shows three distinct regions (k#5, then 6#k#17, and

18#k), each having a linear appearance. Each region reflects the

phenomenon described above. From k = 0 to k = 5, the GU base

pairs are progressively substituted by GC and the slope is roughly

equal to the difference of the stacking free energies associated with

both base pairs. Then, the region from k = 6 to k = 17 is associated

with the substitution of AU base pairs by GC, which now requires

2 mutations with a smaller gain of energy. Other optimizations,

such as the reordering of nucleotides G and C inside the stem, only

bring minor energy improvements and are then performed in the

last region (18#k) which presents a flat free energy profile. The

characteristic shape of the superoptimal energy curve may be of

interest for characterizing sequences that require an optimal

secondary structure.

Interestingly, the 5-nucleotide hairpin is very well conserved

over sample centroid structures (base pairs with a frequency .0.5

in the sample set—data not shown), even for large values of k.

Indeed, a tetraloop hairpin might have been expected, due to the

energy bonuses assigned to GNRA-tetraloops. This suggests that

evolutionary pressure might have designed the sequence to

prevent any slippage in the formation of the helix.

Since the secondary structure is conserved throughout the

sampled ensemble, the following questions arise. What function is

required by those structural motifs that are preserved in the sampled

ensemble? Why did evolution not select a thermodynamically more stable

secondary structure in such cases? Our ability to compute, for the

first time, the complete mutation landscape for a given RNA

sequence, makes RNAmutants a fundamental tool to address

such questions. By using RNAmutants in computational

experiments, such as those just described, we can determine

putative functionally important motifs and structures that can

be subsequently tested experimentally. RNAmutants could lead

to important breakthroughs in our understanding of the

remarkable combination of robustness and fragility of RNA

structures [42].

Evaluation of the Secondary Structure Robustness
Highlights Differences between Families of RNAs in
Hepatitis C and HIV Viruses

Estimating how robust a secondary structure is to mutations can

be of interest for the characterization of functional RNAs. Here,

by sampling structures, we evaluate the conservation of the Rfam

consensus structure in the k-mutant ensembles, and compare the

results obtained from five different families of RNA from Hepatitis

C and HIV viruses. These computational experiments highlight

major differences between these RNA families and suggest

potential application in RNA design.

The method proposed here first samples 1,000 k-point mutant

sequences and structures for 0#k#5. To quantify robustness, we

compute two notions of distance. First, for each sampled structure

S, we compute the base pair distance between S and the native

secondary structure S0, and thus determine the average over all

sampled structures, called average distance in the following. Second,

we compute the base pair distance between S and the sample

centroid Sc, where the latter is defined to consist of those base pairs

occurring in strictly more than half the sampled structures. (In

work of Ding et al. [43], the sample centroid is called the Boltzmann

centroid, when sampling over all secondary structures using Sfold
[24].) This distance is called the centroid distance in the following.

A small average distance means that most sampled structures

are identical to the native structure (this entails a small centroid

distance as well). A large average distance with a small centroid

distance indicates that the core of the native structure is conserved

in the sampled structures, while most sampled structures differ

from the native structure with respect to a number of base pairs. In

this case, the nonnative base pairs in the samples are not well

conserved over the ensemble of sampled structures, hence do not

appear in the centroid structure. In contrast, a large centroid

distance indicates that the same nonnative base pairs are present

(or missing) in the majority of sampled structures.

To benchmark robustness, we used (seed) multiple sequence

alignments from Rfam [9]. We selected five RNA elements

associated with Hepatitis C and human immunodeficiency viruses,

each of which is reasonably well predicted by the nearest

neighbors energy model, using RNAmutants with 0 mutations,

or (equivalently) mfold [22] or RNAfold [23] without dangles.

The resulting dataset contains a total of 2,806 sequences. By native

secondary structure, we mean the Rfam consensus structure from

the multiple sequence alignment. Results are given in Table 1.

The structures sampled from the RNA elements of Hepatitis C

virus are close to the native structure, while those of human

immunodeficiency virus have more base pairs than the native

structure. Nevertheless, the centroid structure for samples

generated by RNAmutants is reasonably close to the native

structure; i.e., centroid distance for RNA elements from HIV is

small.

The Hepatitis C virus stem-loop IV (HCV SLIV) is accurately

predicted by minimum free energy methods, i.e., Zuker algorithm

[14], and despite its small size (35 nucleotides) and large number of

base pairs (15), HCV SLIV is also very well conserved in the

ensemble of mutants generated by RNAmutants. These results

suggest that the RNA nucleotide sequence of HCV SLIV has been

thermodynamically optimized and is robust with respect to

mutations. In contrast, the secondary structure of sampled mutants

of Hepatitis C virus cis-acting replication element (HCV CRE) is

increasingly divergent as the number of mutations increases. The

secondary structure of wild-type HCV CRE sequence is very well

predicted by energy minimization methods. The centroid structure

of samples generated by RNAmutants, for one to three mutations,

changes little and remains very close to the native structure, even if
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most of the sampled structures have more base pairs than that of

the native structure. However, when four or more mutations are

allowed, another structure, significantly different from the native

one, emerges from the ensemble generated by RNAmutants. This

result suggests that HCV CRE has been optimized to resist only a

few mutations. This remark suggests the use of RNAmutants to

detect those sequences whose structure is locally optimized.

