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ABSTRACT
Motivation: We describe algorithms implemented in a new
software package, RNAbor, to investigate structures in a neigh-
borhood of an input secondary structure S of an RNA sequence
s. The input structure could be the minimum free energy struc-
ture, the secondary structure obtained by analysis of the X-ray
structure or by comparative sequence analysis, or an arbitrary
intermediate structure.
Results: A secondary structure T of s is called a δ-neighbor of
S if T and S differ by exactly δ base pairs. RNAbor computes
the number (Nδ), the Boltzmann partition function (Zδ) and the
minimum free energy (MFEδ) and corresponding structure over
the collection of all δ-neighbors of S. This computation is done
simultaneously for all δ ≤ m, in run time O(mn3) and memory
O(mn2), where n is the sequence length. We apply RNAbor

for the detection of possible RNA conformational switches, and
compare RNAbor with the switch detection method paRNAss.
We also provide examples of how RNAbor can at times improve
the accuracy of secondary structure prediction.
Availability: http://bioinformatics.bc.edu/clotelab/
RNAbor/.
Contact: clote@bc.edu, eva.freyhult@lcb.uu.se

1 INTRODUCTION
In the last few years, there has been intense interest in RNA
due to the surprising, previously unsuspected roles played by
ribonucleic acid in what until now has been a predominantly
protein-centric view of molecular biology. Apart from its roles
as messenger RNA and transfer RNA, ribonucleic acid mole-
cules play a catalytic role in the peptidyltransferase reaction in
peptide bond formation (Weinger et al., 2004; Nissen et al.,
2000) and in intron splicing (Vicens and Cech, 2006), both
examples of enzymatic RNAs now termed ribonucleic enzy-
mes or ribozymes (Doudna and Cech, 2002). RNA plays a role
in post-transcriptional gene regulation due to the hybridization
of mRNA by small interfering RNAs (siRNA) (Harborth et al.,
2003; Tuschl, 2003) and microRNAs (miRNA) (Lim et al.,
2003). By completely different means, RNA performs trans-
criptional and translational gene regulation by allostery, where
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a portion of the 5′ untranslated region (5′ UTR) of mRNA
known as a riboswitch (Winkler et al., 2002; Penchovsky and
Breaker, 2005) can undergo a conformational change upon bin-
ding a specific ligand such as adenine, guanine, or lysine.
RNA is known to play critical roles in various other cellular
mechanisms such as dosage compensation (Brown et al., 1992),
protein shuttling (Walter and Blobel, 1982), expansion of the
genetic code such as selenocysteine insertion (Commans and
Böck, 1999), and ribosomal frameshift (Bekaert et al., 2003;
Moon et al., 2004). Illustrative of the growing recognition
for the importance of RNA, the 2006 Nobel Prize in Physio-
logy or Medicine was awarded to A.Z. Fire and C.C. Mello
for their discovery of RNA interference and gene silencing by
double-stranded RNA.

In this paper, we develop novel and efficient algorithms to
investigate structures in a neighborhood of a given secondary
structure S of an RNA sequence s. We call another secondary
structure T of s a δ-neighbor of S, if T and S differ by exactly
δ base pairs (see Methods section for more details). We develop
algorithms to compute the number, Nδ = Nδ(s,S), the parti-
tion function, Zδ = Zδ(s,S) =

P
T exp(−E(T )/RT ), and

the minimum free energy MFEδ = MFEδ(s,S) structure over
the collection of all δ-neighbors T of S, where E(T ) deno-
tes the energy of T with respect to the Turner nearest neighbor
energy model (Xia et al., 1999), R is the universal gas con-
stant, and T is temperature in Kelvin. Our software, called
RNAbor (RNA neighbor), additionally computes graphs of the
probability density function pδ = Zδ/Z as a function of δ.
RNAbor was motivated by Moulton et al. (2000), who sug-

gested that the stability of a secondary structure might depend
on the number of structural neighbors at varying distances from
the given structure – for instance from the minimum free energy
(MFE) structure. It turns out that the number of structural
neighbors at varying distances is not sufficient to distinguish
between structural RNA and random RNA having the same
MFE structure; see Figure 1. However, we do see a distinc-
tion when computing a weighted count of structural neighbors,
where low energy structures are more heavily weighted. For-
mally, this is the Boltzmann partition function with respect to
all structural neighbors at a given base pair distance δ. Figure 1
displays a density plot produced by RNAbor which clearly
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Fig. 1. The number and probability of neighboring structures at
varying distances from the MFE structure of the precursor miRNA
dme-mir-1 (AE003667.3/4813-4888) from Drosophila mela-
nogaster (Adams et al., 2000) (solid line) and a random RNA having
the same secondary structure (dashed line). The random RNA was
obtained by running RNAinverse (Hofacker et al., 1994) with the
MFE structure of dme-mir-1 as input structure.

