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Abstract We adapt here a surprising technique, the boustrophedon method,
to speed up the sampling of RNA secondary structures from the Boltz-
mann low-energy ensemble. This technique is simple and its implementation
straight-forward, as it only requires a permutation in the order of some opera-
tions already performed in the stochastic traceback stage of these algorithms.
It nevertheless greatly improves their worst-case complexity from O(n2) to
O(n log(n)), for n the size of the original sequence. Moreover the average-
case complexity of the generation is shown to be improved from O(n

√
n)

to O(n log(n)) in an Boltzmann-weighted homopolymer model based on the
Nussinov-Jacobson free-energy model. These results are extended to the more
realistic Turner free-energy model through experiments performed on both
structured (Drosophilia melanogaster mRNA 5S) and hybrid (Staphylococ-
cus aureus RNAIII) RNA sequences, using a boustrophedon modified version
of the popular software UnaFold. This improvement allows for the sampling
of greater and more significant sets of structures in a given time.

Keywords Statistical sampling, Boltzmann free-energy ensemble, RNA
structure, MFE folding

1 Introduction

1.1 Motivation

To decypher the mechanisms underlying the three dimensional folding of
biopolymers is one of the great challenges of the post-genomic era. Indeed,
understanding the sequence/structure relationship for these entities is a first
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step toward an automated residue-level interpretation of known interactions,
which would in turn allow for an algorithmic prediction of such interac-
tions. Such a knowledge could also lead to the computer-assisted design of
more specific drugs for known diseases. In the specific context of RNA, the
minimum free energy (MFE) paradigm, which states that a single stranded
polymer will adopt the conformation of lowest free-energy, is at the core
of successful algorithmic approaches for the prediction of RNA secondary
structures [18,26,43]. These approaches are based on the nearest-neighbor
model for RNA [19], which approximates the free-energy of a conformation
as a sum of individual contributions, associated with each elementary loops.
From such a mathematically simple model, a dynamic programming scheme
allows for the exploration of the conformational landscape of a sequence in
Θ(n3) time, eventually retrieving the MFE secondary structure. Taking ad-
vantage of experimentally resolved values for the loops energies, this method
has proven accurate in predicting the actual base-pairings. Recent studies
claim an average 73% accuracy for these methods when applied to sequences
of size up to 700 nucleotides [27].

1.2 Minimal free energy folding: Paradigm shift

However certain structures, like for instance the Natronobacterium pharaonis
tRNA for alanine, remain badly mispredicted, although most always found
among the suboptimals [40]. This phenomenon can be explained by one or
more of the following reasons:

– The energy parameters used in the various implementations may still
be lacking some accuracy. In particular, non-canonical interactions [20]
are so far not taken into account by the actual model. These interactions,
although poorly contributing energetically, are known to play a stabilizing
role [21] neither fully understood nor modeled yet.

– For computational reasons1, the conformational landscape explored by
state-of-the-art algorithms are restricted to secondary structures only.
This may favor a conformation whose best planar restriction (secondary
structure) is promising over another conformation with lower free-energy,
but whose best planar restriction has higher free-energy than that of the
first.

– In vivo, a structured RNA is seldom alone and often complexed, poten-
tially both to RNAs and proteins as can be seen in the ribosome. Further-
more, evidences have shown that some RNAs can adopt two or more al-
ternative fully-functional conformations, as in the case of riboswitches [2,
33].

All these putative explanations plead for a focus on sub-optimal struc-
tures, so we actually experience a shift from the MFE paradigm toward the
study of ensemble features (see Ding’s review [7]). In this novel view of the

1 The problem of RNA folding with general pseudo-knots has been shown to be
NP-complete even in a toy version of the nearest-neighbor model [24]. However,
this constraint might be practically lifted in the near future, as novel parametric
approaches [42] are being developed to work around this issue.
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RNA folding problem, each structure S compatible with a given sequence ω
is associated with its so-called Boltzmann probability, defined such that

P(S|ω) =
e
−E(S)

RT

Zω

where E(S) is the free-energy of S, R is the universal gas constant, T is
the temperature in Kelvin and Zω =

∑
s e

−E(s)
RT is the value of the partition

function for this sequence. A random set of structures compatible with the
input RNA sequence, the Boltzmann ensemble of low-energy, and weighted
with Boltzmann probabilities can then be sampled. By contrast with the
suboptimals approach, for which the algorithm takes time in Θ(kn3) for k the
number suboptimals, the sampling approach relies on a stochastic traceback
scheme, which can be performed in O(n2) after a Θ(n3) precomputation.
Various features of this ensemble have been shown to be good separators
for known classes of structural RNA [10]. Some of these features also yield
promising results for the detection of riboswitches. While this new approach
has already given some promising results, there is still a potential for both
algorithmic and statistical improvements.