At level 0 (no mutation allowed), in spite of a higher average

distance, the centroid structure of the ensemble of samples of HIV

RNA elements remains close to the native structure. Interestingly,

average distance remains approximately constant when the

number of mutations increases. This number even decreases for

human immunodeficiency virus primer binding site (HIV PBS).

Here again, analysis of mutants generated by RNAmutants seems

to confirm the optimization of these sequences to support some

functional secondary structure. We note that with similar

characteristics (length and number of base pairs) the human

immunodeficiency virus frameshit signal (HIV FE) structure

appears to be more robust with respect to mutations than is the

Hepatitis C virus cis-acting replication element (HCV CRE). The

centroid structure of human immunodeficiency virus primer

binding site (HIV PBS) seems well conserved. In analogy to the

phenomenon observed for the Hepatitis C virus cis-acting

replication element (HIV CRE), the average distance increase

suggests that an alternate structure will emerge as the number of

mutations increases. Summarizing, we feel that the combination of

average and centroid distance measurements is a reasonable tool

to estimate the robustness of a structure under mutational

variation of a sequence.

Remarkably, the average and centroid distances are very well

conserved in human immunodeficiency virus gag stem loop 3

(HIV GSL3), in spite of the huge hairpin loop (69 nucleotides) and

very small stem (8 base pairs). One must bear in mind that Rfam

consensus structures indicate only those base pairs that are inferred

by covariation. It follows that many base pairs may not appear in

the centroid structure, such as the 69-nt hairpin. Each of the 8

base pairs in HIV GSL3 is a GC pair, which means that this stem

region is not optimized by RNAmutants for the small numbers of

mutations k. This supports the idea that the mutation robustness of

the hairpin loop sequence is optimized.

Prediction of deleterious mutations in Hepatitis C virus
cis-acting replication element

In this section, we predict deleterious mutations in Hepatitis C

virus cis-acting replication element using the method described in

section Using sampling to predict deleterious mutations in

Methods. We confirm our results by comparing our predictions

with previously published experimental results [39]. Moreover,

our computational experiments suggest new deleterious mutations

which have not been predicted or tested before.

We performed computational experiments with Hepatitis C

virus cis-acting replication element (HCV CRE), known to be

essential for viral replication. Figure 6 depicts the secondary

structure of HCV CRE. To validate our predictive results, we

used mutagenesis data from experiments of You et al. [39]. To

simplify exposition and enhance clarity of results, we focus our

investigation on the prediction of single point deleterious

mutations (i.e., kmax = 1), although of course RNAmutants can

be used to infer deleterious noncontiguous groups of mutation

sites. Results are given in Figure 7. The top line gives the native

secondary structure of the RNA element, while the following lines

contain 1-point mutants sampled by RNAmutants. For each

pointwise mutant, we display the base pair associated with the

mutation, the mutation type (index and nucleotide substitution),

the index and the type of the nucleotide that can be associated

with the concerned base pair, the frequency of this mutation and

the break number.

Here, the HCV CRE sequence has a length of 47 nucleotides,

which is slightly shorter than those given in the Rfam multiple

alignment. Also, we note a shift of 53 positions between the index

of our sequence and those used in [39].

Our results predict the mutation U33G (U86G according to the

notation used in [39]) to be the most deleterious. This prediction is

confirmed by [39]. In this study, You et al. observed that the

mutant C84A/U86G is not viable, while C84A/U86A is still

functional. Additionally, it was observed [39] that the mutation

U86G is responsible for the alteration of the upper helix

(subsequence from nucleotide 8 to 31 in Figure 7) and hence

deleterious. However, their results also showed that the single

point mutation U86G is still viable, suggesting that this mutation

must be supported by C84A to be deleterious. In fact, C84A is

suspected to alter the stability of the upper helix, amplifying the

ability of U86G to disrupt the structure. The slight overestimation

of the deleterious potential of U86G is due to the quality of the

energy model used by RNAmutants. Without dangles, the centroid

structure is effectively altered by U86G, while with dangles, the

mutation C84A is required to disrupt the upper helix (data not

shown). The difference is then due to the absence of dangles in the

energy model of RNAmutants. However, the deleterious effect of

U86G is correctly detected.

The non-viability of other mutants studied in [39] (U71C,

C74U, A75U/G76C/C77U, C77U, C90A/A92G, A92G, and

C90A) is not attributed to a significant alteration of the native

secondary structure. RNAmutants predicts a few other deleterious

mutations (with a lower impact)—these are discussed in the

following.

The next four deleterious mutations can be grouped in a cluster

involving the base pairs (11, 35) and (11, 36). When looking at the

348 sequences in the Rfam seed alignment, it appears that 30

sequences have the mutation C36U, 3 the mutation C35U and 1

the mutation A11G. EMBL accession numbers for the Rfam

sequences and the mutations found are shown in Table 2.

The 33 sequences mutating at index 35 and 36 have also several

other significant mutations. Most of these mutations are similar.