suggests that precursor miRNA dme-mir-1 from Drosophila
melanogaster (AE003667) has a single, well-defined native
structure, whereas a random sequence with the same MFE
structure has several alternate low energy secondary structures
with different topologies.

We show that the probability density plot can be
used to detect RNA conformational switches and compare
RNAbor with the conformational switch detection program
paRNAss (Giegerich et al., 1999). In paRNAss a structu-
ral RNA switch is predicted by means of studying properties
of the energy landscape of the RNA. Secondary structures are
sampled from the structure space using RNAsubopt (Wuchty
et al., 1999) or mfold (Zuker, 1994). Pairwise distances are
calculated between the sampled structures using two different
distance measures (e.g. pairs energy barrier, morphological,

tree alignment or string edit distance). Using a standard clu-
stering method the structures are clustered into two clusters
based on the distance measures. If the RNA is a conformational
switch, then it has two stable structures and hence two clusters
are expected (in a multi-switch, more than two stable structu-
res are expected). As an additional test, the consensus structure
of the clusters are computed and for each sample structure the
distances to the two consensus structures are plotted against
each other. If the RNA is really a conformational switch, then
paRNAss output should display two clouds of points – one
near the x-axis and one near the y-axis.

Note that since paRNAss calls RNAsubopt from the
Vienna RNA Package program (Hofacker, 2003), it requi-
res a user-defined energy bound, E, in order to generate all
secondary structures within E kcal/mol of the minimum free
energy.

The plan for the rest of this paper is as follows. In the
Methods section, we describe the algorithms for computing
the number Nδ , the Boltzmann partition function Zδ and the
minimum free energy MFEδ structure over the collection of all
δ-neighbors. In the Results section, we present graphs of the
the number Nδ and the Boltzmann probability density pδ =
Zδ/Z of structural neighbors, which differ by δ base pairs
from a given secondary structure. In addition, we compare the
output of RNAbor with the conformational switch detection
program paRNAss (Giegerich et al., 1999). In the Discus-
sion section, we conclude by presenting some possible future
applications of our algorithms. Pseudocode for our implemen-
tation is presented in the supplementary material. Additional
data obtained by running RNAbor on all SAM riboswitches
from Rfam (Griffiths-Jones et al., 2003) is available in the
web supplement at http://bioinformatics.bc.edu/
clotelab/RNAbor/webSupplement.

2 MATERIALS AND METHODS
Given an RNA nucleotide sequence s, consider a fixed secon-
dary structure S of s. In this section, we describe how to
efficiently compute the number Nδ of δ-neighbors of S, the
partition function Zδ for δ-neighbors, and the minimum free
energy MFEδ together with the corresponding structure over
all δ-neighbors. Nδ , Zδ and MFEδ are all computed for a fixed
temperature. The temperature is set to 37◦C by default, but can
be changed by the user.

2.1 The number of δ-neighbors of a fixed
secondary structure

Let s = s1, . . . , sn denote an RNA sequence, i.e. a sequence
of letters in the alphabet of nucleotides {A, C, G, U}. A secon-
dary structure S on s is a set of base pairs (i, j), where
1 ≤ i ≤ i + θ < j ≤ n and θ ≥ 0 is an integer (corre-
sponding to minimum hairpin loop size, which we usually set
to 3), such that if (k, l) is a base pair, then k = i ⇐⇒ l = j
(a nucleotide is involved in at most one base pair) and i < k <
j ⇐⇒ i < l < j (no pseudoknots). We say that S is com-
patible with s if for every base pair (i, j) in S the pair si sj is
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contained in the set B = {AU, UA, GC, CG, GU, UG} (i.e. the
set of Watson-Crick base pairs together with wobbles). Given
two secondary structures S, T on s, we define the base pair
distance dBP between S and T to be the number of base pairs
that they have that are not in common, i.e.

dBP (S, T ) = |S ∪ T | − |S ∩ T |. (1)

For the rest of this section, we consider both s as well as
the secondary structure S on s to be fixed. We now provide
recursions for determining the number of secondary structures
T compatible with s that are at precisely base pair distance δ
to S.