1.3 Boltzmann ensembles: Why size matters

In particular, we claim that larger Boltzmann ensembles than those of size
1000 actually used [9,10,15,36] could lead to an increase on the sensibility
of the current methods. Specifically, it is unclear how to determine a gen-
erally valid, statistically sufficient size for the ensembles. In a special case
involving RNA Shape [38], an ensemble of size 1000 is justified by assum-
ing a Poisson distribution on the number of occurrence of each shape in a
sampled ensemble. Namely, it ensures a deviation less than 10% with 95%
confidence. Other works on this subject [9,10,15] also used this number of
1000 in radically different contexts, without neither formulating an hypoth-
esis on the distribution for their parameters nor satisfying the conditions of
Voß et al parameters [38]. As the numbers of RNA structures [39] and RNA
shapes [23] are known to grow exponentially along with the sequence size,
it would be very surprising that sampled sets of fixed cardinality actually
covers the alternative conformations for larger sequences.

For instance, let us focus on the Natronobacterium pharaonis tRNA for
alanine (GenBank: AB003409.1/96–167), an RNA that once got some at-
tention from Steffen et al [36]. Its structure is known to be either mispre-
dicted by MFE techniques or very far from the consensus cloverleaf shape
generally admitted for tRNA. Running the RNASubopt software [18] on this
RNA yields 153 suboptimals structure before the first cloverleaf structure is
found. Although not necessarily the native one, its free-energy distance to
the MFE structure is already of 4.2kcal/mol. Running RNAShapes in statis-
tical analysis mode [38] on the same tRNA yields a cumulated probability
of 0.0012534 for the native cloverleaf shape [ [ ] [ ] ] . We conclude that
a Boltzmann low-energy ensemble of size 1000 for this tRNA will neither
contain the native structure nor any other cloverleaf-like structure
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(1−0.0012534)1000

100 = 28% of the time. This calls for an increase of the number
of samples in the sampled ensemble, as the frequency of the previous failure
scenario drops to 1% for a Boltzmann ensemble of size 3672.

However, the average-case and worst-case complexities of the sampling are
respectively in Θ(n

√
n) and Θ(n2), as will be shown later in this document.

So the number of samples that can be afforded without significantly slowing
down the whole Θ(n3) algorithm is in O(n

√
n). Being able to generate Θ(n2)

samples while using the same computational ressources could then provide a
significant improvement of these methods.

1.4 Plan of the paper

At first we transpose the statistical sampling algorithm to the Nussinov-
Jacobson model for free-energy. This simple model allows for a clear definition
of the cost associated with a sampling scenario. Such a simplification first
allows us to isolate and explain the Θ(n2) worst-case complexity already
pointed out by previous works [10,25]. Then generating function techniques
are used to derive a Θ(n

√
n) complexity for the average-case complexity.

Then we present the boustrophedon approach in the context of the ran-
dom generation of decomposable objects. We then propose a transposition to
the statistical sampling of RNA structures in the Boltzmann ensemble of low-
energy. We show that its implementation reduces the worst-case complexity
from Θ(n2) to n log(n).

Lastly, we present a proof of concept for the boustrophedon optimization.
We applied the boustrophedon modification to the Unafold software, a state-
of-the-art implementation of statistical sampling based on Turner model, and
compared the complexities of the original and modified version. Results are
consistant with the complexities derived in the Nussinov-Jacobson model,
although the average-case complexity of the non-boustrophedon approach
even seems to scale like O(n2).

2 Sequential sampling from the Boltzmann ensemble:
Complexities

2.1 Statistical sampling in the Nussinov-Jacobson model

We quickly introduce the principles of sampling from the Boltzmann ensem-
ble of low energy associated with a given sequence ω under the Nussinov-
Jacobson model [32]. We claim that this simplified model is sufficiently
expressive to derive algorithmic properties of state-of-the-art implementa-
tions [8,26] while avoiding some details that increase the mathematical com-
plexity of such an analysis.

In the original version of the Nussinov-Jacobson model [32], the free-
energy E(S) of a secondary structure S is defined such that E(S) = −|bp(S)|,
where bp(S) is the set of base-pairs in S.
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The partition function Z[i,j] for an interval [i, j] ⊆ [1, n] is such that

Z[i,j] =
∑

S∈Si,j

e
−E(S)

RT (2.1)

where Si,j is the set of secondary structures compatible with the interval
[i, j], R is the universal gas constant and T is the temperature.

A secondary structure, defined as a set of base-pairing positions, is said
to be compatible with a sequence when two bases involved in a base pair
are complementary (G-C, A-U or G-U), thus forming canonical interactions,
a minimal distance θ is ensured between two base-pairing bases. Finally, it
is required that the base-pairs do not form pseudoknots, i.e. are either non-
overlapping or in inclusion relationship pairwise.

The classical RNA folding algorithm in the Nussinov-Jacobson model
relies on a clever exploration of the conformational space. It states that, for
a subsequence [i, j] of the original one, the first2 base i can either be unpaired,
or paired to a base k at distance greater than θ.