Assuming that these mutants are viable, this suggests that some of

Table 1. Base pair distance between the sampled and native
structures for cis-regulatory elements from Hepatitis C virus
and HIV

RNA #seq length #bp 0 1 2 3 4 5

HCV CRE 52 51.0 14 1.8/0 2.7/0 6.1/2 8.6/1 10.8/9 12.4/10

HCV SLIV 110 35.0 15 0.3/2 0.3/1 0.3/1 0.3/1 0.3/1 0.3/1

HIV PBS 388 94.8 17 12.3/4 14.9/5 16.7/1 17.6/1 18.3/1 -

HIV FE 853 51.9 10 7.6/1 7.7/2 7.7/2 7.6/2 7.4/2 7.2/2

HIV GSL3 1403 81.1 8 9.3/0 9.1/0 8.9/0 9.2/0 9.6/0 -

Native structure is here taken as the Rfam consensus structure from the seed
alignments of these elements of HCV and HIV. Two measures are given. The
average distance represents the average base pair distance between sampled
structures and the native secondary structure S0. The centroid represents the
average base pair distance between sampled structures and the sample
centroid Sc, where the latter is defined to consist of those base pairs occurring
in strictly more than half the sampled structures. The number of sequences in
the Rfam seed alignment, the average length and the number of basepairs in
the native structure are given before the average and centroid distance values.
doi:10.1371/journal.pcbi.1000124.t001

Algorithms for Probing the RNA Mutation Landscape

PLoS Computational Biology | www.ploscompbiol.org 12 August 2008 | Volume 4 | Issue 8 | e1000124



these additional mutations offset the deleterious effect of C35G or

C36G. A complete analysis of all these sequences would be too

demanding, but we can illustrate this phenomenon by looking at

the 3 sequences associated with C35G.

Three mutations (A15U, C25G, and A39G) are found

simultaneously in all occurrences of C35U. The mutations

C25G and A15U are located at the extremities of the hairpin

loop in the native structure, and more specifically, C25G creates a

Figure 6. Rfam [9] consensus secondary structure of Hepatitis C cis-acting replication element (HCV CRE) and the trans-activation
response hairpin of the human immunodeficiency virus (HIV1 TAR).
doi:10.1371/journal.pcbi.1000124.g006

Figure 7. Deleterious mutations identified in the ensemble sampled by RNAmutants on the input of 47 nt Hepatitis C virus cis-
acting replication element (HCV CRE), known to be essential for viral replication. Pointwise mutants are listed by decreasing order of break
number (a measure of structural distortion, defined as the number of native base pairs that must be removed for given structure to be compatible
with the wild type structure). For each secondary structure listed, we display the base pair associated with the mutation, the mutation type (index
and nucleotide substitution), the index and type of the nucleotide that can be associated with the concerned base pair, the frequency of this
mutation and the break number.
doi:10.1371/journal.pcbi.1000124.g007
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potential base pair with nucleotide U at index 14 (and potentially

also with nucleotide U at index 15). We conclude that these two

mutations tend to stabilize the upper helix and counterbalance the

deleterious effect of C35G. The role of A39G remains more

obscure. In [39], You et al. observed that this mutation (A92G in

the paper) is lethal. However, structure probing did not reveal any

irregularity in the cleavage product of this RNA, suggesting that

the sequence of the bulge is affected rather than the global

structure. A potential structural use of this mutation would be to

prevent the creation of base pairs supporting the disruption of the

upper helix through C35G. An analysis using the thermodynamic

model with RNAmutants tends to support this hypothesis.

An interesting case is for A11G which occurs, in a single

sequence (AF054264.1:326–376) from the Rfam seed alignment,

together with A1G. This has been reported as one of the clones

used in [44]. From this study, it remains unclear how replication is

affected by these mutations; however, the possibility of a

deleterious effect of A11G is potentiality (indirectly) supported

by this work.

The following group of predicted deleterious mutations involves

the nucleotide C at position 29, either directly (C29G) or indirectly

through a base pair (C19G, U16G, C12G). If no specific analysis

has been performed for this mutation, it appears that C29G can be

found in two nonviable mutants (5BSL3.2 mutA and 5BSL3.2

Table 2. Mutants with mutations A11G, C35U, and C36U in the full alignment of the 47 nt Hepatitis C virus cis-acting replication
(HCV CRE) element

A11G

AF054264.1/326-376 (A1G),(A11G)

C35U

D14853.1/9264-9314 (A15U),(C25G),(G32A),(C35U),(A39G)

D16190.1/986-1036 (A15U),(C25G),(G32A),(C35U),(A39G),(C45U)

D16192.1/986-1036 (G2A),(A15U),(C25G),(C35U),(A39G),(C45U)

C36U

D87352.1/983-1033 (A1G),(A9G),(A13G),(C25G),(U26C),(U30C),(U33G),(C36U)

D37862.1/983-1033 (A9G),(A13G),(A15U),(C25G),(U26C),(U30C),(U33G),(C36U),(U46A)

D49769.1/983-1033 (A1G),(A9C),(C25G),(U30G),(U33A),(C36U)

D37859.1/983-1033 (A9G),(A17U),(C25G),(U30C),(G32A),(U33G),(C36U),(A39G),(U46A)

D31973.1/986-1036 (A1G),(A9C),(C25G),(U30G),(U33A),(C36U),(U46C)

D87358.1/983-1033 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

D87356.1/983-1033 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(C45U),(U46C)

D84263.2/9267-9317 (A9G),(A17U),(C25G),(U30C),(U33G),(C36U),(A39G),(U46A)

AY973865.1/1663-1713 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

D86543.1/983-1033 (A1G),(A9G),(A15U),(A20G),(C25A),(U30C),(U33C),(C36U)