Let S[i,j] denote the restriction of S to interval [i, j] of s,
that is, the set of base pairs S[i,j] = {(k, l) : i ≤ k <
l ≤ j, (k, l) ∈ S}. A secondary structure T[i,j] on s is a δ-
neighbor of S[i,j] if dBP (S[i,j], T[i,j]) = δ. For all 0 ≤ δ ≤ m,
and all 1 ≤ i ≤ j ≤ n, let Nδ

i,j(s,S) denote the num-
ber of secondary structures T[i,j] compatible with s such that
dBP (S[i,j], T[i,j]) = δ. In the following we may omit the
sequence s and secondary structure S in our notation since
these are fixed. In particular, we put Nδ

i,j = Nδ
i,j(s,S).

Nδ
i,j is computed recursively. The initial conditions for

computing Nδ
i,j are given by

N0
i,j = 1, for i ≤ j, (2)

since the only 0-neighbor to a structure is the structure itself,
and

Nδ
i,j = 0, for δ > 0, i ≤ j ≤ i + θ, (3)

since the empty structure is the only possible structure for a
sequence shorter than θ + 2 nucleotides, and so there are no
δ-neighbors for δ > 0. The recursion used to compute Nδ

i,j for
δ > 0 and j > i + θ is

Nδ
i,j = Nδ−b0

i,j−1 +
X

sksj∈B,
i≤k<j

X
w+w′=δ−b

Nw
i,k−1N

w′
k+1,j−1, (4)

where b0 = 1 if j is base paired in S[i,j] and 0 otherwise,
and b = dBP (S[i,j],S[i,k−1] ∪ S[k+1,j−1] ∪ {(k, j)}). This
holds since in a secondary structure T[i,j] on [i, j] that is a δ-
neighbor of S[i,j], either nucleotide j is unpaired in [i, j] or
it is paired to a nucleotide k such that i ≤ k < j. In this
latter case it is enough to study the smaller sequence segments
[i, k − 1] and [k + 1, j − 1] noting that, except for (k, j), base
pairs outside of these regions are not allowed. In addition, for
dBP (S[i,j], T[i,j]) = δ to be fulfilled it is necessary for w +
w′ = δ − b to hold, where w = dBP (S[i,k−1], T[i,k−1]) and
w′ = dBP (S[k+1,j−1], T[k+1,j−1]), since b is the number of
base pairs that differ between S[i,j] and a structure T[i,j], due
to the introduction of the base pair (k, j).

Pseudocode for computing Nδ
i,j for values of δ between 0

and m is given in the supplementary material. The algorithm
runs in time O(mn3) and space O(mn2) where, as defined
above, n is the length of s and m is the maximum value of δ.

2.2 Probability analogue
In this section, we explain how to extend our approach of com-
puting Nδ

i,j to compute the partition function contribution of
the set of structures compatible with a given RNA sequence s
at a fixed base pair distance δ from an RNA structure S com-
patible with s. This allows us to compute the probability of the
set of structures compatible with s at distance δ from S.

It is straight-forward to extend the previous approach to
compute partition functions for the Nussinov-Jacobson energy
model (Nussinov and Jacobson, 1980). In particular, by simply
replacing recursion (4) with

Nδ
i,j = Nδ−b0

i,j−1+
X

sksj∈B,
i≤k<j

“
e
−E(k,j)

RT

X
w+w′=δ−b

Nw
i,k−1N

w′
k+1,j−1

”
, (5)

where E(k,j) is the energy of the base pair (k, j), R is the gas
constant, and T is the temperature, we can compute the par-
tition function contribution of structures at a given base pair
distance δ. The base pair energy E(k,j) takes the value −1
if sk sj ∈ B and 0 otherwise. Note that the energy contribu-
tion can be altered for different base pairs (e.g. −3 for GC,
−2 for AU and −1 for GU are weights used in (Nussinov and
Jacobson, 1980)).

