
Garcia-Martin et al.

RESEARCH

RNAdualPF: software to compute the dual
partition function with sample applications in
molecular evolution theory
Juan Antonio Garcia-Martin1, Amir H Bayegan1, Ivan Dotu2 and Peter Clote1*

*Correspondence: clote@bc.edu
1Biology Department, Boston

College, 140 Commonwealth

Avenue, 02467, Chestnut Hill,

MA, USA

Full list of author information is

available at the end of the article
†Corresponding author

Abstract

Background: RNA inverse folding is the problem of finding one or more
sequences that fold into a user-specified target structure s0, i.e. whose minimum
free energy secondary structure is identical to the target s0. Here we consider the
ensemble of all RNA sequences that have low free energy with respect to a given
target s0.

Results: We introduce the program RNAdualPF, which computes the dual
partition function Z∗, defined as the sum of Boltzmann factors
exp(−E(a, s0)/RT ) of all RNA nucleotide sequences a compatible with target
structure s0. Using RNAdualPF, we efficiently sample RNA sequences that
approximately fold into s0, where additionally the user can specify IUPAC
sequence constraints at certain positions, and whether to include dangles (energy
terms for stacked, single-stranded nucleotides). Moreover, since we also compute
the dual partition function Z∗(k) over all sequences having GC-content k, the
user can require that all sampled sequences have a precise, specified GC-content.

Using Z∗, we compute the dual expected energy 〈E∗〉, and use it to show that
natural RNAs from the Rfam 12.0 database have higher minimum free energy
than expected, thus suggesting that functional RNAs are under evolutionary
pressure to be only marginally thermodynamically stable.

We show that C. elegans precursor microRNA (pre-miRNA) is significantly
non-robust with respect to mutations, by comparing the robustness of each wild
type pre-miRNA sequence with 2000 [resp. 500] sequences of the same
GC-content generated by RNAdualPF, which approximately [resp. exactly] fold
into the wild type target structure. We confirm and strengthen earlier findings
that precursor microRNAs and bacterial small noncoding RNAs display plasticity,
a measure of structural diversity.

Conclusion:
We describe RNAdualPF, which rapidly computes the dual partition function Z∗

and samples sequences having low energy with respect to a target structure,
allowing sequence constraints and specified GC-content. Using different inverse
folding software, another group had earlier shown that pre-miRNA is mutationally
robust, even controlling for compositional bias. Our opposite conclusion suggests
a cautionary note that computationally based insights into molecular evolution
may heavily depend on the software used.

C/C++-software for RNAdualPF is available at
http://bioinformatics.bc.edu/clotelab/RNAdualPF.

Keywords: RNA secondary structure; partition function; Boltzmann ensemble;
robustness
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1 Background
In [1], Borenstein and Ruppin define neutrality of an RNA sequence a = a1, . . . , an

by η(a) = 1 − 〈d〉n , where in this section 〈d〉 denotes the average, taken over all 3n

single-point mutants of a, of the base pair distance dbp between the minimum free

energy (MFE) structure s0 of a and the MFE structures of single-point mutants

of a. An RNA sequence a is then defined to be robust if η(a) is greater than the

average neutrality of 1000 control sequences generated by the program RNAinverse

[2], which fold into the same target structure s0. The main finding of [1] is that

precursor microRNAs (pre-miRNA) exhibit a significantly higher level of mutational

robustness than random RNA sequences having the same structure. To control

for sequence composition bias in their computational study, the authors selected

sequences from the output of RNAinverse, whose dinucleotide composition was

similar to that of wild type pre-miRNA (Jensen-Shannon divergence less than 0.01).

Since the filtering step required enormous run time and computational resources,

the authors restricted their attention to a small set of 211 microRNAs, generating

only 100 control sequences per microRNA. Borenstein and Ruppin conclude that

robustness of precursor microRNAs is not the byproduct of a base composition bias

or of thermodynamic stability.

Subsequently Rodrigo et al. [3] undertook a similar analysis for bacterial small

RNAs, also using the program RNAinverse, albeit using somewhat different defi-

nitions – precise definitions are given in Section 1.1. The main finding of [3] was

that bacterial sncRNAs are not significantly robust when compared with 1000 se-

quences having the same structure, as computed by RNAinverse; however, bacterial

sncRNAs tend to be significantly plastic, in the sense that the ensemble of low en-

ergy structures is structurally diverse. Unlike the case of precursor microRNAs [1],

Rodrigo et al. did not control for sequence compositional bias.

This raises the question of whether the control sequences analyzed in [1, 3] are

representative or to what extent features shared by sequences output by the pro-

gram RNAinverse are artifacts of the program used. Indeed, the number of RNA

sequences that fold into a given target structure can be astronomically large. Over a

few weeks, before we elected to terminate the execution, our state-of-the-art inverse

folding software RNAiFold [4] generated 273,926,421 many 52-nt sequences that fold

exactly into the MFE secondary structure s0 of HIV-1 ribosomal frameshift stim-

ulating signal from the Gag-Pol overlap region AF033819.3/1631-1682, and which

additionally code 17-mer peptides in the Gag and Pol reading frames having amino

acids that appear in Gag/Pol peptides found in the Los Alamos HIV-1 database[5].

The number of 52 nt RNA sequences that fold into target s0 without addition-

ally imposing the constraint of coding particular peptides in overlapping Gag/Pol

reading frames is certain to dwarf the previous number. Moreover, the number of se-

quences that fold into the MFE structure of an animal precursor microRNA (length

68 to 91 nt [6]) or into the MFE structure of bacterial sncRNA (length 53-436 nt

[3]) is certain to be even more daunting.

Different inverse folding algorithms have adopted different strategies to generate

sequences that fold into a user-specified target secondary structure s0. For instance,

RNAinverse [7, 2] performs an adaptive walk, in one step of which a nucleotide in

the current sequence is mutated and subsequently accepted if the base pair distance
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between the minimum free energy (MFE) structure of the mutated sequence and

the target structure s0 is reduced. NUPACK Design [8] selects a candidate mutation

position with probability proportional to its contribution to the ensemble defect

(Boltzmann-weighted Hamming distance to the vector representation of s0, where

s0[i] = j indicates (i, j) ∈ s0 and s0[i] = i indicates i is unpaired in s0). RNAiFold

CP-design [9, 4] uses constraint programming to systematically explore the search

tree of all inverse folding solutions in an order determined by certain heuristics.

Accordingly, one cannot claim that the collection of sequences generated by any

particular inverse folding algorithm is representative of the astronomically large

space of all inverse folding solutions – indeed, each inverse folding algorithm has an

inherent but unknown bias.

In this paper, we describe the algorithm RNAdualPF, which generates sequences

which have low free energy with respect to a user-specified target structure s0 –

i.e. the inherent bias of RNAdualPF is known, unlike the situation of other inverse

folding algorithms. We show that RNAdualPF is extremely fast software for generat-

ing sequences that approximately fold into s0; moreover, in a postprocessing step,

one can filter the output of RNAdualPF to select sequences that exactly fold into

s0. RNAdualPF additionally allows the user to specify IUPAC codes to constrain

certain nucleotide positions as well as to control the GC-content of all generated

sequences. Sampling is performed in a manner distinct but somewhat analogous

to that by which Sfold [10] andRNAsubopt -p [2] sample representative secondary

structures from the Boltzmann ensemble of all structures of a given sequence. Using

RNAdualPF, we perform a pilot study that is similar, though not identical, to that

of [1, 3] for two classes of RNA: 250 C. elegans precursor microRNA from miRBase

[11] and the bacterial small noncoding RNAs previously analyzed in [3].

Finally, it should be noted that, although RNAdualPF was developed entirely in-

dependently of the work of Reinharz et al. [12], one can view our C-program as an

extension of Python program IncaRNAtion [12] to the full Turner energy model,

where additionally GC-content is rigorously handled. This point will be discussed

further in the Conclusion.

1.1 Formal definitions of robustness

Let a = a1, . . . , an denote an arbitrary RNA sequence, where ai ∈ N =

{A, U, G, C}, a secondary structure s of a is a set of base pairs (i, j) satisfying the

following conditions: (1) If (i, j) ∈ s then ai, aj constitute a Watson-Crick or GU

wobble pair, i.e. ij ∈ B which is the set {AU,UA,GC,CG,GU,UG}. (2) If (i, j) ∈ s
then i + θ < j, where θ = 3 (a minimum assumed for steric hindrance). (3) If

(i, j) ∈ s and (k, `) ∈ s, then either i < k < ` < j or k < i < j < ` or i < j < k < `

or k < ` < i < j. The collection of all secondary structures of the RNA sequence a

is denoted SS(a), and the free energy [13] of s is denoted by E(a, s), or simply by

E(s) provided that the sequence a is clear from context. The Boltzmann probability

p(s) = pa(s) for structure s of a is defined by exp(−E(a, s)/RT )/Z, where the

partition function Z = Z(a) =
∑
s∈SS(a) exp(−E(a, s)/RT ). Given two secondary

structures s, t of a, the base pair distance dbp(s, t) between s and t is defined to be

the size of the symmetric difference of s, t, i.e. |s− t|+ |t− s|.
In [3], Rodrigo et al. define intrinsic distance
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d0(a) =
∑
s,t

p(s) · p(t) · dbp(s, t) (1)

i.e. intrinsic distance is another name for ensemble diversity earlier defined in [14],

and computed by Vienna RNA Package [2]. Plasticity is defined in [3] to be nor-

malized ensemble diversity; i.e.

P (a) =
d0(a)

n/2
(2)

obtained by dividing ensemble diversity by (essentially) the maximum possible num-

ber n/2 of base pairs in a structure of a. Given two RNA sequences a = a1, . . . , an

and b = b1, . . . , bn of the same length n, Rodrigo et al. define d1(a,b) to be the

expected base pair distance between structures of a and structures of b minus the

ensemble diversity of a, i.e.

d1(a,b) =
∑

s∈SS(a)

∑
t∈SS(b)

pa(s) · pb(t) · dbp(s, t)− d0(a) (3)

Since d1 is not symmetric, this measure is not a metric. In contrast, ensemble dis-

tance as described in [14] is a valid metric, defined by the following:

Dv(a,b) =

√√√√ ∑
s∈SS(a)

∑
t∈SS(b)

pa(s) · pb(t) · dbp(s, t)− d0(a) + d0(b)

2

=

√∑
i<j

(pi,j(a)− pi,j(b))2 (4)

In [3], Rodrigo et al. define the mutational robustness

Rm(a) = 1− 〈d1(a,a′)〉
n/2

(5)

where 〈d1(a,a′)〉 denotes the average value of d1(a,a′) taken over all single point

mutants a′ of a. Since d1(a,a′) is not a true metric, we replace it by the metric

Dv(a,b) in our computation of mutational robustness. Clearly both notions are

closely related.
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2 Implementation
In [15], McCaskill described a cubic time algorithm to compute the partition func-

tion

Z = Z(a) =
∑

s∈SS(a)

exp(−E(a, s)/RT ) (6)

for an RNA sequence a = a1, . . . , an, where the sum is taken over all secondary

structures SS(a) of a, E(a, s) denotes the free energy for the structure s of a with

respect to the Turner energy parameters [13], R denotes the universal gas constant

and T is absolute temperature. Subsequently Ding and Lawrence [16] described how

to use the partition function together with a simple backtracking strategy to sample

secondary structures of a from the Boltzmann ensemble of low energy structures.