D87360.1/983-1033 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

AY878650.1/9259-9309 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

D87354.1/983-1033 (A9G),(A17U),(C25G),(U30C),(U33G),(C36U),(A39G),(U46A)

D49777.1/983-1033 (A1G),(A9C),(C25G),(U30G),(U33A),(C36U)

D84264.2/9276-9326 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

D87357.1/983-1033 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

D38079.1/983-1033 (A9G),(A17U),(C25G),(U30C),(G32A),(U33G),(C36U),(A39G),(U46A)

D84398.1/983-1033 (A1G),(A9C),(C25G),(U30G),(U33A),(C36U),(U46C)

AY859526.1/9242-9292 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

D87355.1/983-1033 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

AY973866.1/1663-1713 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

D37855.1/983-1033 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(C45U),(U46C)

D84262.2/9289-9339 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(C45U),(U46C)

D84265.2/9273-9323 (A1G),(A9G),(A13G),(C25G),(U26C),(U30C),(U33G),(C36U)

D50409.1/9341-9391 (A1G),(A9C),(C25G),(U30G),(U33A),(C36U),(A39G),(U46C)

D87353.1/983-1033 (A1G),(A9G),(A13G),(C25G),(U26C),(U30C),(U33G),(C36U)

D87359.1/983-1033 (A9G),(A15U),(C25G),(U30C),(U33G),(C36U),(U46A)

D87363.1/983-1033 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

D37860.1/983-1033 (A9G),(A17U),(C25G),(U30C),(G32A),(U33G),(C36U),(A39G),(U46A)

D87362.1/983-1033 (A1G),(G2A),(A9G),(A15U),(C25G),(U30C),(G32A),(U33G),(C36U),(C45U),(U46C)

See text for a comparison of this table produced by RNAmutants with the experimental mutagenesis study of You et al. [39].
doi:10.1371/journal.pcbi.1000124.t002
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mutB) in [39]. The deleterious nature of C29G has not been

validated, but the destabilization effect of this mutation in the

upper helix is suggestive.

Other minor mutations which do not disrupt the native

structure are identified. With a break number of 0, these mutations

cannot be considered as deleterious. However, some of them have

been detected to alter replication (C74U and C77U or C21U and

C24U in our notation) in [39]. One potential explanation

suggested by our results is that the local structure of the hairpin

loop is affected, rather than that of the global secondary structure.

Scan of HIV trans-activation response reveals regions
under evolutionary pressure

In this section, we show how RNAmutants can be used to detect

regions of the sequence which have been optimized during

evolution. We restrict mutations to a 3-nucleotide frame and slide

the latter on sequences. The frames associated with an alteration

of the functional structure in 3-mutants are most likely optimized

to preserve the structure, and are thus identify under a purifying

selective pressure. Our results reveal critical regions in the trans-

activation response element of the human immunodeficiency virus

and suggest applications for RNA drug design.

For this study, we use sequences of human immunodeficiency

virus trans-activation response (HIV TAR) from the HIV-1

genome. The Rfam seed alignment contains 426 sequences of

length 57 nt with an average identity of 91%. This RNA element

is critical for the trans-activation of the viral protomer and virus

replication. The TAR hairpin acts as a binding site for the Tat

protein and this interaction stimulates the activity of the long

terminal repeat promoter. Previous studies have shown that the

3 nt bulge from index 22 to 24 is essential for binding [36].

Moreover, the 3D structure of the 6 nt apical loop (index 29 to 34)

is indispensable for trans-activation of the viral protomer and virus

replication [37]. This RNA element is a potentially important drug

target [38]. Its consensus secondary structure is shown in Figure 6.

We are interested in detecting regions which have been selected

during evolution to preserve a specific pattern, for structural or

functional purposes. For each sequence in the dataset, we slide an

open frame and allow mutations in this region only. Then, we

sample structures from this model, and measure the centroid and

average distances.

Here, the size of the open frame is chosen to fit the length of the

bulge (i.e., three nucleotides). Larger frame sizes would result in an

attenuation of the signal (data not shown). For each starting

position of the frame (1 to 55), we compute the mean centroid

distance and mean average distance for each sequence in the dataset.

These curves are displayed in Figure 8. The secondary structure

annotation is given at the bottom of each of these three graphs

(one for each number of mutations in the open frame).

The secondary structure can be decomposed into four distinct

patterns which are: (1) a pairing (denoted S1 for stem 1) between

regions (17,21) and (39,43), (2) a bulge at index (22,24), (3) another

pairing (denoted S2 for stem 2) between regions (25,28) and

(35,38), and (3) a hairpin at index (29,34).

We look first at the curves with a single mutation inside the

frame—see Figure 8A. A clear signal appears at index 35–36 and

40–41: Both curves (average and centroid) show a clear peak at

these positions. The regions associated with this signal correspond

exactly to the 39-end regions involved in the two stems S1 and S2.

We observe a mirror effect when the frame matches the 59-end

regions; two other peaks emerge at index 18 and 25–26.

Interestingly, the magnitude of these two peaks is significantly

lower than those of the first ones, indicating that the 39 regions

have been potentially under a higher selective pressure.

When two mutations are allowed inside the frame (see Figure

8B), the phenomenon observed above is amplified. The asymme-

try between the two paired regions of S2 is almost cancelled, but

not for those of S1. In addition, a clear signal now appears when

the frame matches the bulge. It may also be interpreted as a signal

indicating that this region has been constrained along evolution.