Employing a substantially more complicated algorithm,
similar to the dynamic programming calculation of the par-
tition function described in (McCaskill, 1990), the partition
function contributions can also be computed according to the
Turner energy model. In the Turner energy model a secondary
structure is decomposed into loops, as described in (Zuker and
Sankoff, 1984), and the energy is computed as a sum of the
energy contributions of the loops. A k-loop consists of k − 1
base pairs (excluding the closing base pair) and u unpaired
bases. The energies of 1-loops (hairpins) and 2-loops (stacks
if u = 0, bulges or interior loops if u > 0) are based on
experimental data (Mathews et al., 1999; Mathews and Tur-
ner, 2002) and are dependent on k and u as well as the RNA
sequence. In the Turner model the energies for multi-loops
(k > 2) are generally determined by the approximate linear
model EM = a+b(k−1)+cu, where a, b and c are constants.

As before, from now on we regard s and S to be a fixed RNA
sequence with compatible secondary structure S. The partition
function for s is then defined as Z =

P
T e−ET /RT , where the

sum is taken over all structures T compatible with s, and ET is
the energy of the structure T . We aim to compute the restriction
Zδ = Zδ

1,n = Zδ
1,n(s,S), that is, the sum of e−ET /RT taken

over all structures T that are compatible with s and at base pair
distance δ from S. The probability for finding a structure at a
distance δ from S is then given by pδ = Zδ/Z.

As with the usual McCaskill partition function calcula-
tions (McCaskill, 1990), in the dynamic programming we use
three matrices Z, ZB and ZM for recursively computing Zδ

instead of the single matrix N used for computing Nδ in
the previous section. In particular, for the sequence segment
[i, j] of s, define Zδ

i,j =
P

e
−ET[i,j]/RT , where the sum

is over all structures T[i,j] compatible with s and such that
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dBP (S[i,j], T[i,j]) = δ. Also, define the restricted partition

function ZBδ
i,j as the sum of e

−ET[i,j]/RT taken over all struc-
tures T[i,j] such that (i, j) ∈ T[i,j], and ZMδ

i,j , which is the
partition function contribution if the sequence segment [i, j] is
part of a multi-loop. The matrices Z, ZB and ZM are filled
using the following three recursions.

To compute Z we use the recursions

Zδ
i,j = Zδ−b0

i,j−1 +
X

sk sj∈B,
i≤k<j

“
e−Ed/RT

X
w+w′=δ−d1

Zw
i,k−1ZBw′

k,j

”
, (6)

where Ed is the energy contribution due to dangling ends
(energy contributions from single bases stacking on adjacent
base pairs) and closing AU base pairs (since a non GC base
pair closing a stem has a destabilizing effect), and d1 =
dBP (S[i,j],S[i,k−1] ∪ S[k,j]). Note that the first term of this
recursion corresponds to the case where j is unpaired (and
hence has no energy contribution) in [i, j]. The second term
includes all other structures on [i, j]. The sum is taken over all
possible base pairs (k, j) with i ≤ k < j. If (k, j) is a base pair
the partition function for [k, j] is given by ZBw′

k,j , the partition
function for [i, k − 1] is given by Zw

i,k−1.
We compute ZB using the recursion

ZBδ
i,j = ∆(dBP (S[i,j], {(i, j)})− δ)e−E(i,j)/RT

+
X

sksl∈B,
i<k<l<j

ZBδ−d2
k,l e−E(i,j,k,l)/RT (7)

+
X

sksl∈B,
i<k<l<j

“
e−(a+b+c(j−l−1))/RT

X
w+w′=δ−d3

ZMw
i+1,k−1ZBw′

k,l

”
,

where E(i, j) is the energy of the hairpin loop with closing
base pair (i, j), E(i, j, k, l) is the energy of the stack, bulge or
interior loop with the closing base pair (i, j) and the interior
base pair (k, l), d2 = dBP (S[i,j],S[k,l] ∪ {(i, j)}), and d3 =
dBP (S[i,j],S[i+1,k−1] ∪ S[k,l] ∪ {(i, j)}). Here, ∆(x, y) is
the Kronecker function, which equals 1 if x = y, and else 0.
Note that since the above equation computes ZBδ

i,j , it follows
that (i, j) forms a base pair in the neighboring structures T[i,j]

(if this is not possible then ZBδ
i,j = 0). The first term in the

recursion takes care of the case where (i, j) is the only base
pair in [i, j], i.e. (i, j) closes a hairpin loop. The second term
handles the case where there is an interior loop (or a bulge or
a stack) closed by (i, j) and (k, l). The third term takes care
of all the structures where (i, j) closes a multi-loop. To reduce
complexity of the algorithm, the interior and bulge loop size
can be limited to a maximum size of L, by requiring that l >
j − L in the above recursion.