If s0 is a given secondary structure of length n, we define the dual partition func-

tion

Z∗ = Z∗(s0) =
∑

a∈AA(s0)

exp(−E(a, s0)/RT ) (7)

where the sum is taken over all RNA sequences a = a1, . . . , an of length n that are

compatible with structure s0, i.e. ai, aj constitute a Watson-Crick or wobble pair

for each base pair (i, j) ∈ s0. The set of all RNA sequences that are compatible

with s0 is denoted by AA(s0). Note that if a sequence a is not compatible with

the target structure s0, then the energy E(a, s0) is infinite, so the corresponding

Boltzmann factor exp(−E(a, s0)/RT ) is zero and the sum in equation (7) could

have been written over all sequences of the same length as s0. Here we describe

the efficient software RNAdualPF to compute the dual partition function Z∗ and to

sample from the low energy ensemble of sequences that are compatible with a given

secondary structure s0.

2.1 Dual partition function

If s is a secondary structure on sequence a = a1, . . . , an, then the length of s, denoted

by `(s), is equal to n, while the size of s, denoted by |s|, is the number of base pairs

belonging to s. Similarly, if secondary structure s is restricted to the interval [i, j],

where 1 ≤ i ≤ j ≤ n, then the length of the restriction of s to [i, j], denoted by

`(s[i, j]), is equal to j − i+ 1, while the size of the restriction of s to [i, j], denoted

by |s[i, j]|, is the number of base pairs (x, y) of s that satisfy i ≤ x < y ≤ j.
Given an RNA sequence a = a1, . . . , an, the McCaskill algorithm [15] computes

the partition function Z(a) defined in equation (6). When a is clear from context,

Z(a) is usually denoted by Z.

Given a target secondary structure s0, we describe below an algorithm to compute

the dual partition function Z∗(s0), defined as the sum of all Boltzmann factors

exp(−E(a, s0)), where the sum is taken over all RNA sequences a ∈ AA(s0). Unlike
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the McCaskill algorithm, which requires time that is cubic in the length of a, the

algorithm presented below requires time that is (essentially) linear[1] in the length

of s0. Our algorithm is motivated by the initialization step of the algorithm INFO-

RNA [17], in which a sequence is determined, for which the free energy with respect

to target structure s0 is a minimum – i.e. INFO-RNA determines argminaE(a, s0).

The algorithm specification requires the notation Z∗(i, j;x, y), which denotes the

sum

Z∗(i, j;x, y) =
∑

a[i,j],ai=x,aj=y

exp(−E(a[i, j], s0[i, j])/RT ) (8)

of Boltzmann factors for sequences a[i, j] = ai, . . . , aj for which ai = x, aj = y, and

for the restriction s0[i, j], defined by

s0[i, j] = {(x, y) ∈ s0 : i ≤ x < y ≤ j}. (9)

The function Z∗(i, j;x, y) is defined for all base pairs (i, j) ∈ s0; these values will

be stored in an array, whose rows index base pairs of s0, and whose columns are

indexed by the six canonical base pairs GC, CG, AU, UA, GU, UG (see example in

Table 1). Once Z∗(i, j;x, y) has been computed for all base pairs that are visible,

i.e. for which there is no base pair (x, y) for which x < i < j < y, we can compute

the full partition function Z∗(s0).

Following [17], we define a total ordering on base pairs (i, j) belonging to the

target structure s0 that satisfy the following precedence rule for any two base pairs

(i, j), (x, y).

(i, j) ≺ (x, y)⇔ x < i < j < y or i < j < x < y (10)

From this ordering, we assign a base pair index to each base pair (i, j), which is

defined to be the rank of (i, j) in the total ordering.

The following definitions correspond to the Turner nearest neighbor energy model

[13], which is an additive loop model where a loop closed by external base pair

(i, j) is designated as a k-loop, if the loop contains k base pairs interior to (i, j).

Therefore, hairpin loops are 0-loops; base pair stacks, bulge loops and internal loops

[1]When dangling positions are not included in the computation (-d0), the algorithm

clearly requires linear time. When dangling positions are included (-d2), run time

is exponential in the number of components of the largest multilooop; however, in

practice the algorithm is extremely fast, and it is possible to modify the algorithm

to always run in linear time.
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are 1-loops; and multiloops are k-loops for k ≥ 2 (also called (k+1)-way junctions),

where the additional count is due to the outer component adjacent to (i, j) [18].

Since AU-base pairs that close a loop are energetically unfavorable, in the Turner

energy model, there is an AU-penalty we now define:

eAU (i, j,X, Y ) =

{
0.5 if (i, j) is the outermost pair in a stem of s0, having AU,UA,GU,UG

0 otherwise.

(11)

This AU-penalty is applied only if (i, j) is a base pair adjacent to a triloop, a

bulge, an internal loop or a multiloop, or if it is the outermost base pair of an

external loop in target structure s0, and (i, j) is instantiated by one of the pairs

AU, UA, GU, UG. When base-paired positions i, j are clear from the context, we

write eAU (X,Y ).

Here, we assume that in parsing the input target structure, a listBPcloseELorML

has been created of those base pairs (i, j), which close either an external loop or a

multiloop. Let I be the indicator function, it follows that if (i, j) closes an external

loop or multiloop, then exp
(
− I[(i,j)∈BPcloseELorML]·eAU (X,Y )

RT

)
is the Boltzmann

factor for a special AU-penalty, otherwise this factor equals 1. For clarity in the

notation, this factor is denoted by e(−
eIAU (X,Y )

RT ). Note that this term is distinct from

the factor exp(− eAU (X,Y )
RT ) applied to base pairs adjacent to a triloop, a bulge or

an internal loop, which does not depend on the indicator function.

2.1.1 Hairpins

Let (i, j) close a hairpin in s0. The hairpin free energy term H(j − i − 1), arising

solely from entropic considerations, is defined by

H(j − i− 1) =

{
hairpinE(j − i− 1) if j − i− 1 ≤ 30

hairpinE(30) + 1.75RT ln
(
j−i−1

30

)
otherwise

(12)

where hairpinE(j − i − 1) designates the hairpin free energy obtained from table

look-up, when j − i− 1 ≤ 30.

Triloop Let TriLoopx,y denote the collection of special triloops, xabcy, having an

energy bonus triloopE(xabcy).

Z∗(i, j;x, y) = e(−
eIAU (x,y)

RT ) · exp(−H(j − i− 1) + eAU (xy)

RT
)· (13)(43 − |TriLoopx,y|) +

∑
abc∈TriLoopx,y

exp(− triloopE(xabcy)

RT
)


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Tetraloop Let TetraLoopx,y denote the collection of special tetraloops, xabcdy,

having an energy bonus tetraloopE(xabcdy). Similarly, given nucleotides n1, n2 ∈
N , TetraLoopx,y(n1, n2) denotes the collection of special tetraloops of the form

xn1abn2y. Define Z∗(i, j;x, y) by

Z∗(i, j;x, y) = e(−
eIAU (x,y)

RT ) · exp(−H(j − i− 1)

RT
)· (14)∑

n1,n2∈N

(
exp(−mismatch(x, y, n1, n2)

RT
)·

{
(42 − |TetraLoopx,y(n1, n2)|)+

∑
ab∈TetraLoopx,y(n1,n2)

exp(− tetraloopE(xn1abn2y)

RT
)
}

Hexaloop Let HexaLoopx,y denote the collection of special hexaloops, xabcdefy,

having an energy bonus hexaloopE(xabcdefy). Similarly, given nucleotides n1, n2,

HexaLoopx,y(n1, n2) denotes the collection of special hexaloops of the form

xn1abcdn2y. Define Z∗(i, j;x, y) by

Z∗(i, j;x, y) = e(−
eIAU (x,y)

RT ) · exp(−H(j − i− 1)

RT
)· (15)∑

n1,n2∈N

(
exp(−mismatch(x, y, n1, n2)

RT
)·

{
(44 − |HexaLoopx,y(n1, n2)|) +

∑
ab∈HexaLoopx,y(n1,n2)

exp(−HexaloopE(xn1abcdn2y)

RT
)




Hairpin size exceeds four and is different than six Define Z∗(i, j;x, y) by

Z∗(i, j;x, y) = e(−
eIAU (x,y)

RT ) · exp(−H(j − i− 1)

RT
)· (16) ∑

n1,n2∈N
exp(−mismatch(x, y, n1, n2)

RT
) · 4j−i−3


2.1.2 Stacked base pairs, bulges and internal loops

Here, we consider the case of a 1-loop, which comprises the case of stacked base

pairs, bulges and internal loops. The following cases correspond to each possibility.

Stacked base pair In this case, (i, j) stacks on the base pair (i+ 1, j − 1), and the

partition function Z∗(i + 1, j − 1;U, V ) has been computed. Let stack(X,Y, U, V )
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denote the free energy of base stack
5′-XU-3′

3′-YV-5′
obtained by table look-up.

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) ·
∑
UV ∈B

exp(−stack(X,Y, U, V )

RT
) · Z∗(i+ 1, j − 1, U, V )

(17)

Bulge loop In this case, (i, j) closes a bulge in s0. Since bulge size may exceed the

values in table look-up, we define the free energy for a bulge of size r by

bulge(r) =

{
bulgeE(r) if r ≤ 30

bulgeE(30) + 1.75RT ln
(
r
30

)
otherwise.

(18)

If (i, j) closes a left bulge of size r in s0, then the bulge is closed by base pair

(i+ r + 1, j − 1) involving nucleotide pair U, V , and

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) ·
∑
UV ∈B

exp(−eAU (i, j,X, Y )

RT
)· (19)

exp(−bulge(r)
RT

) · 4r · Z∗(i+ r + 1, j − 1, U, V )

while if (i, j) closes a right bulge in s0, then the bulge is closed by base pair

(i+ 1, j − r − 1) involving nucleotide pair U, V , and

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) ·
∑
UV ∈B

exp(−eAU (i, j,X, Y )

RT
)· (20)

exp(−bulge(r)
RT

) · 4r · Z∗(i+ 1, j − r − 1, U, V )

Internal loop In this case, (i, j) closes an internal loop in s0, whose left [resp.

right] portion is of size r1 [resp. r2]. Since internal loop size r = r1 + r2 may exceed

the values in table look-up, we define the free energy for an internal loop of size r by

internal(r) =

{
internalE(r) if r ≤ 30

internalE(30) + 1.75RT ln
(
r
30

)
otherwise.

(21)

The closing base pair (i+ r1 + 1, j− r2− 1) of the internal loop of size r = r1 + r2

may involve the nucleotides UV ∈ B, while the unpaired (mismatch) nucleotides in

positions i+1, j−1, i+r1, j−r2 may involve A,B,C,D ∈ N . In addition, there is an
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energy penalty for non symmetric internal loops, min(asym · |r1 − r2|,maxAsym),

where the value of the constants asym and maxAsym are given in the Turner en-

ergy model. Thus

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) · exp(−min(asym · |r1 − r2|,maxAsym)

RT
)·∑

UV ∈B

∑
A,B,C,D∈N

exp(−eAU (i, j,X, Y )

RT
) · exp(− internal(r1 + r2)

RT
)·

4r1+r2−4·

exp(−mismatch(X,Y,A,B) +mismatch(V,U,D,C)

RT
)· (22)

Z∗(i+ r1 + 1, j − r2 − 1, U, V ) (23)

2.1.3 External loop

Despite the fact that, by following the total order on base pairs defined in equa-

tion (10), the dual partition function of multiloops is always computed before the

dual partition function of the external loop, the computation of the dual partition

function of multiloops will be easier to understand if the dual partition function of

the external loop is defined in advance.

In order to improve speed, some implementations of RNA thermodynamics-based

algorithms ignore the contribution of dangling positions, which corresponds to

Vienna RNA Package -d0 flag. RNAdualPF also includes this option, which dra-

matically increases the speed of the algorithm. The reason behind this difference of

performance is clear from the following definitions.