Then, a transposition of the previous decomposition allows for the recur-
sive computation of the partition function during a precomputation stage.
Namely , it can be shown [28] that Z[i,j] obeys the following recurrence

Z[i,j] =





Z[i+1,j] +

j∑

k=i+1+θ

e
1

RT λ(ωi, ωk)Z[i+1,k−1]Z[k+1,j] If j − i > θ

1 Otherwise
(2.2)

where θ is the minimal number of unpaired bases in terminal loops, and
λ(b, b′) is the function that returns 1 if b and b′ can form a canonical base-
pair, and 0 otherwise. To our opinion, the beauty of such an approach lies
in the fact that, thanks to the independence of conformation in intervals
[i + 1, k − 1] and [k + 1, j], and to the additivity of the energy functions, an
exponential number of contributions (i.e. Boltzmann probabilities for com-
patible secondary structures) can be summed in a polynomial Θ(n3) time.

Once these values are available, it is then possible to perform stochastic
traceback, by inverting the recurrence in order to sample structures accord-
ing to their Boltzmann probability. Namely, it will consist in, starting from
the interval [1, n], choosing one of eligible decompositions according to suit-
able probabilities, i.e. w.p. proportional to the contributions of the different
decompositions in the sum of the equation 2.2. After such a step, it is known
whether or not the first base i in the general case [i, j] is paired or not. If the
base is paired, it has been determined to which valid base k it is paired. At
that specific point, an order has to be chosen in order to investigate potential
values for k. We will call sequential strategy the exploration of candidate
values for k in the sequential order

(i + θ + 1) → (i + θ + 2) → (i + θ + 3) → . . . → (j − 2) → (j − 1) → (j).
2 Some versions of this historical algorithm alternatively focus on the last base.

The explored landscape is then exactly equivalent, and the algorithm based on this
alternative decomposition yields identical results.
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S′ S′′S′

φ(S′) φ(S′) φ(S′′)

Fig. 1 Transform between RNA secondary structures and unary/binary trees,
interpreted as stochastic traceback scenarios.

Until further notice, we will assume the sampling algorithms to implement
such an order.

Independently from the strategy used to choose k, the process is then
iterated on the remaining interval [i+1, j] in the unpaired case, or on intervals
[i+1, k−1] and [k+1, n], until intervals of size less than θ are encountered. In
this case an empty structure is issued as these bases cannot by definition form
base pairs at a distance less than θ. The emission probability of a structure
S compatible with the original RNA sequence ω can then be shown to be
equal to its Boltzmann probability

P(S|ω) =
e
−E(S)

RT

Z[1,n]
.

2.2 Tree representation of a random sampling scenario

An insightful way to analyze the complexity of the traceback stage consists in
drawing an unary/binary tree φ(S) associated with each sampled structure
S. It can be built in the following way, also summarized in Figure 1, from a
secondary structure S:

- Empty: If S is the empty structure, then φ(S) is a simple leaf.
- Unpaired case: If the first base is unpaired, S = •S′, then the tree φ(S)

is an unary node, whose unique child is the unary/binary tree φ(S′) as-
sociated with S′.

- Paired case: If the first base is paired with another base, S = [S′ ]S′′,
return the tree starting with a binary node, whose left (resp. right) child
is the unary/binary tree associated with S′ (resp. S′′).

This representation was previously introduced in [30] in order to perform a
very clever analysis of the order of RNA secondary structures, a parameter
introduced by Waterman [39].

We will assume that, while sampling from an interval [i, j], the unpaired
case is investigated first, followed by the potential values for k in increasing
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order, starting from i + θ + 1 all the way to j, according to the sequential
strategy introduced hereabove. We claim that the complexity, expressed in
term of number of comparisons, of a stochastic traceback scenario resulting
in a given structure S can be computed directly from its tree-representation
φ(S).

Theorem 21 Let S ∈ S be a secondary structure whose tree representation
is φ(S) ∈ T . Let c : T → N be a cost-function that associates to each tree
t ∈ T a cost c(t) such that

c(t) =






0 If t = •

1 + c(t′) If t = t′

1 + |t′|− θ + c(t′) + c(t′′) If t =
t′ t′′

where |t′| is the number of edges in t′. Let K(S) the complexity of the gener-
ation of S, expressed in term of comparisons. Then

K(S) = c(φ(S)).

Proof First, it be can easily shown that the image φ(S) of an RNA structure
S on an interval [i, j] is such that |φ(S)| = |S| = j− i+1 where |φ(S)| stands
for the number of edges in φ(S).
We point out that the terminal case t = • corresponds to the generation
of the structure having size 0, whose cost is null by definition. Then let us
assume, as an inductive hypothesis, that for any RNA structure S over an
interval [i, j] such that |S| ≡ j−i+1 ≤ n, the equality K(S) = c(φ(S)) holds.
Let us then consider an RNA structure S′ over [i′, j′] such that |S′| = n + 1.
One of the two cases above arises, depending on the pairing status of the
first base i′:

- Unpaired: As described previously, this case is investigated first, so it
requires only one comparison in addition to the generation of the structure
S′′ from [i′+1, j′] and thus K(S′) = 1+K(S′′). As the image of S′ through
φ is an unary node whose only child is φ(S′′), then c(φ(S′)) = 1+c(φ(S′′)).
Because the size of [i′ + 1, j′] equals to n, we can apply the induction
hypothesis to prove that K(S′′) = c(φ(S′′)), thus

K(S′) = 1 + K(S′′) = 1 + c(φ(S′′)) = c(φ(S′)).