The final recursion, for computing ZM, is

ZMδ
i,j = ZMδ−b0

i,j−1e
−c/RT

+
X

sksj∈B,
i≤k<j

“
ZBδ−d4

k,j e−(b+c(k−i))/RT (8)

+
X

w+w′=δ−d5

ZMw
i,k−1ZBw′

k,je
−b/RT

”
,

where d4 = dBP (S[i,j],S[k,j]) and d5 = dBP (S[i,j],S[i,k−1]∪
S[k,j]). Note that since ZMδ

i,j computes the partition function
contribution under the assumption that [i, j] is part of a multi-
loop, there will be exactly one stem-loop structure in this region
(the ZB term) or more than one (the ZB-ZM term).

Note that the recursions for computing the number of
δ-neighbors and the partition function analogues are non-
redundant in that each structure is counted once and only
once.

Pseudocode for computing Zδ is given in the supplementary
material. The complexity is the same as for computing the num-
ber of δ-neighbors, O(mn2) in space and O(mn3) in time, if
the size of internal loops and bulges are limited to a fixed length
such as 30, following the convention of Vienna RNA Package.

2.3 Minimum free energy δ-neighbors
Given an RNA nucleotide sequence s and secondary structure
S, the minimum free energy δ-neighbor is that secondary struc-
ture T of s, which has base pair distance δ with S, and which
has least free energy MFEδ among all structures having base
pair distance δ with S. Free energy is measured according to the
Turner energy model (Mathews et al., 1999; Xia et al., 1999),
where our treatment of dangles follows that of Vienna RNA
package with -d2 option.

In this section, we describe a novel algorithm capable of
computing the MFEδ structures, for all δ. As in our partition
function computation, the run time [resp. space requirement]
to compute all MFEδ structures for δ ≤ m is O(mn3)
[resp. O(mn2)]. This algorithm is obtained from the algo-
rithm in Section 2.2 essentially by replacing Boltzmann factor
e−E(T )/RT by free energy E(T ) and by replacing the opera-
tions of addition [resp. multiplication] by minimization [resp.
addition]. In future work, we plan to analyze the structure mor-
phological changes in proceeding from S to MFE0, MFE1,
MFE2, etc. As indicated in the Results section, such an analy-
sis could prove useful in conformational switch detection and
other applications.

Fix RNA nucleotide sequence s = s1, . . . , sn and secon-
dary structure S of s. To compute MFEδ we use the following
recursions:
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MFEδ
i,j = min

(
MFEδ−b0

i,j−1,

min
sk sj∈B,
i≤k<j

min
w+w′=δ−d1

MFEw
i,k−1 + MFEBw′

k,j + Ed

)
(9)

MFEBδ
i,j = min

(
∆(dBP (S[i,j], {(i, j)})− δ)E(i, j),

min
sksl∈B,

i<k<l<j

MFEBδ−d2
k,l + E(i, j, k, l),

min
sksl∈B,

i<k<l<j

min
w+w′=δ−d3

MFEMw
i+1,k−1+MFEBw′

k,l+a+b+c(j−l−1)

)
,

(10)

MFEMδ
i,j = min

(
MFEMδ−b0

i,j−1 + c,

min
sksj∈B,
i≤k<j

n
MFEBδ−d4

k,j + b + c(k − i),

min
w+w′=δ−d5

MFEMw
i,k−1 + MFEBw′

k,j + b
o)

. (11)

Once the minimum free energy of δ-neighbors (MFEδ) is
computed the corresponding minimum free energy structures
can be computed by a simple traceback for each MFEδ .

For reasons of space, the pseudocode for computing MFEδ is
not presented; given our previous description of MFEδ and the
pseudocode for computing the partition function Zδ , appearing
in the supplementary material, the reader will have no difficulty
to reconstruct the pseudocode for MFEδ .