Suppose that H = [(i1, j1), . . . , (ik, jk)] constitutes the list of k external base pairs

of s0, where i1 < j1 < i2 < j2 < · · · < ik < jk. For each (ir, jr), with 1 ≤ r ≤ k, and

for each choice of base pair GC, CG, AU, UA, GU, UG, the value Z∗(ir, jr;Xr, Yr)

has been previously computed and stored by dynamic programming, as well as

the sum Z∗(ir, jr). When the contribution of dangles is ignored, the dual partition

function of an external loop with ` nucleotide positions external to every base pair

is defined by

Z∗(s0) = 4` ·
k∏
r=1

Z∗(ir, jr) (24)

where ` = n−
∑

r=1,...,k

(jr − ir + 1) and n is the length of the target structure s0.

The default treatment of dangles in RNAdualPF described below corresponds to

Vienna RNA Package -d2 flag, where both flanking positions of each external base

pair contribute to the free energy. Let D = [a1, b1, . . . , ak, bk] ⊆ [i1 − 1, j1 +

1, · · · , ik, jk] be a list of those nucleotide positions that are adjacent to the k external

base pairs (i1, j1), . . . , (ik, jk). The ordered multiset [a1, b1, . . . , ak, bk] can be consid-

ered as a collection of constraints, so that (for instance) if a2 = i2−1, and a2 = j1+1,
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then a2 = b1 and any nucleotide value that is assigned to b1 must simultaneously

be assigned to a2. Moreover, there can also be an overlap between the list of base

paired positions in H [i1, j1, . . . , ik, jk] and the multiset D = [a1, b1, . . . , ak, bk]. If

(for instance) j1 = i2 − 1, then b1 = i2 and a2 = j1. Therefore, in the computation

we have to account for these constraints. Let m denote the number of unpaired

positions in D, without repetitions, and define Ar, Br as the nucleotides instan-

tiated respectively at ar, br. The energy term for a 5′-dangle [resp. 3′-dangle] on

base pair (x, y) with nucleotides U, V is denoted by Ed5(x, y, x − 1;U, V,W ) [resp

Ed3(x, y, y + 1;U, V,W )] where the dangle position x − 1 [resp. y + 1] is assigned

nucleotide W . With the notation just described, we have

Z∗(s0) =
∑

〈(U1,V1),...,(Uk,Vk)〉∈Bk

∑
{A1,B1,...,Ak,Bk∈N 2k}

4`−m· (25)

k∏
r=1

(
Z∗(ir, jr;Ur, Vr) · exp(−Ed5(ir, jr, ar;Ur, Vr, Ar) + Ed3(ir, jr, br;Ur, Vr, Br)

RT

)

Depending on the target structure s0, it can happen that the second sum of

equation (25) must be restricted to range over strictly less than 42k many RNA

sequences. This is explained as follows. If i1 = 1 [resp. jr = n] then there is no

position for a 5′ [resp. 3′] dangle, and hence the nucleotide sequences considered in

the second summation would have length strictly less than 2k. Moreover, certain 5′

dangled positions could be identical to 3′ dangle positions, which arises for instance

when jk + 2 = ik+1; alternatively, certain dangled positions could be identical with

base-paired positions, which arises for instance when jk + 1 = ik+1. In such situa-

tions, instantiations of the 3′-dangle on (ik, jk) and the 5′-dangle on (ik+1, jk+1) are

not independent, thus leading to a restriction of the range of the second summation

in equation (25). A similar restriction is implicitly assumed in the treatment of

external loops in this section and of multiloops in the next section.

The algorithm performance can be improved by dividing the external loop into

groups of components having interdependently constrained dangling positions, as

just explained. Define two base pairs (x, y), (x′, y′) as adjacent if x < y < x′ <

y′ and x′ − y ≤ 2 – i.e. dangling positions of the base pairs (x, y), (x′, y′) are

constrained. Let G denote a maximal collection of adjacent base pairs belonging

to H = [(i1, j1), . . . , (ik, jk)], together with their associated dangle positions in

D = [i1 − 1, j1 + 1, . . . , ik − 1, jk + 1]. It is important to note that H ∪ D is thus

partitioned into a collection of g disjoint groups G = [G1, . . . , Gg]. Therefore, we

can divide an external loop of k helices into a collection groups G of size g ≤ k, and

p unpaired positions that are external to every base pair of s0 and not adjacent to

any base pair.

For a group G with h base pairs, let H(G) = [(κ1, λ1), . . . , (κk, λk)] denote the list

of base pairs in G, and let D(G) = [α1, β1, . . . , αh, βh] ⊆ [κ1 − 1, λ1 + 1, · · · , κh −
1, λh + 1] denote their associated dangle positions. If Ur, Vr, Ar, Br denote the nu-

cleotides instantiated at the base pair r = (κr, λr) and its respective dangling

positions αr, βr respectively, then the dual partition function of G is the following.
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Z∗(G) =
∑

〈(U1,V1),...,(Uh,Vh)〉∈Bh

∑
{A1,B1,...,Ah,Bh∈N 2h}

(26)

h∏
r=1

(
Z∗(κr, λr;Ur, Vr) · exp(−Ed5(κr, λr, αr;Ur, Vr, Ar) + Ed3(κr, λr, βr;Ur, VrBr)

RT

)

where the range of the second summation can be constrained by the overlap among

positions in D(G) and between positions in D(G) and H(G), as explained for equa-

tion (25).

Finally, since there are no shared dangling positions between groups, the dual

partition function of an external loop is defined by

Z∗(s0) = 4p ·
g∏
r=1

Z∗(Gr). (27)

2.1.4 Multiloop

Suppose that (i, j) closes a multiloop in s0, which is a k-loop, or (k + 1)-way junc-

tion, for k > 1, where there are ` unpaired bases in the multiloop. Suppose that

the k components of the multiloop are closed by the base pairs (i1, j1), . . . , (ik, jk)

with the property that i < i1 < j1 < i2 < j2 < · · · < ik < jk < j. Assume that

for all nucleotide choices in B for each of the k base pairs of the multiloop (ir, jr),

for 1 ≤ r ≤ k, the value Z∗(ir, jr;Xr, Yr) has previously been computed and stored

by dynamic programming, as well as the sum Z∗(ir, jr). The computation of the

dual partition function is similar to that of the external loop. However, in this case

we have to add the contribution of the base pair closing the multiloop (i, j), the

AU-penalties applied to this base pair, and the energetic penalty of a multiloop

a + b · (k + 1) + c · `, where the values of the constants a, b and c are given in

the Turner energy model. Then, the dual partition function of a multiloop without

accounting for dangling positions is

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) · exp(−a+ b · (k + 1) + c`

RT
) · 4`· (28)

exp(−eAU (i, j,X, Y )

RT
) ·

∑
〈(U1,V1),...,(Uk,Vk)〉∈Bk

k∏
r=1

Z∗(ir, jr;Ur, Vr)

The notation we use to define the dual partition function of multiloops with dangling

positions is similar to that described for external loops. However, some modifica-

tions are required in the previously given definitions, since we have to take into

account the flanking positions of the base pair (i, j) closing the multiloop. Let H =

[(i1, j1), . . . , (ik, jk), (i, j)] be the collection of k base pairs closing one of the k com-

ponents of the multiloop, and the base pair (i, j) closing the multiloop, and define
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the multiset D = [a1, b1, . . . , ak+1, bk+1] ⊆ [i1−1, j1+1, · · · , ik−1, jk+1, i+1, j−1]

of nucleotide positions adjacent to the base pairs in H. Due to the possible over-

lap with the base pair closing the multiloop and its flanking positions, there are

additional constraints in the ordered multiset [a1, b1, . . . , ak+1, bk+1], so that (for

instance) if a1 = i1 − 1, and i1 = i + 1, then a1 = ak+1 and any nucleotide value

that is assigned to a1 must simultaneously be assigned to ak+1. Moreover, there

can also be an overlap between the list of base paired positions [i1, j1, . . . , ik, jk, i, j]

and the multiset [a1, b1, . . . , ak+1, bk+1]. If (for instance) i = i1 − 1, then ak+1 = i1
and a1 = i.

Let m denote the number of unpaired positions in D, without repetitions. Then,

the dual partition function of a multiloop with dangling positions is defined as fol-

lows.

Z∗(i, j;X,Y ) = e(−
eIAU (X,Y )

RT ) ·
∑

〈(U1,V1),...,(Uk,Vk)〉∈Bk

∑
{A1,B1,...,Ak+1,Bk+1∈N 2(k+1)}

exp(−a+ b · (k + 1) + c`

RT
) · 4`−m · exp(−eAU (i, j,X, Y )

RT
)·

k∏
r=1

(
Z∗(ir, jr;Ur, Vr) · exp(−Ed5(ir, jr, ar;Ur, Vr, Ar) + Ed3(ir, jr, br;Ur, Vr, Br)

RT

)
·

exp(−Ed3(j, i, ak+1;Y,X,Ak+1) + Ed5(j, i, bk+1;Y,X,Bk+1)

RT
)

(29)

As explained for equation (25), it can happen that the second summation must

be restricted to range over strictly less than 42k many RNA sequences.

A decomposition similar that for external loops can be performed to improve

the performance in the computation of the dual partition function of a multiloop.

In a multiloop, in addition to the adjacency definition given for external loops, we

consider the base pair (i, j) that closes the multiloop as adjacent to a base pair (x, y)

that closes a component of the multiloop, where i < x < y < j, if either x ≤ i+2 or

y ≥ j− 2. Then, let G denote a maximal collection of adjacent base pairs belonging

to H = [(i1, j1), . . . , (ik, jk), (i, j)], together with their associated dangle positions

in D = [i1 − 1, j1 + 1, . . . , ik − 1, jk + 1, i + 1, j − 1]. This decomposition produces

a collection G of g disjoint groups G1, . . . , Gg, one of which, designated the closing

group Gc contains the closing base pair (i, j) of the multiloop, and g − 1 of which,

designated as non-closing groups Gnc, do not contain the base pair (i, j).

Non-closing groups have the same composition as those defined for external loops

– i.e. a collection of h base pairs H(Gnc) = [(κ1, λ1), . . . , (κh, λh)] and a set of

dangling positions D(Gnc) = [α1, β1, . . . , αh, βh] ⊆ [κ1−1, λ1+1, · · · , κh−1, λh+1].

Therefore, we can compute the dual partition function Z(Ggc) of a non-closing group

as described in equation (26). In addition, the collection of non-closing groups of

size g− 1 of a multiloop of k components is denoted by Gnc, where 0 ≤ (g− 1) ≤ k.

Therefore, a multiloop of k components and ` unpaired positions can be decom-

posed into one closing group Gc, a collection of non-closing groups Gnc, and p

unpaired positions that are not adjacent to any base pair, with 0 ≤ p ≤ `.
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In a non-closing group, the collection of base pairs of size h+ 1 is denoted by

H(Gc) = [(κ1, λ1), . . . , (κh, λh), (i, j)], where the base pair (i, j) closing the multi-

loop is at the last position. The ordered multiset of adjacent positions is denoted

by D(Gc) = [α1, β1, . . . , αh+1, βh+1] ⊆ [κ1−1, λ1 +1, · · · , κh−1, λh+1, i+1, j−1],

where the positions adjacent to i and j are at the last positions are respectively

denoted by αh+1, βh+1. A graphical example of a closing group and a non-closing

group is shown in Figure 1e, where the positions of a non-closing group with 1 base

pair are highlighted in green and the positions of the closing group are highlighted

in red and blue, and where the base pair (i, j) that closes the multiloop is depicted

in red.

For a closing groupGc with h+1 base pairs inH(Gc) = [(κ1, λ1), . . . , (κh, λh), (i, j)]

and their flanking positions D(Gc) = [α1, β1, . . . , αh+1, βh+1] ⊆ [κ1 − 1, λ1 +

1, · · · , κh − 1, λh + 1, i + 1, j − 1], let X,Y denote the nucleotides assigned to the

closing base pair of the multiloop (i, j), and let Ur, Vr, Ar, Br denote the nucleotides

assigned respectively to the base pair r = (κr, λr, ) and its flanking positions αr, βr.