- Paired to a base k′: This case has been investigated and chosen after k′−
i′− θ comparisons. It remains to add the cost of the recursive generation
of the structures S′′ and S′′′, respectively on intervals [i′ + 1, k′ − 1]
and [k′ + 1, j′], thus K(S′) = k′ − i′ − θ + K(S′′) + K(S′′′). As |S′′| =
|φ(S′′)| = k′−i′−1, K(S′′) = c(φ(S′′)) and K(S′′′) = c(φ(S′′′)) (induction
hypothesis), then

K(S′) = k′ − i′ − θ + K(S′′) + K(S′′′)
= 1 + |φ(S′′)|− θ + c(φ(S′′)) + c(φ(S′′′))
= c(φ(S′)).
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Fig. 2 A left pseudo-linear tree, that achieves a Θ(n2) complexity in the sequential
strategy, along with his corresponding secondary structure.

From the recurrence of Theorem 21, the complexity of the generation for a
given structure in the sequential strategy is strongly related to the sum of size
of each left subtree found in its tree-representation . Namely, let {t1, . . . , tm}
be the set of left subtrees in the tree-representation φ(S) of a structure S,
then

K(S) = c(φ(S)) = in(S)−mθ +
m∑

i=1

|ti| (2.3)

where in(S) is the number of internal nodes of S.

2.3 Worst-case analysis

Theorem 22 The worst-case scenario for a statistical sampling using a se-
quential strategy based on a sequence of size n has a complexity Θ(n2).

Proof A run that achieves such a complexity consists in a systematic pairing
of the first element of the range (i) with the last one (j), after (j − i − θ)
failed comparisons. The algorithm then samples for intervals [1, n], [2, n− 1],
[3, n− 2], . . . Prior to the recursive calls, sequences of (n− 1− θ), (n− 3− θ),
(n− 5− θ), . . . comparisons are made, followed by θ comparisons for the last
unpaired bases, so that the overall complexity for the structure is

K(S) = θ +
$n−θ

2 %∑

i=1

(1 + n− 2i− θ)

= θ + n

⌊
n− θ

2

⌋
−

⌊
n− θ

2

⌋2

− θ

⌊
n− θ

2

⌋
∈ Θ(n2).

An alternative way to see this scenario is to consider the left pseudo-linear
tree depicted by Figure 2. The number of internal nodes is )n−θ

2 * + θ, the
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number of left subtrees is )n−θ
2 * and the numbers of edges in the left subtrees

are respectively n− 2, n− 4, . . . so that the application of formula 2.3 yields
the previous result.

2.4 Average case-analysis

To analyse the average-case complexity of an algorithm requires an assump-
tion over the distribution of the objects at the heart of the method. Here
we will assume an Boltzmann-weighted homopolymer model based on
the Nussinov-Jacobson free-energy model. Namely, every secondary structure
having same size as the input sequence can be generated with the Boltzmann
probability computed from its free-energy in the Nussinov model. Experi-
ments presented in section 4 suggest similar, yet harder to get analytically,
results for the Turner model.

Theorem 23 The average-case complexity of the statistical sampling using
a sequential strategy from a sequence of size n is in µ · n

√
n(1 +O(1/

√
n)),

for µ ∈ R an explicit constant of n.

Proof Flajolet et al [14], analyzed the complexity of the sequential strat-
egy for the random generation of combinatorial structures. They concluded
on an O(n

√
n) complexity for combinatorial classes analogous to trees with

limited type of nodes, identified by their degree. However, their analysis ap-
plied to the uniform case, and could potentially be altered by the Boltzmann
distribution. Thus we present below a full proof for this complexity.

The proof uses generating functions (g.f.) techniques coupled with analy-
sis of singularity. Applications of this general framework to evaluate asymp-
totic behaviors in the context of computational biology can be found in [30]
and [23], the latter containing an introduction on these techniques. We will
address the average number of comparisons, which can be formerly defined
as the expectancy E(K |n) of the random variable K that holds the number
of comparisons dedicated to the sampling of a random structure of size n in
the Boltzmann distribution of probability. This expectancy is the relevant
parameter for a study of the sampling complexity, as it is the only one which
doesn’t grow linearly along with n. Formally, this expectancy is such that

E(K |n) =
∑

ω∈S
|ω|=n

e
E(ω)
RT

Zn
c(S)

where Zn =
∑

ω∈S
|ω|=n

e
−E(ω)

RT is the partition function for the sequence.