3 RESULTS
In this section, we present probability density graphs for a
variety of conformational switches and for some non-switches.
Additional data is provided for all SAM riboswitches in our
web supplement. We also compare the output of RNAbor with
distance plots generated by the web server paRNAss (Giege-
rich et al., 1999), that uses a heuristic to determine whether
there appear to be two or more clusters of distinct secondary
structures for a given RNA sequence. Some example are also
presented that indicate that RNAbor can be used to provide
improved secondary structure predictions as compared with the
MFE structure.

3.1 Detecting conformational switches
In this section, we define a conformational switch to be an RNA
sequence which has exactly two distinct low energy secondary

structures. By multi-switch we mean an RNA sequence which
can adopt two or more distinct low energy secondary structu-
res. For a given RNA sequence s and secondary structure S
of s, we use RNAbor to compute pδ = Zδ/Z. Taking S to
be the MFE structure, or alternatively the structure determi-
ned by comparative sequence alignment (Cannone et al., 2002),
our intuition is that a conformational switch should display a
bi-modal probability density graph.

To illustrate the behavior of a typical conformational switch
we present examples of RNAbor output for known swit-
ches. Consider for instance the 105 nt SAM riboswitch with
EMBL accession number AE016750.1/132874-132778
and sequence AACUUAUCAA GAGAAGUGGA GGGACUGGCC
CAAAGAAGCU UCGGCAACAU UGUAUCAUGU GCCAAUUCCA
GUAACCGAGA AGGUUAGAAG AUAAGGU. Figure 2 displays
three secondary structures: the MFE structure, the MFE24

structure, and the native structure inferred by compara-
tive sequence analysis of the SAM riboswitch seed multiple
sequence alignment from Rfam (Griffiths-Jones et al., 2003).
As computed by RNAbor, the MFE structure has free energy
of −28.1 kcal/mol and the Boltzmann probability p0 is 0.11,
while the MFE24 structure has free energy of −26.7 kcal/mol
and p24 is 0.05. Note the similarity of the MFE24 structure
with the native structure; in particular, the apical loop regions
are correctly computed. There is a second MFE structure – the
MFE27 structure, with free energy −28.1 kcal/mol. Although
the Boltzmann probability p27 is 0.16, the maximum of pδ over
all δ, the MFE27 structure is rather different than the native
structure (data not shown).

Figure 2 shows the probability density plot, i.e. the probabi-
lity pδ = Zδ/Z of finding a structure at distance δ from the
input structure, which in this example is the MFE structure.

It is not the case that all conformational switches display a
bi-modal or multi-modal Boltzmann probability density curve.
In particular, the probability density curve is uni-modal for
the 101 nt switch (Schlax et al., 2001) with EMBL accession
number AE0140031/5850-5961. This mRNA has a pseu-
doknotted structure, which is responsible for the translational
repression of the alpha operon by an entrapment mechanism.
Since the algorithm RNAbor, like its predecessors mfold
and RNAfold, considers only non-pseudoknotted secondary
structures, there is no reason to expect that RNAbor display a
multi-modal probability density curve for this conformational
switch.

Figure 3(a) depicts a bi-modal density graph for the artifici-
ally engineered bistable switch CUUAUGAGGG UACUCAUAAG
AGUAUCC of Flamm et al. (Flamm et al., 2001). Figure 3(b)
displays the probability density function pδ for the 76 nt con-
formational switch (Ke et al., 2004), which controls hepatitis
delta virus ribozyme catalysis (PDB ID 1SJ3:R). Both these
examples display bi-modal Boltzmann probability curves.

3.2 Comparison with paRNAss
We now compare the ability of RNAbor and paRNAss to pre-
dict RNA conformational switches. We have chosen to display
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Fig. 2. Boltzmann probability density plot for the 105
nt SAM riboswitch with EMBL accession number
AE016750.1/132874-132778. The curve shows the proba-
bility, pδ = Zδ(s,S)/Z(s,S), for all secondary structures of RNA
sequence s having base pair distance δ from the MFE structure S.
Alternative secondary structures for the riboswitch are shown in
the figure. In the upper left is the MFE structure with free energy
-28.10 kcal/mol shown, in the middle the MFE24 structure with free
energy -26.7 kcal/mol, and in the lower right the consensus Rfam
structure. Sorted in decreasing order, the most significant Boltzmann
probabilities are 0.16, 0.11, 0.090, 0.068, 0.067, 0.057, 0.055

respectively for values of δ = 27, 0, 26, 22, 23, 1, 24.

the paRNAss distance plot of energy barrier versus morpholo-
gical distance (Voss et al., 2004), but in all the below examples
the distance plots using tree alignment or string edit distance
showed similar results.