Then, the the dual partition function Z∗(Gc;X,Y ) of the closing group is defined by

e(−
eIAU (X,Y )

RT ) ·
∑

〈(U1,V1),...,(Uk,Vh)〉∈Bh

∑
{A1,B1,...,Ah+1,Bh+1∈N 2(h+1)}

exp(−eAU (i, j,X, Y )

RT
)·

h∏
r=1

(
Z∗(κr, λr;Ur, Vr) · exp(−Ed5(κr, λr, αr;Ur, Vr, Ar) + Ed3(κr, λr, βr;Ur, Vr, Br)

RT

)
·

exp(−Ed3(j, i, αh+1;Y,X,Ah+1) + Ed5(j, i, βh+1;Y,X,Bh+1)

RT
) (30)

In the same way as in equation (25), the values of the second summation are

constrained to the possible choices among overlapping positions.

Then, the dual partition function Z∗(i, j;X,Y ) of the multiloop with k compo-

nents and ` unpaired positions, where p of which are not adjacent to any base pair,

is defined by

Z∗(i, j;X,Y ) = exp(−a+ b · (k + 1) + c`

RT
) · 4p· (31)

Z∗(Gc;X,Y ) ·
∏

Gnc∈Gnc

Z∗(Gnc)

2.2 Sampling

Once the dual partition function Z∗(i, j) and its subcases Z∗(i, j;X,Y ) for each

base pair (i, j) have been computed, it is possible to perform a Boltzmann weighted

sampling of positions i and j. For example, given the target structure with sequence

constraints depicted in Figure 2, RNAdualPF computes the dual partition function

table shown in Table 1. The dual partition function of the substructure enclosed

by the base pair (i, j) is Z∗(i, j), and the dual partition function of the substruc-

ture enclosed by the base pair (i, j) where i, j are currently instantiated by the
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nucleotides X,Y is denoted by is Z∗(i, j;X,Y ). Therefore, the Boltzmann proba-

bility of X,Y at positions i, j in the substructure enclosed by the base pair (i, j) is

Z∗(i, j;X,Y )/Z∗(i, j) and can be sampled using the roulette wheel method.

Due to the Turner energy model, it is necessary to determine nucleotide positions

whose instantiation influences the energy (hence Boltzmann probability) of other

positions, and subsequently all mutually dependent positions must be instantiated

simultaneously. Figure 1 illustrates the mutual dependencies that must be consid-

ered when sampling different types of elements, where the base pair (i, j) to be

sampled is highlighted in red, positions whose sampling probability is dependent on

the instantiation of (i, j) are highlighted in blue, and positions that are mutually

dependent, but independent of the instantiation of (i, j), are highlighted in green.

Since the dynamic programming algorithm for the dual partition function proceeds

from inner to outer base pairs, using the total ordering ≺ in equation (10), the

sampling order of base pairs proceeds from outer to inner positions, i.e. from largest

base pair index to smallest. In order to account for mutual dependencies in the

sampling step, we define the function sample(k, T, i, j,X, Y ) for each base pair (i, j)

in S0, where k indicates the base pair index defined from equation (10), T indicates

the type of structural element closed by base pair (i, j) in the target RNA secondary

structure, as shown in Table 1, and X,Y are the instantiated nucleotides at positions

(i, j). Due to the mutual dependencies, sampling a base pair with base pair index k

closing an m-loop, for m > 0, forces the instantiation of all inner closing base pairs

of the m-loop, and the base pair index of each such inner base pair is strictly less

than k. For this reason, except in the case of external loops, the outermost base

pair (i, j) has been always instantiated before sample(k, T, i, j,X, Y ) is called, and

therefore the instantiation X,Y is given as a parameter of the sampling function.

The Boltzmann probability of each possible instantiation of mutually dependent

positions can be computed on the fly in the backward step. However, in order to

improve the speed of the algorithm, in the forward step RNAdualPF stores (for each

base pair) the conditional dual partition function values of instantiations of interde-

pendent positions. These tables are used by the sampling function, since each value

corresponds to the dual partition function conditional on a specific instantiation of

the positions to be sampled by sample(k, T, i, j,X, Y ). Since the sampling procedure

depends on the type T of element, we describe the function sample(k, T, i, j,X, Y )

for each type of element – hairpin, stacked base pair, internal loop (which also com-

prises left and right bulge), multiloop and external loop as depicted in Figure 1. For

each of these cases, the values are stored in the conditional dual partition function

table associated with the closing base pair (i, j).

2.2.1 Hairpins

When hairpin size exceeds three (Figure 1a), since the base pair (i, j) has been

previously instantiated, flanking positions i + 1,j − 1 are sampled first. Given the

current assignment X,Y , the Boltzmann probability of sampling respectively the

nucleotides U, V at the flanking positions i+ 1,j − 1 is

P (i+ 1 = U, j − 1 = V |i = X, j = Y ) =
Z∗(i, j, i+ 1, j − 1;X,Y, U, V )

Z∗(i, j;X,Y )
(32)
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Therefore, in the forward step RNAdualPF stores in a table the conditional dual

partition function of each possible instantiation {X,Y, U, V } of the base pair (i, j)

and its flanking positions i+ 1,j − 1 respectively, defined by

Z∗(i, j, i+ 1, j − 1;X,Y, U, V ) = e(−
eIAU (X,Y )

RT ) · exp(−H(j − i− 1)

RT
)· (33)

exp(−mismatch(X,Y, U, V )

RT
) · 4j−i−3

Then, remaining unpaired positions are uniformly sampled, since the nucleotide

choice does not change the final free energy. Triloops, tetraloops and hexaloops are

exceptions to this rule, since there are special loops that contribute to or penalize

the free energy. In those cases, we have to account for the special loops, as defined

in Section 2.1.1.

Although it could seem to be a waste of space to store a different conditional dual

partition function table for each base pair (i, j), even for two different hairpins of the

same size in the target structure, one should note that RNAdualPF allows sequence

constraints, and thus Z∗(i, j) could possibly differ from Z∗(i′, j′) when (i, j) and

(i′, j′) close hairpins of the same size.

2.2.2 Stacking base pairs

As depicted in Figure 1b, sampling probability of a base pair with base pair index

k−1 is dependent on the value sampled at the adjacent stacking base pair with base

pair index k. Therefore, sample(k, Stack, i, j,X, Y ) samples the base pair (i+1, j−1)

using the conditional probability given the instantiation of base pair (i, j) by X,Y ,

defined as follows:

P (i+ 1 = U, j − 1 = V |i = X, j = Y ) =
Z∗(i, j, i+ 1, j − 1;X,Y, U, V )

Z∗(i, j;X,Y )
(34)

The conditional dual partition function values stored in the forward step correspond

to each instantiation {X,Y, U, V } of the base pairs (i, j), (i+ 1, j − 1), denoted by

Z∗(i, j, i+ 1, j − 1;X,Y, U, V ) = e(−
eIAU (X,Y )

RT ) · exp(−stack(X,Y, U, V )

RT
)·

Z∗(i+ 1, j − 1, U, V ) (35)

2.2.3 Internal loops

The energy contribution of internal loops in the Turner energy model depends on the

flanking unpaired positions of both the inner and outer closing base pairs, hence the

sampling probability of the inner base pair cannot be separated from the adjacent

unpaired positions. Moreover, for specific sizes of internal loop (1× 1, 1× 2, 2× 1,

1×N and N × 1), the inner and outer closing base pairs share flanking positions.

In these cases, all the unpaired positions and the outer base pair must be sampled
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at the same time, since the energy contribution of each combination of base pairs

and flanking positions is different. In the 1× 3 internal loop depicted in Figure 1c,

if the outer base pair (i, j) is instantiated by X,Y , then let P (k = U, l = V, n1 =

A,n2 = B,n3 = C|i = X, j = Y ) denote the probability of sampling the nucleotides

U, V,A,B,C respectively at positions k, l, n1, n2, n3, where (k, l) is the inner closing

base pair, n1 is the flanking position at i+1 shared by the base paired positions i and

k, and n2 and n3. In the following equation, let P (U, V,A,B,C|X,Y ) abbreviate

the conditional probability just defined. Then

P (U, V,A,B,C|X,Y ) =
Z∗(i, j, k, l, n1, n2, n3;X,Y, U, V,A,B,C)

Z∗(i, j;X,Y )
(36)

RNAdualPF computes and stores the conditional dual partition function of each pos-

sible instantiation {X,Y, U, V,A,B,C} respectively at positions i, j, k, l, n1, n2, n3,

where the value Z∗(i, j, k, l, n1, n2, n3;X,Y, U, V,A,B,C) is defined by

e(−
eIAU (X,Y )

RT ) · exp(−min(asym · |(k − i)− (j − l)|,maxAsym)

RT
)· (37)

4j−l−3 · exp(−eAU (i, j,X, Y )

RT
) · exp(− internal(k − i+ j − l − 2)

RT
)·

exp(−mismatch(X,Y,A,B) +mismatch(V,U,C,A)

RT
) · Z∗(k, l, U, V )

For internal loops of sizes (1×1, 1×2, 2×1, 1×N and N×1) similar conditional dual

partition function tables are computed following the definitions in Section 2.1.2.

Other internal loops: When there are no shared flanking positions between the

two base pairs that close an internal loop, as depicted in Figure 1d, the energy con-

tribution of innermost base pair and its respective flanking positions is independent

of those of the outermost base pair.

In this case, RNAdualPF samples first the flanking positions i + 1, j − 1 of the

outermost base pair (i, j), whose sampling probability is solely dependent on the

instantiated nucleotides X,Y at positions i, j. Is not necessary to store any condi-

tional dual partition function for sampling these positions, since the probability of

sampling the values A,B at the flanking positions i+ 1, j− 1, given the assignment

X,Y is defined by

P (i+ 1 = A, j − 1 = B|i = X, j = Y ) =
exp(−mismatch(X,Y,A,B)

RT )∑
C,D∈N exp(−mismatch(X,Y,C,D)

RT )

(38)

where mismatch penalties are obtained from table look-up. Finally, the innermost

base pair (k, l) and its flanking positions k − 1, l + 1 are sampled together. In this

case, we need to store an additional value Z∗(k − 1, l + 1), which is given by
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Z∗(k − 1, l + 1) =
∑
UV ∈B

∑
C,D∈N

exp(−mismatch(V,U,D,C)

RT
) · Z∗(k, l, U, V )

(39)

Then, following the same notation, the probability of sampling the nucleotides

V,U,D,C respectively at positions k, l, k − 1, l + 1 is

P (k = V, l = U, k − 1 = D, l + 1 = C) =
Z∗(k, l, k − 1, l + 1;V,U,D,C)

Z∗(k − 1, l + 1)
(40)

Therefore, the conditional dual partition function of each possible instantiation

{V,U,D,C} stored in the corresponding table is defined as

Z∗(k, l, k − 1, l + 1;V,U,D,C) = exp(−mismatch(V,U,D,C)

RT
)· (41)

Z∗(k, l, U, V )

Finally, since the remaining unpaired position does not contribute to the free energy,

it is uniformly sampled.

2.2.4 Multiloops and external loops

As explained in Section 2.1.3, if dangling positions are not included in the compu-

tation, sampling an external base pair or the closing base pair (i, j) of a multiloop

from Z∗(i, j) is trivial. On the other hand, by including dangling positions in the

sampling, there is a dramatic increase in the space complexity of RNAdualPF, albeit

the space used is only a constant factor larger. However, the decompositions into

groups described in Sections 2.1.3 and 2.1.3 allow to sample the positions of each

group independently.

The example shown in Figure 1e depicts a multiloop with two groups: a non-

closing group Gnc highlighted in green, and a closing group Gc highlighted in red

and blue, where the closing base pair of the multiloop (i, j) is marked in red.