At first, let us consider

Pf (z) =
∑

ω∈S
e

bp(ω)
RT z|ω|
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the partition function generating function of RNA secondary struc-
tures, where pn := [zn]Pf (z) = Zn as E(S) = −bp(S) in the Nussinov-
Jacobson model, and P≥θ

f (z) the restriction of Pf (z) to terms having degree
greater or equal to θ. A way to enumerate RNA secondary structures is to
use a context-free grammar, as pointed out by Viennot and Vauchaussade
de Chaumont [37]. Here, we present a slightly modified (yet equivalent for
θ = 1) version of the grammar, suitable for capturing the minimal number θ
of unpaired bases in a terminal loop:

A → (B )A | •A | ε
B → (B )A | •B | • θ

It is part of the combinatorial folklore [12] that an unambiguous context-free
grammar can be interpreted as a system of functional equations involving the
length generating function associated with its non-terminals (See also [23]).
Furthermore, thanks to the nice regular structure (algebraicity) of the objects
and probabilities at stake here, it is also possible to embed the contribution
of a base-pair to the Boltzmann probability during the classical transposition
of the grammar into a system of functional equations

{
A(z) = z2e

1
RT B(z)A(z) + zA(z) + 1

B(z) = z2e
1

RT B(z)A(z) + zA(z) + zθ.

Solving the system yields the following positive solution for Pf (z) := A(z):

Pf (z) =
1− 2z + Γz2 + z2 − Γzθ+2 −

√
Ω(z)

2Γz2(1− z)
Ω(z) := 1−4z−6z2−2Γz2−4z3−4Γz3+(1−Γ )2z4−2Γzθ+2+4Γzθ+3−2Γ (1+Γ )zθ+4+Γ 2z2θ+4

Γ := e
1

RT .

This instantly yields an expression for the g.f. of P≥θ
f (z), since the only

structures of size lower than θ are empty structures of size in [0, θ − 1], for
which energy is null. Thus

P≥θ
f (z) = Pf (z)−

θ−1∑

i=0

zi = Pf (z)− 1− zθ

1− z
.

Then, let us consider the generating function C(z) =
∑

ω∈S e
bp(ω)

RT c(ω)z|ω|

whose n-th coefficient cn := [zn]C(z) is the unnormalized average cost ded-
icated to generating an RNA secondary structure of size n. C≥θ(z) is the
natural restriction to terms of C(z) having degree greater than θ. By trans-
posing the recurrence 2.3 on the secondary structures, we find that

c(ε) = 0
c( •ω) = 1 + c(ω)

c( (ω )ω′) = 1 + |ω|− θ + c(ω) + c(ω′).
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We then expand the former definition of C(z) by distinguishing the con-
tributions of the three cases above and obtain the following expression for
C(z)

C(z) =
∑

ω=ε

e
0

RT c(ε)z0 +
∑

ω=•ω′

ω′∈S

e
bp(ω′)

RT (1 + c(ω′))z|ω
′|+1

+
∑

ω=(ω′ )ω′′

ω′∈S≥θ

ω′′∈S

e
bp(ω′)+bp(ω′′)+1

RT (1 + |ω′|− θ + c(ω′) + c(ω′′))z|ω
′|+|ω′′|+2.

This expression, upon developing on the additive contributions of c(ω), yields

C(z) =

(
∑

ω′∈S
e

bp(ω′)
RT z|ω

′|

)
z +

(
∑

ω′∈S
e

bp(ω′)
RT c(ω′)z|ω

′|

)
z

+




∑

ω′∈S≥θ

e
bp(ω′)

RT z|ω
′|




(

∑

ω′′∈S
e

bp(ω′′)
RT z|ω

′′|

)
e

1
RT z2

+




∑

ω′∈S≥θ

e
bp(ω′)

RT |ω′|z|ω
′|




(

∑

ω′′∈S
e

bp(ω′′)
RT z|ω

′′|

)
e

1
RT z2

− θ




∑

ω′∈S≥θ

e
bp(ω′)

RT z|ω
′|




(

∑

ω′′∈S
e

bp(ω′′)
RT z|ω

′′|

)
e

1
RT z2

+




∑

ω′∈S≥θ

e
bp(ω′)

RT c(ω′)z|ω
′|




(

∑

ω′′∈S
e

bp(ω′′)
RT z|ω

′′|

)
e

1
RT z2

+




∑

ω′∈S≥θ

e
bp(ω′)

RT z|ω
′|




(

∑

ω′′∈S
e

bp(ω′′)
RT c(ω′′)z|ω

′′|

)
e

1
RT z2.

We point out that
∑

ω∈S≥θ e
bp(ω)

RT |ω|z|ω| = z
∂P≥θ

f (z)

∂z and identify the individ-
ual formal series with known generating functions, which yields

C(z) = z (Pf (z) + C(z)) + z2e
1

RT (1− θ)P≥θ
f (z)Pf (z) + z3e

1
RT

∂P≥θ
f (z)
∂z

Pf (z)

+ z2e
1

RT C≥θ(z)Pf (z) + z2e
1

RT P≥θ
f (z)C(z).

As for Pf (z), it is noticeable that the only objects of size less than θ con-
tributing to C(z) are structures without base pairs, having energy 0 and
respective values for the cost function 1, 2, . . . , θ − 1, thus

C≥θ(z) = C(z)−
θ−1∑

i=0

izi = C(z)− zθ(θz − z − θ) + z

(1− z)2
.
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Fig. 3 Influence of temperature over the multiplicative constant µ involved in the
µ · n

√
n average-case complexity of the sequential strategy.