Finally, when three mutations are performed inside the frame

(see Figure 8C), the signals mentioned before can still be identified,

but tend to be washed out by the noise. Indeed, when all positions

in the frame mutate, the sequence is so denatured that the

conservation of the secondary structure would require an

optimization of the surrounding sequence. This remark is related

to the observation given below for the hairpin region.

Additionally, two clear peaks now appear when the frame

matches the paired region of the stem S2. This may be a

correction of the weakness of the signal observed in the previous

graph (Figure 8B). It also confirms that both these regions may

have been optimized to base-pair.

For these three graphs, it is remarkable to notice that mutations

inside the subsequence of the hairpin never really affect the global

structure of the RNA element. It may be suggested that the

sequence outside the hairpin has been optimized to prohibit any

stable interaction with the central region in order to stabilize the

secondary structure and facilitate the formation of the complex 3D

motifs observed in [37].

According to these observations, four sequence optimizations

may have been performed for these sequences. The first two are

for the regions paired to each other through the stem S1 and S2.

This may be justified by the need for these sequences to pair to

each other in order to stabilize the bulge and the hairpin lying

between them. It also appears that the sequence of the bulge

cannot tolerate two mutations. Our analysis suggests that

evolutionary pressure has selected these nucleotides to facilitate

the formation of the bulge required for the binding. Finally, the

global structure does not seem to be affected by mutations inside

the hairpin loop. As it has been said before, this suggests an

optimization of the surrounding sequence to stabilize this loop and

allow the formation of a complex 3D motif inside the apical loop.

These results suggest that a method combining RNA binding

predictors [45,46] and secondary structure prediction software

[14,15] with RNAmutants could be a successful and promising

approach for the prediction and design of functional RNAs.

Scan of the 39 UTR of GB virus C reveals how evolution shaped

the sequence. We conclude the results section with a series of

computational experiments on the 39 UTR of the GB virus C

(GBV-C). By scanning this RNA sequence, we show how

RNAmutants can provide evidence that different regions have

Table 3. Distribution of the mutations inside versus outside
the evolutionarily conserved RNA stem loops SLI to SLVII
corresponding to the profiles of Figure 12

Frame size 50 nt 100 nt 150 nt

Location w.r.t. RNA regions In Out In Out In Out

All mutations 48% 52% 39% 61% 38% 62%

In a base pair of size $25 nt 41% 59% 27% 73% 24% 76%

The first row presents statistics computed for all mutations, while the second
row presents statistics for mutations involved in a base pair (i, j) of length
|j2i|$25.
doi:10.1371/journal.pcbi.1000124.t003
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been optimized to conserve RNA secondary structure even in the

presence of pointwise mutations. In particular, we show that the

sequence has been designed to prevent deleterious effects of

mutations on the evolutionarily conserved stem-loops. This work

suggests potential large-scale applications of RNAmutants for

genome-wide scanning purposes.

In recent years the structure of RNA viruses in the family of

Flaviviridae has received particular attention [47]. Here, we focus

on the 39 UTR of the Hepatitis G virus (GB virus), a single-

stranded positive-strand RNA virus with GenBank/EMBL

accession number AB013500, whose secondary structure has been

determined using both thermodynamics and evolutionarily

information [48]. This 311 nt sequence has the advantage of

containing a balanced number of nucleotides located within regions

having an evolutionarily conserved secondary structure (167 nt), as

well as outside of any region having conserved secondary structure

(144 nt). The conserved secondary structure is composed of seven

stem-loops numbered from SLI to SLVII.

We aim to study how evolution shaped this sequence, and to

provide some evidence that certain regions have been thermody-

namically optimized. In a manner similar to that of Vienna

Package program RNAplfold [49], we scanned the 39 UTR

GBV-C RNA sequence with a moving window of fixed size, and

analyzed the distribution of mutations and base pairs in k-mutant

ensembles of each window.

Sliding a window of size L over this sequence, we extracted

3112L+1 subsequences and ran RNAmutants to sample mutated

sequences and their secondary structures. Here, we use the

following notation. Let v denote the complete sequence of the 39

UTR of GBV-C (length N = 311), and let Wi
L denote the

subsequence of size L starting at index i. Let SWi
L(k,ns) denote

the set of ns many k-mutant sequences and secondary structures

Figure 8. Scan of 57 nt human immunodeficiency virus trans-activation response elements (HIV-1 TAR) from the HIV-1 genome. By
sliding a window forward, for each 3 nt window in the Rfam seed alignment of HIV-1 TAR elements, we allow mutations only within this window, and
subsequently compute the centroid and average distances. The starting position of the 3 nt window is given on the x-axis and the centroid (resp.
average) distance is given on the y-axis. (See Results/Discussion for the definition of centroid and average distance.) Each curve shows the results
computed with a fixed number of mutations in the frame: 1 mutation (A), 2 mutations (B), and 3 mutations (C).
doi:10.1371/journal.pcbi.1000124.g008
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computed from Wi
L. The full set of sequences scanned by

RNAmutants is denoted by WL~ W L
i 1ƒiƒN{Lz1j

� �
, and

the sample set of ns k-mutants and structures computed fromWL is

denoted SWL k,nsð Þ.
The probability of a base pair (i, j) in SWL k,nsð Þ is defined as the

number of occurrences of (i, j) in the secondary structure samples

divided by the number of samples computed for a sequence that

can potentially form a base pair between indices i and j (e.g., Wk
L

such that j2i,L). Formally

pL
k i,jð Þ~

# i,jð Þ[SWL k,nsð Þ
� �

ns
:# W L

k [W
L kƒivjvkzLj

� � ð13Þ

This measure, motivated by that from the Vienna Package

program RNAplfold [49], averages the frequency of occurrence

of base pair (i, j) in the ensemble of k-point mutants, over all size L

windows containing both i, j.