In a non-closing group Gnc all base pairs in H(Gnc) and dangling positions in

D(Gnc) must be sampled together. Therefore, the conditional dual partition func-

tion of each possible instantiation of nucleotides at the h closing pairs in H(Gnc)

and their adjacent positions in D(Gnc) is stored. Let U = {U1, V1, . . . , Uh, Vh} de-

note an instantiation of the h base pairs in H(Gnc) = [κ1, λ1, . . . , κh, λh], and let

W = {A1, B2, . . . , Ah, Bh} denote an instantiation of the h flanking positions in

D(Gnc) = [α1, β1, . . . , αh, βh] in the non-closing group Gnc. Then, the probability

of sampling U ,W is
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P (H(Gnc) = U , D(Gnc) =W) =
Z∗(G,H(Gnc), D(Gnc);U ,W)

Z∗(G)
(42)

Therefore, the conditional dual partition function of each instantiation U ,W at

H(Gnc), D(Gnc), stored in the table of the group, is defined by

Z∗(G,H(Gnc), D(Gnc);U ,W) =

h∏
r=1

(
Z∗(κr, λr;Ur, Vr)· (43)

exp(−Ed5(κr, λr, αr;Ur, Vr, Ar) + Ed3(κr, λr, βr;Ur, Vr, Br)

RT
)

)

Recall that the base pairs in H(Gnc) are adjacent. Therefore, due the constraints

given by the overlapping positions within D(Gnc), and between D(Gnc) and

H(Gnc), explained in Section 2.1.3, the number of possible instantiations U ,W
of H(Gnc), D(Gnc) is ≤ (6h · 4h+1).

In a similar way, sampling from the closing group Gc closed by the base pair

(i, j), with h + 1 base pairs in H(Gc) and their corresponding flanking posi-

tions in D(Gc) requires us to store the conditional dual partition function of

each instantiation of nucleotides {X,Y,U ,W} respectively at i, j,H(Gc), D(Gc),

where U = {U1, V1, . . . , Uh, Vh} denotes an instantiation of the h first base pairs

[(κ1, λ1), . . . , (κh, λh)] in H(Gc) ,W = {A1, B2, . . . , Ah+1, Bh+1} denotes an instan-

tiation of the 2 · (h+ 1) flanking positions in D(Gc) = [α1, β1, . . . , αh+1, βh+1], and

X,Y denotes an instantiation of (i, j). The probability of the instantiation U ,W,

given the nucleotides X,Y is

P (H(Gc) = U , D(Gc) =W|i = X, j = Y ) =
Z∗(Gc, i, j,H(Gc), D(Gc);X,Y,U ,W)

Z∗(Gc;X,Y )

(44)

Then, the values stored in the table of the closing group correspond to the con-

ditional dual partition function of each instantiation {X,Y,U ,W} are given by

Z∗(Gc, i, j,H(Gc), D(Gc);X,Y,U ,W), which is defined by the following expression:

e(−
eIAU (X,Y )

RT ) · exp(−eAU (i, j,X, Y )

RT
) ·

h∏
r=1

(
(Z∗(κr, λr;Ur, Vr)·

exp(−Ed5(κr, λr, αr;Ur, Vr, Ar) + Ed3(κr, λr, βr;Ur, Vr, Br)

RT
)

)
·

exp(−Ed3(j, i, αh+1;Y,X,Ah+1) + Ed5(j, i, βh+1;Y,X,Bh+1)

RT
) (45)
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As a final remark, we would like to recall that all the conditional dual partition

function values are computed and stored in the forward step at the same time

as the dual partition function. Therefore, despite the consequent increase of space

complexity in the algorithm, the computation of the values required for correct

sampling does not involve a greater time complexity.

2.3 Scaling

The sequence partition function Z∗(s0) grows much faster than the usual structure

partition function Z(a), and so scaling must be used in the implementation. Let

C > 2 be a user-defined constant. By a slight modification of the previous recursions,

we actually compute Z†(i, j;X,Y ) = Z∗(i,j;X,Y )
Cj−i+1 , and hence Z†(s0) = Z∗(s0)

Cn , where

n is the length of s0. For instance, the analogue of equation (16) is

Z† =
Z∗(i, j;x, y)

Cj−i+1
(46)

= e(−
eIAU (x,y)

RT ) ·
exp(−H(j−i−1)

RT )

Cj−i+1
· ∑

n1,n2∈N
exp(−mismatch(x, y, n1, n2)

RT
) · 4j−i−3


and the analogue of equation (17) is

Z† =
Z∗(i, j;X,Y )

Cj−i+1
(47)

= e(−
eIAU (X,Y )

RT ) · 1

2
·
∑
UV ∈B

exp(−stack(X,Y, U, V )

RT
) · Z†(i+ 1, j − 1, U, V )

This modification does not affect properties of sequences sampled from the low en-

ergy ensemble, since the same scaling factor appears in both the numerator and

denominator of all conditional probabilities. For instance, the analogue of equa-

tion (32) is

P (i+ 1 = U, j − 1 = V |i = X, j = Y ) =
Z∗(i, j, i+ 1, j − 1;X,Y, U, V )

Z∗(i, j;X,Y )
(48)

=
Z†(i, j, i+ 1, j − 1;X,Y, U, V )

Z†(i, j;X,Y )

2.4 Controlling GC-content

The GC-content of an RNA sequence a = s1, . . . , sn is the number of nucleotides

that are either G or C. Instead of computing Z∗(i, j;X,Y ) and Z∗(s0), we can

compute Z∗(i, j;X,Y ;α) and Z∗(s0, α), defined to be the corresponding partition

dual partition functions, restricted to sequences having GC-content of α. Note well

that GC-content α includes the closing nucleotides X and Y respectively located

at positions i and j; i.e.

Z∗(i, j;X,Y ;α) =
∑

ai,...,aj ,GC(ai,...,aj)=α
ai=X,aj=Y,ai+1,...,aj−1∈N

exp(−E(ai, . . . , aj ; s0[i, j])/RT )
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where s0[i, j] denotes the restriction of target structure s0 to the interval [i, j]. We

describe two particular subcases, to provide the idea of how modifications need to

be undertaken.

2.4.1 Triloop

Note that the number of RNA sequences of length m having GC-content of α is(
m
α

)
· 2α · 2m−α =

(
m
α

)
· 2m ≤ 4m, since α selected positions must be either G or C,

yielding the term 2α, while the remaining m − α positions must be either A or U,

yielding the term 2m−α. Assume that γ(XY ) = |{X,Y } ∩ {G,C}| = β. Then

Z∗(i, j;X,Y ;α) = e(−
eIAU (X,Y )

RT ) · exp(−H(j − i− 1) + eAU (xy)

RT
)· (49)(j − i− 1

(α− β)

)
· 2j−i−1 − |TriLoopx,y|+

∑
abc∈TriLoopx,y

γ(abc)=α−β

exp(− triloopE(xabcy)

RT
)


2.4.2 Multiloop and external loop

Assume that (i, j) closes a multiloop, which is a (k + 1)-way junction with ` un-

paired nucleotides. Assume that the ordered multiset of potential dangle positions

is D = [a1, b1, . . . , ak+1, bk+1], where ar = ir − 1 and br = jr + 1 for r = 1, . . . , k,

and ak+1 = i and bk+1 = j, and assume that there are m unpaired positions that

are not adjacent to a base pair in the multiloop. If r denotes an RNA sequence of

arbitrary length, then let the function γ(r) denote the GC-count in r. Given an

assignment of nucleotide base pairs U1V1, . . . , UkVk to (i1, j1), . . . , (ik, jk), where

UrVr ∈ {GC,CG,AU,UA,GU,UG}, and given an assignment A1, B1, . . . , Ak, Bk

of dangle nucleotides, where Ar, Br ∈ N , for r = 1, . . . , k, we let

γ(AB) = γ(A1, . . . , Ak, B1, . . . , Bk). (50)

Then the dual partition function of a multiloop with a GC-content of α is defined

by setting Z∗(i, j;X,Y ;α) equal to the following:

e(−
eIAU (X,Y )

RT ) ·
∑

α1+···+αk≤α

∑
{Ur,Vr∈B:r=1,...,k}

∑
{A1,B1,...,Ak,Bk∈N 2k}

(51)

exp(−a+ b · (k + 1) + c`

RT
) ·
(

(`−m)

(α−
∑k
r=1 αr − γ(AB))

)
· 2` · exp(−eAU (i, j,X, Y )

RT
)·

k∏
r=1

(
Z∗(ir, jr;Ur, Vr;αr) · exp(−Ed5(ir, jr, ar;Ur, Vr, Ar) + Ed3(ir, jr, br;Ur, Vr, Br)

RT

)
·

exp(−Ed3(j, i, ak+1;Y,X,Ak+1) + Ed5(j, i, bk+1;Y,X,Bk+1)

RT

Since the modification required in the remaining cases follows similar reasoning

as in the treatment of the hairpin and external loop just described, the details for

these remaining cases are not given..
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An additional challenge of computing the dual partition function with GC-content

control is the combinatorial problem of efficiently counting the number N of in-

stantiations of the external loop, consisting of all positions external to every base

pair, with GC-content k, where the user can stipulate that certain positions are

constrained to contain nucleotides consistent with IUPAC codes. To this end, we

implemented the combinatorial algorithm defined in Supplementary Information.

2.4.3 Sampling with GC-content

The implementation of sampling with GC-content is performed in a similar manner

as described in Section 2.2, with some notable differences.

First, the sampling function is redefined by sample(k, T, i, j,X, Y, α), where k in-

dicates the base pair index in the ordering defined by equation (10) for the base

pair (i, j) that is already instantiated by nucleotide pair XY , and T designates the

type of structural element closed by base pair (i, j) in the target RNA secondary

structure, as shown in Table 1. The function sample(k, T, i, j,X, Y, α) instantiates

all positions of the loop having outer closing base pair (i, j), including its inner clos-

ing base pair(s) and which returns the GC-content of the sampled loop. Moreover,

the GC-content of the subsequence a[i+ 1, j − 1] = (ai+1, . . . , aj−1) will be α once

the entire sequence a1, . . . , an is sampled.

Second, RNAdualPF stores a conditional dual partition function table for each

base pair (i, j) and GC-content 0 to j-i-1. The function sample(k, T, i, j,X, Y, α)

samples from the conditional dual partition function of those sequences which have

exactly α Gs and Cs strictly between the positions i and j, thus guaranteeing a GC-

content of α for the subsequence a[i+ 1, j − 1] once the entire sequence a1, . . . , an

is sampled. Note that sample(k, T, i, j,X, Y, α) samples only the loop closed by the

already instantiated outer base pair (i, j), and that α is the GC-content of the entire

subsequence a[i+ 1, j + 1] = ai+1, . . . , aj−1 once the algorithm terminates. Only in

the case that base pair (i, j) closes a hairpin loop will it generally happen that the

GC-content of the loop closed by (i, j) is equal to α.

Let α be the user-designated GC-content of sequences a = a1, . . . , an to be sam-

pled from a target secondary structure having ` base pairs. The following pseu-

docode describes how to sample sequences a = a1, . . . , an, whose GC-content ex-

actly equals α. Here, an external loop with m components means that there are m

exterior base pairs (i1, j1), . . . , (im, jm) such that all positions exterior to these base

pairs are unpaired; i.e. each position r ∈ {1, . . . , n} − ∪mc=1{ic, . . . , jc} is unpaired

in the target structure.