It remains then to solve a system that is linear in C(z). This can easily be
done using any symbolic mathematical software. Let ρ ∈ C be the smallest-
modulus value3 of z such that Ω(ρ) = 0, then the solution can be transformed
into the following form

C(z) = f(z) +
g(z)

h(z)Ω(z)

for f ,g and h explicit functions that are analytic on the disc of modulus
ρ centered in 0. From such an expansion, singularity analysis [13] can be
performed, and we find the following expansions for pn := [zn]Pf (z) and
cn := [zn]C(z):

pn ∼
κ

ρnn
√

n
(1 +O(1/n)) cn ∼

κ′

ρn
(1 +O(1/

√
n))

for some explicit constants κ ∈ R and κ′ ∈ R. From the definition of pn and
cn, it is then obvious that

E(K |n) =
cn

pn
∼ µ · n

√
n(1 +O(1/

√
n))

with µ = κ′

κ .

From the equations derived for the generating functions C(z) and Pf (z), it is
possible to compute automatically the generating functions and their asymp-
totic expansions, using the GFun package [35], for any given value of T and
θ. Thus we plot in Figure 3 the influence of the temperature over the con-
stant µ involved in the asymptotics of the sampling average-case complexity.

3 It is a known fact that ρ ∈ R+, thanks to a Pringsheim theorem.
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Strategy Sequential Boustrophedon

Scheme 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

Order 111 2 3 4 5 6 7 8 9 10 681 11 2 10 3 9 4 5 7

Fig. 4 Sequential and boustrophedon strategies for the range [1..11]

Surprisingly, µ is almost a constant of T which means that an alteration of
the distribution of structures, such as obtained by modifying the tempera-
ture, will have an almost negligible impact on the complexity. In other words,
the average-case complexity of the sequential strategy doesn’t depend on the
temperature.

3 A Boustrophedon optimization

3.1 Context

In ancient Greek, Boustrophedon means turning like oxen in ploughing and
has been formerly used to describe an ancient style of writing where lines
read from left to right and from right to left are alternated. This adjective
then occurs in Mathematics as a description of an operation on integer se-
quences [29] that allows for instance for an easy computation of a Taylor
expansion for tan(x) [1]. It is later found in works related to the random
generation of combinatorial structures [14], where it denotes a way of inves-
tigating potential decompositions of an object into two parts prior to calling
inductively.

We illustrate this process on the recursive approach to the uniform ran-
dom generation from a context-free language. Suppose we want to draw,
uniformly and at random, a word of size n from the language generated by
a non-terminal A having rule of the product form

A → B C

Assume that we know how to draw uniformly words of any size up to n
from B and C. Then we only need to find appropriate (i.e. with probabilities
consistant with the uniformity) sizes i and n− i for the words issued from B
and C. Once such sizes are chosen, it suffices to draw a word of size i from
B, a word of size n− i from C and to concatenate them into a word from A
of length n. We refer to [14] for the choice on the appropriate probabilities,
which are related to the cardinalities of languages generated from B and C.
The order of investigation, illustrated by Figure 4, of the candidate values
for i is also shown to have an important impact on the complexity of the
generation. Namely, it has been shown [14] that investigating values for i in
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Sequential Boustrophedon

Fig. 5 Comparison of the sequential and boustrophedon orders for conformation
sampling.

a sequential (1, 2, 3, . . . , n) order yields a Θ(n2) worst-case complexity and a
O(n

√
n) average complexity, whereas preferring a boustrophedon (1, n, 2, n−

1, . . . , ,n/2-) order yields O(n log(n)) average and worst-case complexities.

3.2 Boustrophedon strategy for the statistical sampling

The boustrophedon order, at the core of the fruitful optimization described
in section 3.1 can be used in the context of sampling from the Boltzmann
ensemble of low-energy. Instead of investigating potential partners k for the
first base i of a subsequence [i, j] in a sequential manner, we will use a
boustrophedon strategy. Namely, we will investigate potential values for
k from [i + θ + 1, j] alternatively from both ends, progressing toward the
middle of the subsequence of interest (See Figure 5):

(i+θ+1) → (j) → (i+θ+2) → (j−1) → . . . →
(

i + θ + 1 +
⌊

j − i + θ + 1
2

⌋)

The implementation of this optimization is very easy, as a boustrophedon
order can be easily simulated from a sequential one, yielding only a minor
modification in an already existing implementation.

3.3 Worst-case complexity analysis

Surprisingly, applying such a strategy while investigating potential candi-
dates at a given stage yields a significant improvement of the sampling algo-
rithm.
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Theorem 31 The worst-case complexity, in term of number of compar-
isons, of the statistical sampling implementing a boustrophedon strategy is
in O(n log(n)).

Proof Flajolet et al [14] analyzed the worst-case complexity of the boustro-
phedon approach, in the more general case of context-free grammar. They
showed that the cost function f(n) for the worst-case generation of a struc-
ture of size n is such that

f(n) = max
k∈[1,n−1]

(f(k) + f(n− k) + 2min(k, n− k)). (3.1)

Intuitively, the equation states that a value k is investigated after 2 min(k, n−
k) comparisons, with min capturing the fact that the final k can either be
reached first from the left or from the right in the Boustrophedon walk.
Recursive calls then independently cost f(k) and f(n − k). It can be easily
shown that this result holds for the analysis of the sampling, where n stands
for the overall size of the subsequence.