For this set of computational experiments we chose a frame size

L = 50 and chose the number ns of sampled k-mutant sequences

and structures to be 1000, for each k from 0 to 8. These values

were chosen to provide a good balance between the computation

speed (a bounded, yet somewhat deep search in mutation depth)

and maximal range j2i,L of base pair (i, j). For comparison, the

default value for window size used in RNAplfold is 70.

The first analysis aims to estimate the density of base pairs in the

different regions—regions of evolutionarily conserved stems,

denoted by stem region or inside region, and regions having no

evolutionarily conserved stems, denoted by non-stem region or outside

region. We clustered the base pair density values in five cases

according to the location of each index i, j of base pair (i, j): (1) i

and j are two indices belonging to the same stem region, (2) i and j

are in two different stem regions, (3) i is in a stem region and j in a

non-stem region, (4) i is in a stem region and j is in a nonstem

region, and (5) i and j do not belong to any stem region. Then, we

plotted these base pair density values with respect to the number of

mutations in samples. The results computed with the parameters

given above (L = 50, ns = 100, and 0#k#8) are shown in Figure

9. Note that the count done in the denominator of Equation 13

respects the same classification constraints and ensures normali-

zation of the estimator values.

The figure shows very distinct behavior for base pairs occurring

inside the same stem region (1) versus other possibilities (2–5). As

expected when no mutation is allowed (i.e., k = 0), he base pair

density appears to be higher for base pairs in stem regions. This

means that these regions are more structured than the others.

(This argument does not suggest that nonstem regions are not

structured but only that they are locally less optimized.) However,

when the number of mutations increases, all curves tend to reach

an equilibrium, with approximately equal density for each of the

five cases. While density for base pairs in the same stem, case 1,

decreases with an increasing number of mutations, density for the

other four cases increases. This phenomenon suggests that

selective pressure has been applied to ensure robustness of (local)

structure in the 39 UTR GBV-C RNA with respect to mutation.

Putatively, an inflection in the curve of stem regions appears at

roughly 4 mutations in the figure. This remark will take its

importance later in the discussion.

Figure 9. Base pair density in k-mutants (0#k#8). The x-axis represents the number of mutations, while the y-axis represents the (normalized)
frequency of base pairs (i, j) (i,j) over all windows containing both extremities i, j. Results are classified into five different instances: (1) i and j belong
to the same stem region, (2) i and j are in two different stem regions, (3) i is in a stem region and j is not, (4) j is in a stem region and j is not, and (5)
neither i nor j belong to any stem region.
doi:10.1371/journal.pcbi.1000124.g009
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The next study aims to analyze the base pairing preferences of

mutations regarding their location in the sequence. Using the same

set of computational experiments, we investigated the distribution

of base pairs (i, j) involving a mutation at one of their extremities

(i.e., index i or j mutates). We computed the base pair probability

mk
L(i,j) restricted to these specific base pairs and normalized the

results (i.e., we divided the base pair density by the number of

mutations allowed in the sample set)

mL
k i,jð Þ~ 1

k
:# i,jð Þ[SWL k,nsð Þ i or j mutatej
� �

ns
:# W L

k [WL kƒivjvkzLj
� � ð14Þ

Then, we clustered the results according to the same classification

of base pairs as above and computed the base pair density in each

cluster. Results are shown in Figure 10. For clarity of discussion, in

the left panel of this figure we plotted the curves associated with a

mutation occurring in the stem region (Figure 10A), while the right

panel displays the curves associated with a mutation occurring

outside the stem region (Figure 10B).

Figure 10A reveals that in the close neighborhood (small

number of mutations) of the wild sequence, the mutations

occurring in a stem region base-pair preferentially inside the

same stem region. An increase in the number of mutations has

very different consequences on the density of base pairs in the

different clusters. In agreement with our previous observations, the

number of mutations created inside the same stem region

decreases. In contrast, if the densities increase in the two other

cases, we observe a clear preference for creating a base pair

outside any other stem region. Indeed, while the behavior of the

two curves (base-pairing in another distinct stem region, and

outside) have similar behavior for small number of mutations, it

turns out that roughly beyond 4 mutations, more mutations tend

to base-pair outside and ‘‘protect’’ as much as possible the

cleavage between the stem regions.

Symmetrically, when few mutations are performed outside the

stem regions (cf. Figure 10B), we observe a clear preference for

base pairings in the same region, thus preserving the stems from

destabilization by mutations occurring in the nonstem regions.

However, in agreement with previous observations, larger

numbers of mutations tend to progressively equilibrate the

distributions by increasing the base pair density of mutations base

pairing in stem regions. This observation suggests that non-stem

regions have been constrained to prevent mutations from

interacting with stems to disrupt the structure.