Algorithm 1 (Sampling with user-specified GC-content α)

1. if external loop has m components
2. sample α1, . . . , αm, β with the following properties
3. (a) α1 + . . .+ αm + β = α
4. (b) for c = 1 to m, component c has GC-content αc
5. (c) GC-content of the external loop is β
6. (d) sample the external loop
7. for k = ` down to 0
8. let (i, j) denote base pair with index k and type T
9. if (i, j) is an exterior base pair closing the cth component

10. //sample base pair with nucleotide pair XY using roulette wheel
11. α = αc //α now denotes GC-content of cth component
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12. z = random(0,1); cumProb = 0
13. for XY in {AU,UA,GC,CG,GU,UG}
14. p =

Z∗(i,j;X,Y ;α)
Z∗(i,j;α)

15. cumProb += p
16. if z < cumProb
17. instantiate base pair (i, j) by XY
18. α = α−GCcontent(XY)
19. sample(k, T, i, j,X, Y, α)
20. α = α−sampledGC //subtract GC-content of sampled loop
21. break //exit the innermost for-loop
22. else // base pair (i, j) with index k is not exterior, hence is instantiated
23. let XY denote the nucleotides that instantiate (i, j)
24. //sample loop and inner closing base pairs
25. sample(k, T, i, j,X, Y, α)

To clarify how the GC-content is sampled in a statistically rigorous manner, sup-

pose that the user has specified the GC-content to be α, and that L is the external

loop of the target structure s0 having m components, where the cth component has

external closing base pair (ic, jc). In computing the dual partition function, for all

possible choices of non-negative integers α1, . . . , αm, β that sum to α and all 6m pos-

sible assignments of Watson-Crick or wobble nucleotide pairs X1, Y1, . . . , Xm, Ym to

the base pairs (i1, j1), . . . , (im, jm), the software RNAdualPF has computed the sum

of
∑m
c=1 Z

∗
c (ic, jc;Xc, Yc;αc) plus the Boltzmann factor of the external loop with

GC-content β. Since the dual partition function Z∗(s0;α) is the sum, taken over

all values of α1, . . . , αm, β and all Watson-Crick and wobble pair assignments to

the external base pairs, RNAdualPF can then use the roulette wheel method to sam-

ple values α1, . . . , αm, β and X1, Y1, . . . , Xm, Ym in a statistically rigorous manner.

Multiloops, and other structural elements, which contain unpaired regions whose

sequence does not contribute to the free energy of the structure, are handled in a

analogous manner.

3 Results
3.1 Robustness and plasticity of C. elegans miRNAs and E. coli sncRNAs

In [1] Borenstein and Ruppin used version 1.4 of the Vienna RNA Package [7] to

generate 1000 RNA sequences per wild type precursor microRNA (pre-miRNA) ex-

tracted from the database Rfam 1.0 [19], with the property that each of the 1000

control sequences folded into the wild type pre-miRNA structure – i.e. the minimum

free energy (MFE) structure of each of the 1000 control sequences was identical to

the MFE structure of the wild type pre-miRNA. Based on these computational ex-

periments, Borenstein and Ruppin asserted that the “structure of miRNA precursor

stem–loops exhibits a significantly high level of mutational robustness in compari-

son with random RNA sequences with similar stem–loop structures”. Noting that

the Vienna RNA Package inverse folding program RNAinverse does not control for

GC-content or other sequence compositional bias, the authors performed a second

computational experiment, in which control sequences not only folded into the tar-

get wild type structure, but also had similar dinucleotide composition to that of

wild type pre-miRNA (Jensen-Shannon divergence less than 0.01). Since the fil-

tering step required enormous run time and computational resources, the authors

restricted their attention to a small set of 211 microRNAs, and generated only 100

control sequences per microRNA – note here that RNAinverse cannot control for
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GC-content. Borenstein and Ruppin concluded that robustness of precursor mi-

croRNAs was not the byproduct of a base composition bias or of thermodynamic

stability.

Subsequently Rodrigo et al. [3] undertook a similar analysis for bacterial small

noncoding RNAs (sncRNA), also using the program RNAinverse, albeit using some-

what different definitions – see precise definitions in Section 1.1. The main finding

of [3] was that bacterial sncRNAs are not significantly robust when compared with

1000 sequences having the same structure, as computed by RNAinverse; however,

the authors found that bacterial sncRNAs tend to be significantly plastic, in the

sense that the ensemble of low energy structures are structurally diverse. Unlike

the case of precursor microRNAs [1], Rodrigo et al. did not control for sequence

compositional bias.

Using RNAdualPF, we performed similar computational experiments on 250 pre-

cursor microRNAs of C. elegans from miRBase 20 [11] and for the bacterial small

noncoding RNAs of [3]. Below, we discuss each case separately.

For each C. elegans pre-miRNA, we used RNAdualPF to sample 2000 sequences

with no control over GC-content and 2000 sequences whose GC-content was iden-

tical with that of the wild type pre-miRNA. Moreover, each control sequence ap-

proximately folded into the MFE wild type pre-miRNA structure as computed by

Vienna RNA Package 2.1.9 [2]. Table 2 shows that length-normalized base pair

distance between the MFE structure of the control sequence and that of the pre-

miRNA is on average 0.09 ± 0.04 for default use of RNAdualPF with control over

GC-content, and 0.06± 0.03 when GC-content of each control sequence is identical

to that of the corresponding wild type pre-miRNA. Additional measures in Table 2

show that sequences sampled from RNAdualPF (1) are only modestly more stable

thermodynamically, (2) the ensemble of low energy structures of control sequences

deviate slightly more from the target pre-miRNA structure, as is the case for wild

type pre-miRNA sequences, as mesured by ensemble defect [20], expected base pair

distance to target [9], expected proportion of native contacts (called ensemble neu-

trality in [21]), average positional entropy [22], Morgan-Higgs structural diversity

[23], and Vienna structural diversity (called ensemble diversity in [14]).

Tables 3 and 4 display a similar analysis of the collection of bacterial small noncod-

ing RNAs of [3] and of Rfam 12.0 database [24]. For the Rfam database, we selected

one sequence from each of the ≈ 2500 Rfam families, with the property that the

MFE structure of the sequence most resembled the Rfam consensus structure – i.e.

whose MFE structure has smallest base pair distance to the consensus structure.

These tables show similar trends as those displayed in Table 2, although values are

larger due to increased sequence length of bacterial sncRNA and sequences from

Rfam.

In agreement with [1], the left panel of Figure 3 shows that C. elegans miRNA

is significantly robust (Z-score of 0.61 ± 1.55, 2-tailed T-test p-value 2.2 × 10−9),

provided that GC-content is not controlled. However, in contrast to [1], when GC-

content is controlled, we find that C. elegans miRNA is significantly non-robust (Z-

score of −1.3±2.9, 2-tailed T-test p-value 1.5×10−11). To corroborate our findings,

for each wild type C. elegans pre-miRNA, we performed a second computational

experiment, to generate 500 sequences with no control over GC-content and 500
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sequences whose GC-content was identical with that of the wild type pre-miRNA.

In contrast to the first experiment, we used RNAdualPF to generate sufficiently many

sequences to subsequently select 500 sequences (no GC-control) and 500 sequences

(GC-content equal to wild type pre-miRNA), each of whose MFE structure was

identical to that of wild type pre-miRNA. The left panel of Figure 4 shows that

when GC-content is not controlled, C. elegans precursor microRNAs are statistically

robust (Z-score 0.51± 1.44, p-value 7.3× 10−8), in agreement with the main result

of Borenstein and Ruppin [1]. However, when GC-content of control sequences is

identical to that of wild type precursor microRNA, we confirm that C. elegans pre-

miRNA is statistically non-robust (Z-score −1.23 ± 2.78, p-value 3 × 10−11). Note

that our finding, which is in opposition to results of Borenstein and Ruppin [1],

is based on a larger data set of precursor microRNAs, each of which has a larger

control set, than in the analysis of [1].

Turning now to the analysis of bacterial small noncoding RNAs, we find that

sncRNAs are not significantly robust (Z-score 0.0 ± 1.4, p-value 0.98) when GC-

content is not controlled, confirming a result from Rodrigo et al. [3]. However, when

GC-content of the sequences sampled from RNAdualPF is required to be identical to

that of wild type sncRNA, bacterial sncRNAs are see to be significantly non-robust

(Z-score −2.58 ± 3.87, p-value of 4.4 × 10−7). Note here that Rodrigo et al. used

RNAinverse in their computational experiments, hence could not consider the case

with control over GC-content. The left panels of Figures 3a and 4 summarize our

findings that precursor microRNAs [resp. bacterial sncRNAs] are significantly non-

robust [resp. not significantly robust] with respect to a control set of 2000 [resp.

1000] sequences generated by RNAdualPF with identical GC-content to that of the

wild type sequence.

Finally, in our analysis of plasticity, the right panels of Figures 3 and 4 show that

both C. elegans and bacterial small noncoding RNAs exhibit more plasticity when

compared with control sequences for which GC-content is not controlled, as well as

when compared with control sequences for which GC-content is identical to that of

wild type sequences.

3.2 Structural RNA has higher free energy than expected

In Figure 4 of [9], we showed that the free energy E0 of the minimum free energy

(MFE) structure s0 of E. coli val-tRNA (accession RV1600 from Sprinzl database

[25] tdbR00000454 from tRNAdb [26]), is much higher (less favorable) than the av-

erage free energy 〈E〉 of over four million RNAs having the same MFE structure s0
as that of E. coli val-tRNA. Here, E. coli val-tRNA RV1600 was selected, because

its MFE structure s0 is identical to the Rfam consensus structure for tRNA family

RF00005. This preliminary result suggests that naturally occurring transfer RNAs

may be under selective pressure to be only marginally thermodynamically stable.

Since it took a number of days for RNAiFold [9, 4] to return over four million solu-

tions of the inverse folding problem for the tRNA target structure, we now describe

how RNAdualPF can be used to compute the Boltzmann expected free energy of liter-

ally all sequences a1, . . . , an with respect to an arbitrary target structure s0. In this

manner, we confirm our preliminary finding concerning E. coli val-tRNA, and show

that the folding energy of structural RNA from the Rfam database is much higher

(less favorable) than expected. Before presenting results, we need some definitions.
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For the Turner nearest neighbor energy model [13], the free energy of a secondary

structure s of an RNA sequence a = a1, . . . , an depends on the (absolute) temper-

ature T0. To indicate this dependence, we write E(a, s, T0), where in the sequel, T0

will be designated as table temperature, i.e. the temperature for which parameters

from the Turner energy tables are applied. For an arbitrary, but fixed secondary

structure s0 of length n, the dual partition function at temperature T0 is defined by

Z(s0, T0, T ) =
∑
a

exp(−E(a, s0, T0)/RT ) (52)

where the sum is taken over all RNA sequences a = a1, . . . , an of length n. Note

that T0 indicates the (table) temperature at which the energy of a structure s0

and nucleotide sequence a is evaluated using the Turner parameters, while all other

occurrences of the temperature variable are designated by T , which we call formal

temperature. The distinction between formal and table temperature is made to allow

us to use finite difference approximations to derivatives with respect to the formal

temperature when when we compute dual expected energy and dual conformational

entropy below (see [27] for more explanation). When table temperature T0 equals

formal temperature T , and the temperature is clear from the context, we write

Z∗(s0); if the target structure s0 is also clear from the context, then we write Z∗.

A similar remark applies to the other thermodynamic functions p∗, G∗, 〈E∗〉, S∗,
which we now define.