This class of equations has been solved by Knuth [16], and is known to
have a O(n log(n)) solution. Let us summarize the argument:

- The maximum for this equation (the worst-case complexity) is reached at
k = )n

2 *.
- Equation 3.1 can then be analyzed using generating functions techniques

and singularity analysis, or by drawing a parallel with the sum of ones
in the binary representation of all numbers from n to 0, which is in
O(n log(n)) for obvious reasons.

In our precise context, the potential structures associated with a given se-
quence are clearly a subset of the trees considered in [14] equipped with
probabilities. As the probability distribution does not affect the generation
cost of a given structure4, neither does it affect the generation cost for the
worst-case scenario.

We try to convey an intuitive explanation for this result by stating that
decomposing the range into two uneven parts now takes a limited amount
of comparisons, whereas it could take the whole size of the range [i + θ +
1, j] in the former, sequential version. Furthermore, paying many (O(n))
comparisons at a certain step leads to an almost even decomposition of the
range for the next recursive calls. If we keep on dividing almost evenly, the
tree drawn from the recursive calls will then have heights Θ(log(n)). As it
is obvious that the total number of comparisons over all nodes at a given
height is O(n), then the overall complexity is O(n log(n)).

4 A probability distribution of the instances may affect the average-case com-
plexity of an algorithm, but won’t affect the worst. As the average-case complexity
cannot exceed the worst-case complexity, it is reasonable to expect a O(n log(n))
average-case complexity.
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4 Experimental validation

4.1 Turner model

The Turner model [41] is at the core of current state-of-the-art free-energy
approaches for the prediction of RNA folding. Although exploring roughly
the same conformation landscape as the Nussinov-Jacobson model, it uses
different elementary contributions to the free-energy, which allow for a more
accurate approximate of the free-energy. Namely, instead of mimicking the
base-pairing process, as does the Nussinov-Jacobson model, it uses the so-
called loop decomposition, focusing on the inner faces of the map naturally
associated with an RNA secondary structure. This fundamental difference
might in theory result in different behaviors for the complexities of the sta-
tistical sampling, both in the sequential and boustrophedon approaches.

Therefore, we tested the practical efficiency of the boustrophedon op-
timization on the UnaFold software [26], that includes sampling from the
Boltzmann ensemble of low-energy. This software has been chosen as it is so
far the only available implementation accounting correctly for dangles in the
computation of the partition function (see N. Markham’s thesis [25]). This
condition is essential in order to perform an unbiased sampling.

4.2 Method

First, we retrieved the source-code of UnaFold v3.3 [26] from the DINAMelt
website at RPI. We duplicated the code related to stochastic traceback and
modified the copy to implement the boustrophedon strategy described above
and compiled both versions. Only two lines from the original code were
modified, and two lines added. Then we retrieved from RFAM [17] the
sequences for a Drosophila melanogaster 5S rRNA (GenBank: X06937/117–
251) and a Staphylococcus aureus RNAIII (GenBank: AJ223774.1/71–632).
While the former has well-known structure and function, as being part of
the small sub-unit of the ribosome, the latter has a more unusual, dual reg-
ulatory/messenger function. Indeed it is known to be at the same time the
effector of the agr system (accessory gene regulator) and the mRNA of the
26 amino acid delta-haemolysin. Therefore, deep structural differences are
expected, that might challenge the robustness of our theoretical results.

In order to get an estimate of the complexities for both approaches, we
needed several sets of sequences for increasing non-bounded sizes. Previous
works [5] have focused on the dinucleotide frequency to distinguish between
structural and coding RNAs in the Turner model. It can also be shown
that shuffling models preserving dinucleotide frequencies converge quickly
to Markov models of order 1. As we were interested in the behavior of the
complexity for higher instance sizes, we used GenRGenS [34] to create Markov
models M5S and MRNAIII of order 1 for both RNAs described above. We
drew 100 sequences from size 10 to size 3000 (using step 10) in both models
M5S and MRNAIII.

For each of these 60000 sequences we ran both the original and modified
versions of UnaFold, and counted the overall number of comparisons per-
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Fig. 6 Experimentally determined complexities for both approaches on sequences
based on a Drosophila melanogaster 5S rRNA.

formed prior to two inductive calls on the same sequence. This quantity is
the relevant one in the complexity analysis, as the other contributions will
sum up to a linear term in the size of the original sequence, and thus will
become negligible for high sizes. We then averaged these numbers for each
size, and obtained the values plotted in Figures 6 and 7.

4.3 Results

A first glimpse at the results clearly indicates that the boustrophedon version
of the software outperforms the original implementation. For instance, for
sequences of size 1000 generated from the model M5S, the boustrophedon
sampling already saves half of the time needed by the sequential approach.