We now investigate the distribution of mutations that increase

the base pairing probability (called base pair increasing mutations),

versus those that decrease base pairing probability (called base pair

decreasing mutations). To evaluate the evolution of these probabilities

from one level of mutation k to the next k+1, we compare the local

base pairing probabilities pk (i, j) computed from SW50 k,1000ð Þ
(e.g., sample set with k mutations) with those computed from

SW50 kz1,1000ð Þ. Then, we estimate the difference pk+1 (i, j)2pk

(i, j), subsequently called the differential probability. We show the

corresponding curves in Figure 11, where the results have been

once again classified into five clusters.

The distribution of base pair increasing mutations (cf. Figure

11A) presents some interesting features. Indeed, when a single

mutation is performed, we first observe a tendency to stabilize the

structures already existing in and out the stem regions, thus

conserving the existing structure of the full 39 UTR GBV-C RNA

sequence. However, afterward, an increased number of mutations

tends to be more favorable to mutations strengthening the base

pairs between a stem and a non-stem region. Simultaneously the

probability of mutations favoring base pairs inside stem regions

increases to a lesser extent. Interestingly, if the probability of base

pair increasing mutations for bases occurring between two distinct

stem regions seems also to increase for small values of k, it turns

out that these probabilities tend to remain identical afterwards

(e.g., the differential values decrease).

The case of base pair decreasing mutations is in fact much more

interesting since essentially only base pairs inside stem regions

seem significantly affected by such mutations, although single

mutations appear not to have any significant effect (differential

probability close to zero). The two next levels (K = 2, 3) present a

remarkable peak which completely collapses for a further

increasing number of mutations (k$4). The negative values

indicate that the probability of base pair decreasing mutations

Figure 10. Relative propensity of mutations occurring inside (A) and outside (B) of stem regions to base pair inside or outside the
same region. The statistics have been computed using a scanning window of size 50 with up to 8 mutations. When a mutation occurs in a stem
region 10(A), we distinguish three cases: when the base pair is created inside the same stem region, when the base pair links another stem region and
when the mutation base pairs outside any stem regions. In the case of a mutation happening outside the stem regions 10(B), we only need to
distinguish whether the base pair links a stem region or not.
doi:10.1371/journal.pcbi.1000124.g010
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inside the stem are decreasing, and thus that stabilization occurs

once a few mutations have been occurred to locally reorganize the

structure. This clear signal could prove useful in detecting

structured regions of a genome, and possibly help identify

subsequences under evolutionary pressure. Interestingly, the

change of sign of the differential base pairing probability in the

same stem region happens for 4 mutations, which correlates with

the putative inflection point in Figure 9 for the base pair density

curve for the same cluster of base pairs.

Finally, we study the distribution of mutations in the complete

39 UTR GBV-C RNA sequence. In complement to the previous

experiments performed with a frame size of 50 nucleotides and

thus restricted to local considerations, we now also provide an

insight on the influence of mutations, sampled from the Boltzmann

Figure 11. Differential probability of mutation associated with a base pair increasing mutation (A) or a base pair decreasing
mutation (B). The x-axis represents the number k of mutations, while the y-axis represents the differential probability pk+1 (i, j)2pk (i, j).
doi:10.1371/journal.pcbi.1000124.g011

Figure 12. Average mutation rates computed from a scan of the 39 UTR of GB virus C (GBV-C) with frames of 50 (A and B), 100 (C
and D), and 150 nucleotides (E and F). Evolutionarily conserved stem loops identified in [48] are indicated with shaded regions. Profiles with no
restriction on the length j2i of the base pair (i, j) associated with the mutations are given in the left column, while those for medium and long range
base pairing (length $25 nt) are shown in the right column.
doi:10.1371/journal.pcbi.1000124.g012
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Figure 13. Probability of mutations occurring in a base pair (i, j), whose length j2i exceeds a certain threshold. The x-axis represents
the threshold value for base pair length. Results are reported for frame sizes of 50 (A), 100 (B), and 150 (C). The fractions of mutations satisfying the
criteria in the sample set are given using the dashed line.
doi:10.1371/journal.pcbi.1000124.g013
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k-point mutant ensemble, on the medium and long range base

pairing by including statistics computed with larger frame sizes.

Using the equation 14, we estimate the mutation base pair

probability in the sample set and derive the average mutation

probability from these values.

The average mutation probability at index i in a sample set of k-point

mutants is defined as the sum of the mutation base pair

probabilities mk
L(i,j) (i.e., mk

L(i) =Sj mk
L(i,j)). Additionally, in order

to investigate the influence of medium and long range base pairing

on the mutation distribution, we also computed the values of mk
L(i)

restricted to base pairs (i, j) with |j2i|$25. Mutation profiles

computed using this procedure are given in Figure 12.

The distribution of the mutations inside and outside stem

regions is evaluated as the sum of the mutation probabilities mk
L(i)

in both regions normalized by the number of nucleotides in these

regions (166 in stem regions and 144 outside). The numerical

results given in Table 3 summarize these statistics for the general

case as well as the case of mutations involved in a medium to long

range base pair, i.e., base pairs (i, j) whose extremities i, j are at a

distance of at least 25 nucleotides. Average mutation rates for such

medium to long range base pairs are depicted in Figure 12.