The E.coli hok (host killing) mRNA folds into two different
conformations (Franch et al., 1997). The full length mRNA
folds into a stable structure involving a long-range interaction
between the 5′ and 3′-end. Degradation of the 3’-end leads to
a conformational change as the stabilizing long-range inter-
action is broken. Here we have investigated the part of the
mRNA that undergoes a conformational change (as provided on
the paRNAss web server http://bibiserv.techfak.
uni-bielefeld.de/parnass).

For this RNA, both RNAbor and paRNAss detect the con-
formational switch, the RNAbor probability plot shows two
distinct peaks suggesting two alternative stable structures and
the paRNAss plot shows two clearly separated clusters, both
suggesting that all the reasonably stable structures fall into one
out of two conformations, see Figure 4.
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Fig. 3. (a) Boltzmann probability density plot for the 29 nt
bistable switch artificially engineered by Flamm et al. (2001)
and having sequence CUUAUGAGGG UACUCAUAAG AGUAUCC. The
graph shows the Boltzmann probability, pδ = Zδ(s,S)/Z(s,S), of
all δ-neighbors, for all values of δ bounded by sequence length. (b)
Boltzmann probability density plot of δ-neighbors for the 76 nt confor-
mational switch which controls hepatitis delta virus ribozyme catalysis
(PDB code 1SJ3:R) (Ke et al., 2004).

Although both RNAbor and paRNAss suggest that the hok
gene has two alternative structures, there are some uncertainties
in the result. In the RNAbor density plot there are actually three
peaks (even though the third peak is significantly smaller than
the other two), indicating that there might be more than two
alternative structures.

The 5′-untranslated (UTR) region of E.coli thiM mRNA
undergoes a change in structure, that is important for regulation
(Winkler et al., 2002). Both RNAbor and paRNAss indicate
more than one single stable structure for the thiM-leader. As
can be seen from Figure 5 there actually seem to be more than
two alternative structures. However, the third structure seems
to be less important (lower probability), and hence this RNA is
predicted as a conformational switch by RNAbor.

3.3 Improving on the minimum free energy
structure

In this section, we discuss several examples where a MFEδ

structure is closer to the native secondary structure, as extracted
from the 3-dimensional X-ray structure, than is the MFE struc-
ture. This phenomenon generally occurs when the probability
density graph indicates a second peak, although sometimes that
peak may be modest.

Figure 6 present the Boltzmann probability density
plot and alternate secondary structure models for the S-
adenosylmethionine riboswitch mRNA regulatory element
with PDB code 2GIS (Montange and Batey, 2006). The figure
shows the native secondary structure for 2GIS, determined by
extraction from the 3-dimensional X-ray structure1, the MFE24

structure, which clearly resembles the native state, and the
rather different looking MFE structure. Figure 6 graphs the pro-
bability density, where a large second peak is present, centered
at δ = 23.

1 Using the software rnaview (Yang et al., 2003), we first obtained
a list of all Watson-Crick cis base pairs.
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Fig. 4. The E.coli hok (host killing) mRNA folds into two different
conformations (Franch et al., 1997). (a) The RNAbor density plot
shows two distinct peaks indicating that the hok mRNA has two alterna-
tive folds. The paRNAss (b) distance plot also indicate that this RNA
sequence can fold into two alternative secondary structures.

Improvement over the MFE structure is not restricted to
riboswitches. Indeed, Figure 7 displays a very unrealistic linear
MFE structure for Ile-tRNA from E. coli – accession number
DI1660 from Sprinzl’s tRNA database (Sprinzl et al., 1998), as
well as alternative structures predicted by RNAbor. Note the
correctly predicted anti-codon GAU.

4 DISCUSSION
In this paper we present some novel algorithms for efficiently
computing the number (Nδ), the Boltzmann partition function
(Zδ) and the minimum free energy (MFEδ) and corresponding
structure over the collection of all δ-neighbors of a secon-
dary structure of a fixed RNA sequence, all of which are
implemented in the webserver RNAbor.