The dual Boltzmann probability p∗(a) is defined by

p∗(a, s0, T0, T ) =
exp(−E(a, s0, T0))

Z∗(s0, T0, T )
(53)

The dual ensemble free energy G∗(s0) is defined by

G∗ = G∗(s0) = G(s0, T0, T ) = −RT lnZ∗(s0, T0, T ) (54)

where R ≈ 1.987 cal/(mol K) is the universal gas constant. The dual expected (free)

energy 〈E∗(s0)〉 is defined by

〈E∗(s0, T0, T )〉 =
∑
a

E(a, s0, T0) · p(a, s0, T0, T ) (55)

Straightforward derivations analogous to those in [27] yield the following expres-

sions for dual expected energy 〈E∗〉 and dual entropy S∗:
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〈E∗(s0, T0, T )〉 = RT 2 · ∂
∂T

(
lnZ∗(s0, T0, T )

)
T=T0

(56)

S∗(s0, T0, T ) =
〈E(a, s0, T0, T )〉 −G∗(s0, T0, T )

T
(57)

Programs to compute dual expected energy 〈E∗〉, dual conformational entropy S∗,

and dual heat capacity C∗p are provided at our web site. We do not elaborate further

on dual entropy or dual heat capacity, since at the present time we have found no

compelling applications.

Figure 5 shows that structural RNAs have higher free energy with respect to

their native structure, hence are thermodynamically less stable, than expected, –

even when expectations are taken over all sequences having the same GC-content

as that of wild type sequences. We believe that this insight could be important

when designing functional synthetic RNAs. To generate Figure 5, we proceeded

as follows. For each family from the Rfam 12.0 database [24], we took the family

consensus structure sc, and computed 〈E(sc)〉. Additionally, for each Rfam family,

we selected that sequence a0, whose minimum free energy (MFE) structure s0 has

smallest base pair distance to the consensus structure sc. We computed the expected

energy 〈E(s0)〉, as well as the free energies E(a, sc) and E(a, s0). Figure 5 displays

box-and-whiskers plots for the fold change 〈E(sc)〉
E(a0,sc)

for the consensus structure and

the fold change 〈E(s0)〉
E(a0,s0)

for the minimum free energy structure. Since the dual

Boltzmann probability p∗(a, s0) is generally larger for sequences a having higher

GC-content (as stacked base pairs involving GC,CG have lower free energy than

those involving AU,UA,GU,UG), RNAdualPF computes as well the dual partition

function for GC-content k, defined by

Z∗(s0, k) =
∑

a such that
GC-content=k

exp(−E(a, s0)/RT ) (58)

In this fashion, we can exactly compute the dual expected energy 〈E∗(s0, k)〉 of

all sequences having GC-content k which approximately fold into target structure

s0. Tables 2, 3, 4 analyze what we mean by approximately folding into the target

structure – i.e. sequences a are preferentially sampled when free energy E(a, s0) is

low, hence have large dual Boltzmann probability. RNAdualPF, even when exact GC-

content is controlled, is faster than inverse folding programs by orders of magnitude,

hence providing an effective alternative manner of solving inverse folding.

4 Conclusion
In this paper we describe the algorithm and software RNAdualPF, which com-

putes the dual partition function Z∗, defined as the sum of Boltzmann factors

exp(−E(a, s0)/RT ) of all sequences a with respect to the target structure s0. Using



Garcia-Martin et al. Page 28 of 41

RNAdualPF, we efficiently sample RNA sequences that (approximately) fold into s0,

where additionally the user can specify IUPAC sequence constraints at certain po-

sitions, and whether to include dangles (energy terms for stacked, single-stranded

nucleotides). Moreover, the user can require that all sampled sequences have a pre-

cisely specified GC-content, since, optionally, we compute the dual partition function

Z∗(k) simultaneously for all values k = G + C. This sampling strategy is comple-

mentary to the use of RNAiFold [4], since it allows the study of the properties of

long RNA structures whose number of solutions for the inverse folding problem is

astronomically large.

We use RNAdualPF to corroborate previous studies [1] using RNAinverse [2], by

confirming that precursor microRNAs are significantly mutationally robust when

GC-content is not controlled. However, in contrast to [1], we find that precursor

microRNAs are significantly non-robust when GC-content is controlled. We confirm

and extend previous findings [3] that bacterial small noncoding RNAs display plas-

ticity (structural diversity) and are not statistically robust, when GC-content is not

controlled. Additionally, we obtain the new finding that when when GC-content is

controlled, bacterial small noncoding RNAs are significantly non-robust, as in the

case of precursor microRNAs. One possible reason for the discrepancy between our

results and those of [1] could be related with the fact that the energy parameters

of Vienna RNA Package 1.4 (Turner 1999 parameters used in the computational

experiments of [1]) differ from those of Vienna RNA Package 2.1.9 (Turner 2004 pa-

rameters used in the current study with RNAdualPF). Another possible reason is that

the inverse folding solutions returned by the program RNAinverse used in [1] show

a different bias than sequences returned by RNAdualPF (in this context, we mean

the inverse folding solutions filtered from the sequences returned by RNAdualPF).

As mentioned in the Introduction, there is a relation between our C program

RNAdualPF and the Python program IncaRNAtion [12], although our work is in-

dependent of that of Reinharz et al. [12]. IncaRNAtion is a weighted sampling

algorithm that computes the dual partition function for a simple energy model,

which only considers base stacking free energies – unlike RNAdualPF, the program

IncaRNAtion includes no energy contributions for hairpins, bulges, internal loops,

multiloops, dangles, or mismatches. If the user specifies a desired GC-content α,

then IncaRNAtion does not compute the dual partition function for GC-content,

but rather applies an adjustable heuristic so that after a suitable burn-in period,

sequences tend to approximately have GC-content α. See Table 6.2 of [28] for

benchmarking results on RNAdualPF and IncaRNAtion, which show conclusively

that RNAdualPF is not only faster, but its sequences have a higher probability of

folding into the target structure, its sequences have a smaller GC-content in default

mode, where GC-content is not controlled, etc.

Our original motivation in designing RNAdualPF was to generate an unbiased sam-

ple of near-solutions (or by subsequent selection of solutions) to the inverse folding

problem. At present, it seems clear that no program can claim to generate an un-

biased sample of inverse folding solutions, since (1) the solution space so large that

this hypothesis cannot be tested by brute force methods, and (2) different inverse

folding algorithms return solution sequences having different properties, as shown

in Table 2 of [4]. Nevertheless, in the same manner that structures sampled by
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the algorithm of Ding and Lawrence [16] constitute an unbiased, representative set

of low energy secondary structures for a given RNA sequence, as implemented in

Sfold [10] and RNAsubopt -p [2], the collection of RNA sequences sampled by the

algorithm RNAdualPF constitute an unbiased, representative set of sequences hav-

ing low energy with respect to a given target structure s0. Although the minimum

free energy structure of such sequences may indeed be distinct from s0, it is likely

that the MFE structure and the target s0 be similar, as shown in Tables 2, 3, 4.

Moreover, Figure 6 presents relative frequency plots that suggest that when GC-

content is controlled, the sequences returned by RNAdualPF have similar properties

to those of wild type sequences: (1) similar expected base pair distance to the wild

type target structure [9], (2) similar ensemble defect to the target wild type struc-

ture [20], (3) similar positional entropy [22], (4) similar Vienna structural diversity

(called ensemble diversity in [14]), (5) similar Morgan-Higgs diversity [23], (6) simi-

lar expected proportion of native contacts (called ensemble neutrality in [21]). These

graphs were produced by using RNAdualPF to sample 2,000 sequences for each of

the 250 C. elegans precursor microRNAs from the miRBase 20 database [11], in

each of the following cases: (a) GC-content identical to that of the Rfam sequence,

(b) no control for the GC-content. Figure 7 presents additional data, computed in

the same manner for C. elegans pre-miRNA from miRBase 20, showing that when

GC-content is controlled, sequences sampled by RNAdualPF satisfy the following: (1)

the average length-normalized base pair distance between the minimum free energy

and target structures is ≈ 0.05, (2) wild type and RNAdualPF sampled sequences

have similar free energy with respect to the wild type target structure, (3) as well as

similar minimum free energy, (4) similar dual probability, and (5) similar probability

to wild type RNA sequences. Taken together, this data shows that if GC-content is

controlled, then RNAdualPF returns sequences whose low energy structures tend to

resemble the target structure. Figures 8 and 9 are similar to Figures 6 and 7, except

that for each C. elegans pre-miRNA, 500 sequences were generated by RNAdualPF,

each of whose MFE structure is identical to the wild type target structure (this was

done by repeatedly sampling sequences from RNAdualPF until 500 sequences were

found, that fold exactly into the target pre-miRNA structure). Taken together, Fig-

ures 6, 7, 8,9 present convincing evidence that RNAdualPF generates sequences that

(approximately) fold into the user-specified target structure, hence supporting our

finding that C. elegans precursor microRNAs are statistically non-robust, contrary

to the finding of [1].

Additionally, we have shown that natural RNAs from the Rfam 12.0 database have

higher minimum free energy than expected, thus supporting our results in [9] which

suggest that functional RNAs are under evolutionary pressure to be only marginally

thermodynamically stable. The applications described in this paper demonstrate

that RNAdualPF is a useful and extremely fast software tool for evolutionary and

synthetic biology.

5 Declaration
5.1 List of abbreviations

MFE: minimum free energy. PLMVd: Peach latent mosaic viroid. sncRNA: small

noncoding RNA.
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Figure 1: Sampling dependency examples in RNAdualPF. Base pair (i, j) to be sam-

pled is highlighted in red, positions whose energy contribution is dependent on the

instantiation of (i, j) are highlighted in blue, and positions that are mutually de-

pendent, but independent of the instantiation of (i, j), are highlighted in green.

Unpaired positions where the nucleotide choice has no effect in the free energy of

the structure are indicated in black.
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Figure 2: Target structure with sequence constraints used as input of RNAdualPF to

compute the dual partition function values shown in Table 1. Sequence constraints

are highlighted in red.
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Figure 3: Z-scores of mutational robustness (a) and of plasticity (b) are presented

for the bacterial small noncoding RNA (sncRNA) collection from [3] and for C.

elegans precursor microRNA (pre-miRNA) from miRBase 20. For each wild type

pre-miRNA [resp. sncRNA] wild type sequence, RNAdualPF sampled 2000 [resp.

1000] sequences using the minimum free energy structure of the wild type sequence

as target structure. The GC-content of the sampled sequences was either required

to be exactly that of the wild type sequence, or not (default mode of RNAdualPF), as

indicated in the legend. Sampled sequences were used to compute the mutational ro-

bustness and plasticity, as explained in the main text. Note that C. elegans miRNA

is significantly robust if GC-content is not controlled, but significantly non-robust if

GC-content of RNAdualPF samples is identical to that of wild type pre-miRNA. Sim-

ilarly, bacterial sncRNAs are not significantly robust if GC-content is not controlled,

but significantly non-robust when GC-content is identical to that of wild type

sncRNA. For this figure, mutational robustness of RNA sequence a = a1, . . . , an

is defined by 1− 〈Dbp〉n , where ensemble distance Dbp(a,b) between two length n

sequences a and b is defined in [14], and the average ensemble distance from all

single-point mutants of a is defined by 〈Dbp〉 =
∑

b

Dbp(a,b)

3n where the sum is

taken over all single-point mutants b of a. We use this notation of mutational ro-

bustness, rather than the notion defined in [3], since the latter notion is not a true

metric, as explained in Section 1.1. The plasticity P =
〈Dv〉
n/2 =

∑
i<j

pi,j(1−pi,j)
n

is defined in [3] as normalized ensemble diversity, where ensemble diversity [14]

(Vienna structural diversity) Dv is defined by equation (4).
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Figure 4: Z-scores of mutational robustness (a) and of plasticity (b) are presented

for C. elegans microRNA from Rfam 12.0. Robustness and plasticity were measured

as explained in Figure 3. For each wild type (WT) sequence, 2000 sequences were

sampled from RNAdualPF both with and without control over GC-content (default

sample), while 500 sequences were generated by RNAdualPF, both with and without

control over GC-content, to exactly fold into the target structure (MFE str. sample).

This was achieved by repeatedly sampling sequences in order to obtain a sequence,

whose MFE structure was identical to the target structure. The number of sequences

necessary to sample in order to obtain one sequence that folds into the target

structure was variable, depending on the target structure and GC-content – in

many cases, only 10 samples were necessary per selected sequence, in some cases

200 samples were necessary. and in one specific case 5000 samples were required.