Since the threshold used to filter short range base pairs may

seem arbitrary, for the sake of clarity of discussion, we include

graphs representing the values obtained for all possible threshold

values together with the ratio of samples satisfying the cut-off in

the sample set. Figure 13 illustrates these statistics. The x-axis

represents the minimal base pair length while the y-coordinates

give the fraction of mutations in non-stem regions (plain line) and

the fraction of samples satisfying the threshold (dashed line).

In this study, we used frame sizes of L = 50, 100, and 150

nucleotides and computed 1,000 samples with k = 1 mutation

(results with 2 mutations were also computed and produced the

same results). Frame sizes larger than 150 nucleotides have not

been considered since only few base pairs distanced at more than

150 nt appeared in our sample sets. (See Figure 13. As shown in

the supplementary Figure 1, the RNAfold dotplots of the full

sequence confirmed this observation.)

The distribution of mutations between structured (stem regions)

and nonstructured regions presents a small but significant bias in

the general case. When the requirement on the minimal length of

base pairs is applied, this signal is strong and surprisingly clear.

This observation suggests that in the fitness model [29,50–52],

evolution has constrained medium and long range base pairing to

favor mutations outside evolutionarily conserved stem regions.

This remark automatically suggests the potential usefulness of

RNAmutants in gene discovery based on clustering of RNAmu-
tants statistics. This hypothesis is the subject of current research

on larger scale studies.

Supporting Information

Figure S1 RNAfold (a) and RNAplfold (b) Dotplots of the 39

UTR GB Virus C. Stem regions are annotated with red boxes.

Found at: doi:10.1371/journal.pcbi.1000124.s001 (0.10 MB PDF)
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J. Waldispühl and P. Clote would like to thank the organizers Elena Rivas

and Eric Westhof of the Benasque RNA meetings, which provided the

occasion of many insightful discussions.

Author Contributions

Conceived and designed the experiments: JW. Performed the experiments:

JW. Analyzed the data: JW SD BB PC. Wrote the paper: JW SD BB PC.

Designed methodology: JW. Helped to design the experiments: BB. Helped

to design the methodology: PC.

References

1. Coventry A, Kleitman DJ, Berger B (2004) Msari: multiple sequence alignments

for statistical detection of RNA secondary structure. Proc Natl Acad Sci U S A

101: 12102–12107.

2. Rivas E, Eddy S (2001) Noncoding RNA gene detection using comparative

sequence analysis. Bioinformatics 2: 8.

3. ENCODE Project Consortium (2007) Identification and analysis of functional

elements in 1% of the human genome by the ENCODE pilot project. Nature

447: 799–816.

4. Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA (2004) Substrate-

assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol

11: 1101–1106.

5. Omer A, Lowe T, Russell A, Ebhardt H, Eddy S, et al. (2000) Homologues of

small nucleolar RNAs in Archaea. Science 288: 517–522.

6. Ambros V, Lee R, Lavanway A, Williams P, Jewell D (2003) MicroRNAs and

other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807–818.

7. Serganov A, Yuan Y, Pikovskaya O, Polonskaia A, Malinina L, et al. (2004)

Structural basis for discriminative regulation of gene expression by adenine- and

guanine-sensing mRNAs. Chem Biol 11: 1729–1741.

8. Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative

RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:

497–500.

9. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam:

an RNA family database. Nucleic Acids Res 31: 439–441.

10. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005)

Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res

33: D121–D124.

11. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, et al.

(2006) Identification and classification of conserved RNA secondary structures in

the human genome. PLoS Comput Biol 2: e33. doi:10.1371/journal.

pcbi.0020033.

12. Meyer IM, Miklos I (2007) Simulfold: simultaneously inferring RNA structures

including pseudoknots, alignments, and trees using a Bayesian MCMC

framework. PLoS Comput Biol 3: e149. doi:10.1371/journal.pcbi.

0030149.

13. Xia T, SantaLucia JJ, Burkard ME, Kierzek R, Schroeder SJ, et al. (1998)

Thermodynamic parameters for an expanded nearest-neighbor model for

formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37:

14719–14735.

14. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information. Nucleic Acids Res 9: 133–148.

15. Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, et al. (1994) Fast

folding and comparison of RNA secondary structures. Monatsh Chem 125:

167–188.

16. Dowell RD, Eddy SR (2006) Efficient pairwise RNA structure prediction and

alignment using sequence alignment constraints. BMC Bioinformatics 7: 400.

17. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA

structure prediction using probabilistic alignment constraints in Dynalign. BMC

Bioinformatics 8: 130.

18. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using

stochastic context-free grammars. Nucleic Acids Res 31: 3423–3428.

19. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the

secondary structure common to two RNA sequences. J Mol Biol 317: 191–203.

20. McCaskill JS (1990) The equilibrium partition function and base pair binding

probabilities for RNA secondary structure. Biopolymers 29: 1105–1119.

21. Ding Y, Lawrence CE (1999) A Bayesian statistical algorithm for RNA

secondary structure prediction. Comput Chem 23: 387–400.

22. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res 31: 3406–3415.

23. Hofacker I (2003) Vienna RNA secondary structure server. Nucleic Acids Res

31: 3429–3431.

24. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding

and rational design of nucleic acids. Nucleic Acids Res 32: W135–W141.

25. Barash D (2003) Deleterious mutation prediction in the secondary structure of

RNAs. Nucleic Acids Res 31: 6578–6584.
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