We find that the output of RNAbor gives useful insights
into the landscape of foldings for a single RNA sequence. In
addition, we observe that the output of RNAbor compares
well with that of the conformational switch detection program
paRNAss. In future work we will make a more extensive com-
parison of RNAbor with other RNA folding landscape analysis
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(a) RNAbor density plot.

(b) The paRNAss distance plot.

Fig. 5. E.coli thiM-leader. (a) RNAbor density plot and (b) the
paRNAss distance plot.

programs such as RNAshapes (Giegerich et al., 2004; Steffen
et al., 2006; Voss et al., 2006) and Sfold (Ding and Lawrence,
2003; Ding et al., 2004).

Potential applications of RNAbor which will be pursued in
future work include the following.

• Since RNAbor allows one to distinguish whether the
given RNA nucleotide sequence s has a single pronoun-
ced well of attraction around a given secondary structure
S of s, it may be possible to use RNAbor to detect situa-
tions where the native secondary structure, as determined
by X-ray crystallography, is different than that proposed
by mfold and RNAfold (for example, see Section 3.3).
The idea would be to determine if there is no peak around
δ = 0, when S is taken to be the MFE structure.

• Figure 5(a) shows an interesting example where the RNA
seems to have more than one alternative structure. Does
this RNA have more than two alternative structures? Is
it the case that the MFE structure is not biologically
functional? (In this example, the other two alternative
structures seem to be probable). Using RNAbor, we can
determine the minimum free energy structures over all δ-
neighbors, and subsequently focus on MFEδ structures
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Fig. 6. Boltzmann probability density plot for the S-
adenosylmethionine riboswitch mRNA regulatory element, with
sequence GGCUUAUCAA GAGAGGUGGA GGGACUGGCC
CGAUGAAACC CGGCAACCAG AAAUGGUGCC AAUUC-
CUGCA GCGGAAACGU UGAAAGAUGA GCCA. The MFE
secondary structure, as determined by RNAfold -d2, is shown
to the upper left. This structure has free energy −42.3 kcal/mol,
and the Boltzmann probability p0 = Z0/Z of the MFE struc-
ture is 0.169854. The MFE24 structure computed by RNAbor
for the same riboswitch sequence is shown in the middle. This
structure has free energy of −38.8 kcal/mol, and the Boltzmann
probability p24 = Z24/Z = 0.11. The secondary structure S-
adenosylmethionine riboswitch mRNA regulatory elemen determined
from X-ray structure 2GIS (Montange and Batey, 2006) is shown in
the lower right.

where the Boltzmann probability pδ is high. Ultimately
chemical probing experiments might determine whether
these MFEδ structures are the preferred biologically active
structure.

• RNAbor is a useful complement to already existing tools
for detecting putative conformational switches. Unlike
paRNAss, the number of structures to be analyzed and
the maximum allowable free energy difference from the
MFE structure need not be decided in advance. (These can
change the paRNAss result quite dramatically). Depen-
ding on the number of structures to be analyzed and the
energy bound, paRNAss can take an exponential amount
of time, in contrast to O(mn3) time for RNAbor to
compute Nδ , Zδ and MFEδ .

• As shown in Figures 6 and 7, RNAbor can sometimes
predict a secondary structure, which is closer to the real
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Fig. 7. (a) Minimum free energy secondary structure, as determi-
ned by RNAfold -d2, for Ile-tRNA from E. coli with anti-codon
GAU and accession number DI1660 from Sprinzl’s tRNA database
(Sprinzl et al., 1998). The MFE structure has free energy of −28.61

and Boltzmann probability p0 = 0.136856. (b) MFE36 structure,
as determined by RNAbor. This structure has free energy of −26.1

kcal/mol and p36 = 0.033946. (c) MFE38 structure, as determined
by RNAbor. This structure has free energy of −27.5 kcal/mol, and
p38 = 0.074037.

secondary structure than is the MFE structure, as deter-
mined from X-ray structures or comparative sequence
analysis.

• As for any bioinformatics software, it will be necessary
to perform experimental validation of predictions made
by RNAbor. In future work, we intend to include user-
defined constraints, which allow the user to require all
investigated structures to contain certain specified base
pairs and for certain specified nucleotides to remain unpai-
red. This will allow RNAbor to be used together with
chemical probing experiments to determine biologically
active conformers.
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