From regression calculuses, it turns out that the estimated growth of
the sequential strategy on these examples scales like respectively 1.1n2 and
0.53n2 for models M5S and MRNAIII. The average-case complexity of the
sequential approach for the Turner-based sampling model even seems to be
quadratic on these experiments. However this interpretation might just be
a representation artefact and needs to be confirmed by further experiments,
it is certain that a complexity greater than Θ(n

√
(n)) is observed for the

sequential approach.
Furthermore, we observe on these graphics a significant difference of

behaviors between the two random sequences models M5S and MRNAIII.
Namely, the performance gap between the Boustrophedon and sequential
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Fig. 7 Experimentally determined complexities for both approaches on sequences
based on a Staphylococcus aureus RNAIII.

approaches seems to widen quicker in the M5S model than in the MRNAIII

model. This observed difference of behavior might be attributed to the differ-
ent GC contents for this two models. Namely, the mononucleotide frequencies
for M5S are {A:21%, U:22%, G:28%, C:29%} whereas those of MRNAIII are
{A:35%, U:39%, G:13%, C:13%}. This G-C poverty of the latter might be re-
sponsible for a low average number of base pairings in the sampled structures,
thus pulling down the constants involved in the overall complexity5.

5 Conclusion and perspectives

We presented here an adaptation of an optimizing technique, the boustrophe-
don approach, that improved the stochastic traceback stage of the sampling
from the Boltzmann ensemble of low-energy. We drew a parallel with a cer-
tain class of unary/binary trees to analyze the complexity of a simplified
version of the sampling and found again the Θ(n2) complexity pointed out
by the authors of this algorithm [10]. Using generating function techniques,
we proved that the average-case complexity of our sampling was in Θ(n

√
n).

To our best knowledge, this is the first study of the average-case complexity
for this classe of algorithms. We then showed that implementing the bous-
trophedon strategy dramatically decreases the worst-case complexity of the

5 The base-pairing process and the subsequent recursive calls to the sampling
functions are responsible for the non-linear behavior of the complexities.
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classical algorithms from Θ(n2) to O(n log(n)), and the average-case com-
plexity from Θ(n

√
n) to O(n log(n)). As this implementation yields a quasi-

linear complexity for each stochastic traceback performed, it is now possible
to sample Boltzmann ensembles of low-energy of Θ(n2) elements without any
significant overhead to the overall Θ(n3) complexity of the precomputation
stage. Implementation of this technique will increase, by allowing sampling of
bigger sets, the coverage (sensitivity) of existing approaches based on these
ensembles. It will also allow for more significant results for large sequences
when the computational ressources required to run an Θ(n3) algorithm will
become available.

More generally, if ∆ is the free-energy distance between the two shreps6

for the best-scoring shapes, then the number of structures that need to be
sampled before getting at least the best-scoring couple of shapes is believed
to grow polynomially on n the sequenced length and exponentially on ∆. A
natural perspective of these works would then consist in an analysis of the
evolution of ∆ for sequences of increasing lengths. If it remains roughly con-
stant, a sampled set that captures at least two alternative conformations with
high probability will have to have size at least polynomial on the sequence
length. This pleads for a more general reflection on the relationship between
the sequence length and the size of a statistically significant ensemble.

Understanding the influence of the nucleotide frequency over the behav-
ior of the complexity observed in the experiments remains a challenge. This
might be performed using the idea of stickiness [22,31] which allows to turn
the nucleotide frequencies into base-pairing probabilities, later injected inside
functional equations for the generating series. However, it is unclear how this
distribution might interact with the currently embedded Boltzmann proba-
bility.

Moreover, the Boltzmann ensemble is a multiset, which reveals useful to
evaluate the probability of a given shape, but useless in the context of clus-
tering, or more generally when a coverage of the low-energy conformational
landscape of a given size is required. It might then be useful to prevent al-
ready sampled structures to be drawn again. However it is still unclear how
to perform such an random generation without introducing a global bias in
the generation.

Another promising perspective of this work would consist in generalizing
the boustrophedon approach to higher-dimensional search space for indices.
Namely, parametric approaches are actually developed by Clote et al [3,4,
6,11] that use an additional parameter x, which can be understood as a
way to classify structures in the conformational landscape. The complexities
of these approaches are then increased and equations for the parameterized
partition function now involve double-nested sums over k the base-pairing
point and x the parameter, both exploring values of the order of n. As the
stochastic traceback can be interpreted as an inversion of the sums involved
in the dynamic programming equation, followed by recursive calls, a natural
sequential implementation of the sampling in that case would have a Θ(n3)
complexity for the worst-case scenario. A natural way to transpose the bous-
trophedon philosophy to these cases would be to radiate from the corners.

6 The shrep of a shape π is the lowest free-energy structure having shape π [36].
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Namely, if k ∈ [i, j] and x ∈ [i′, j′] in the dynamic programming equation
involving the double sum, then we start by exploring corners candidates
{(i, i′), (i, j′), (j, i′), (j, j′)} for (k, x). If no suitable candidate is found, we
investigate all candidates at distance 1,2,3,... of these corners, until an ap-
propriate decomposition is found. Such a strategy could be easily generalized
to a higher-dimension decomposition space, which appears in the context
of random generation of words of fixed compositional frequency under con-
straint of complying with context-free grammar.
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