By control over GC-content, we mean that all sampled sequences have identical

GC-content to the wild type sequence.
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Figure 5: Analysis of expected free energy 〈E〉 for structures in Rfam 12.0 [24].

Given a secondary structure s, the expected free energy of all sequences a with

respect to s is defined by 〈E(s)〉 =
∑

aE(a, s) · exp(−E(a,s)/RT )
Z∗(a,s) , where Z∗ is the

dual partition function defined in equation (7). For each Rfam family, we took the

family consensus structure sc, and computed 〈E(sc)〉. Additionally, for each Rfam

family, we selected that sequence a0, whose minimum free energy (MFE) structure

s0 has smallest base pair distance to the consensus structure sc. The expected energy

〈E(s0)〉 was computed, as well as the free energies E(a, sc) and E(a, s0). The fold

change 〈E(sc)〉
E(a0,sc)

for the consensus structure and the fold change 〈E(s0)〉
E(a0,s0)

for the

minimum free energy structure were computed. The box-and-whiskers plots show

the mean, 25th and 75th percentile, minimum and maximum values. As indicated in

the legend, these computations were performed either with respect to all sequences

or with respect to all sequences having the same (exact) GC-content. These data

clearly indicate that natural RNA sequences, whose MFE structures most closely

resemble the Rfam consensus structures, have higher free energy than expected.
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(a) C. elegans pre-miRNA (default RNAdualPF)

Figure 6: For each of the 250 C. elegans precursor microRNAs from miRBase 20

and for each of the following cases (a) and (b), RNAdualPF sampled 2000 sequences

without any subsequent filtering step. Case (a): All RNAdualPF sequences have

GC-content exactly equal to that of the Rfam sequence (Exact GC). Case (b):

RNAdualPF was used in default mode, without controlling GC-content (No GC).

Additionally, case (c) represents the wild type (WT) C. elegans data. Density plots

are shown for (1) the expected base pair distance to target structure s0 [9], (2)

the ensemble defect to target structure s0 [20], (3) the positional entropy [22], (4)

Vienna structural diversity (called ensemble diversity in [14]), (5) Morgan-Higgs di-

versity [23], (6) expected proportion of native contacts (called ensemble neutrality

in [21]). All measures were normalized by sequence length.
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(a) C. elegans pre-miRNA (filtered RNAdualPF)

Figure 7: Additional measures for the data described in the previous Figure 6.

Density plots are shown for (1) the base pair distance between the minimum free

energy (MFE) structure and the target structure, (2) the GC-content, (3) the free

energy E(a, s0) of the RNA sequences a with respect to the target structure s0,

(4) the free energy E(a, sa) of each sequence with respect to its own minimum free

energy (MFE) structure, (5) the log dual probability p∗(s0) =
∑

x exp(−E(x,s0)/RT )

Z∗(s0)
,

and (6) the log probability p(a) =
∑

s exp(−E(a,s)/RT )

Z(a) .
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(a) C. elegans pre-miRNA (default RNAdualPF)

Figure 8: For each of the 250 C. elegans precursor microRNAs from miRBase 20

and for each of the following cases (a) and (b), RNAdualPF generated 500 sequences,

whose minimum free energy structure was identical to that of the corresponding wild

type pre-miRNA (obtained by repeatedly generating samples with RNAdualPF until

500 sequences were found that folded exactly into the target structure). Case (a): All

RNAdualPF sequences have GC-content exactly equal to that of the Rfam sequence

(Exact GC). Case (b): RNAdualPF was used in default mode, without controlling GC-

content (No GC). Additionally, Case (c) represents the wild type (WT) C. elegans

data. Density plots are shown for (1) the expected base pair distance to target

structure s0 [9], (2) the ensemble defect to target structure s0 [20], (3) the positional

entropy [22], (4) Vienna structural diversity (called ensemble diversity in [14]),

(5) Morgan-Higgs diversity [23], (6) expected proportion of native contacts (called

ensemble neutrality in [21]). All measures were normalized by sequence length.
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(a) C. elegans pre-miRNA (filtered RNAdualPF)

(b) Type III hammerhead ribozymes

Figure 9: Additional measures for the data described in the previous Figure 8.

Density plots are shown for (1) the base pair distance between the minimum free

energy (MFE) structure and the target structure, (2) the GC-content, (3) the free

energy E(a, s0) of the RNA sequences a with respect to the target structure s0,

(4) the free energy E(a, sa) of each sequence with respect to its own minimum free

energy (MFE) structure, (5) the log dual probability p∗(s0) =
∑

x exp(−E(x,s0)/RT )

Z∗(s0)
,

and (6) the log probability p(a) =
∑

s exp(−E(a,s)/RT )

Z(a) .
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Tables

Index i j Type AU CG GC UA GU UG Z∗(i, j)

1 18 23 Tetraloop 0.000 0.000 0.364 0.000 0.000 0.000 0.364
2 17 24 Stack 10.977 17.859 76.923 10.977 10.977 3.525 131.238
3 16 26 R. bulge 11.690 70.834 184.603 12.771 13.347 3.915 297.160
4 6 10 Triloop 0.004 0.010 0.010 0.004 0.004 0.004 0.038
5 5 11 Stack 0.750 3.022 5.234 0.899 0.960 0.256 11.120
6 3 13 Int. loop 109.842 256.875 424.976 108.653 117.851 108.132 1126.330
7 2 14 Stack 10853.104 86208.448 170643.321 12575.544 13285.398 3647.077 297212.891
8 1 27 Multiloop 1558.575 7895.583 7895.583 1558.575 1558.575 1558.575 22025.464
9 1 28 S0 – – – – – – 88101.856

Table 1: Base pair dual partition function table. Given the target structure with sequence
constraints depicted in Figure 2, RNAdualPF computes and stores all the partial dual par-
tition function values for the substructures enclosed by each base pair. The first column
indicates the base pair index which dictates the order in which the dual partition function
is computed for different loops closed by the base pair (i,j), where we the index of base
pair (i, j) is defined to be the rank of (i, j) in the total ordering defined in equation (10).
Columns i and j indicate the opening and closing positions of each base pair. Type indi-
cates the type of element in the secondary structure closed by each base pair, where R.
bulge stands for right bulge, Stack for stacking base pair, and Int. loop for interior loop.
The dual partition function Z∗(i, j) of the substructure closed by base pair (i, j) appears in
the rightmost column, while the partition function Z∗(i, j,X, Y ) for each of the six canon-
ical base pairs is given in columns 5-10. Note that for base pair 1, sequence constraints
depicted in Figure 2 force i and j to be instantiated respectively to G and C, hence the
dual partition function Z∗(i, j;X,Y ) is zero for any base pair different than GC. The last
column of the last row of the table shows the total dual partition function Z∗(s0) for the
target structure s0.

Additional Files
Supplementary Information

Title is Supplementary Information for RNAdualPF: software to compute the dual partition function with sample

applications in molecular evolution theory. This is a 3-page PDF file containing a tricky derivation for an efficient

computation of the number of external loops of size N with GC-content k, where the user can stipulate that certain

positions are constrained to contain nucleotides consistent with IUPAC codes.



Garcia-Martin et al. Page 40 of 41

MEASURE Def. Exact GC Def. No GC MFE Exact GC MFE No GC WT

BP DIST TARGET 0.06±0.03 0.09±0.04 0±0 0±0 0±0
ENERGY MFE -0.53±0.11 -0.85±0.12 -0.48±0.12 -0.79±0.14 -0.38±0.11
ENERGY TARGET -0.46±0.12 -0.78±0.14 -0.48±0.12 -0.79±0.14 -0.38±0.11
ENSEMBLE DEFECT 0.12±0.04 0.14±0.06 0.05±0.02 0.05±0.02 0.08±0.05
EXP BP DIST 0.07±0.03 0.1±0.04 0.03±0.01 0.03±0.01 0.05±0.03
PROP NAT CONTACT 0.93±0.04 0.9±0.06 0.96±0.02 0.96±0.02 0.92±0.05
POS ENTROPY 0.14±0.05 0.14±0.05 0.13±0.05 0.12±0.05 0.2±0.11
GC CONTENT 42.88±9.14 82.07±3.5 42.9±9.15 80.92±4.09 42.88±9.14
LN DUAL PROB -95.4±21.03 -51.43±11.98 -102.73±22.81 -59.52±14.64 -117.11±25.94
LN PROB -10.81±4.05 -10.95±4.68 -1.38±0.55 -0.96±0.45 -2.02±0.97
MH STR DIV 0.08±0.03 0.08±0.03 0.07±0.03 0.06±0.03 0.11±0.06
VIENNA STR DIV 0.05±0.02 0.05±0.02 0.04±0.02 0.04±0.02 0.07±0.04

Table 2: Analysis of C. elegans precursor microRNA from the database miRBase 20

[11]. For each of the 500 wild type (WT) pre-miRNA sequences, RNAdualPF sampled

sequences, either having exactly the same GC-content as the WT sequence (‘Exact

GC’) or with no control over GC-content (‘No GC’). The designation ‘MFE’ indi-

cates that the sampled sequences were subsequently filtered to retain only those,

whose minimum free energy structure is identical to the MFE structure of the

corresponding WT pre-miRNA; otherwise, the designation ‘Def’ is used to indi-

cate the default output of RNAdualPF, without the subsequent filtering step. For

each WT pre-miRNA sequence, RNAdualPF generated 2000 sequences for the de-

fault case Def (no subsequent filtering), and 500 sequences for the non-default case

MFE, such that sample MFE structure is identical to WT MFE structure. Various

measures were used to compare the properties of RNAdualPF sampled sequences to

those of wild type sequences: BP DIST TARGET: length-normalized average base

pair distance dBP (s0, s
∗) between the MFE structure s0 of sequences sampled by

RNAdualPF and the target structure s∗. ENERGY MFE: length-normalized aver-

age free energy E(s0) of MFE structure s0. ENERGY TARGET: length-normalized

average free energy E(s∗) of target s∗ for the respective sequences. ENSEMBLE

DEFECT: length-normalized expected Hamming distance to target s∗ [20]. EXP

BP DIST: length-normalized expected base pair distance to target s∗ [9]. PROP

NAT CONTACT: expected proportion of base pairs of target s∗ that occur in the

MFE structure, i.e. 〈 |s0∩s
∗|

|s∗| 〉. POS ENTROPY: average positional entropy [22].

GC CONTENT: average proportion of positions occupied by G or C. LN DUAL

PROB: average natural logarithm of the dual probability exp(−E(a, s)/RT )/Z ∗(s)

that sequence a adopts the structure s. LN PROB: average natural logarithm of

the probability exp(−E(a, s)/RT )/Z(a) that sequence a adopts the structure s.

MH STR DIV: length-normalized Morgan-Higgs structural diversity [23]. VIENNA

STR DIV: length-normalized Vienna structural diversity, called ensemble diversity

in [14]. Values of all measures for default sampled sequences having GC-content

within 5% of wild type GC-content (not shown) are essential identical to those of

exact GC-content control.
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MEASURE GC 5% Exact GC No GC WT

BP DIST TARGET 0.08±0.04 0.08±0.04 0.14±0.06 0±0
ENERGY MFE -0.44±0.1 -0.44±0.1 -0.63±0.14 -0.29±0.1
ENERGY TARGET -0.39±0.12 -0.39±0.12 -0.54±0.16 -0.29±0.1
ENSEMBLE DEFECT 0.16±0.08 0.16±0.08 0.23±0.1 0.14±0.09
EXP BP DIST 0.09±0.04 0.09±0.04 0.15±0.06 0.09±0.06
PROP NAT CONTACT 0.89±0.09 0.89±0.09 0.8±0.12 0.83±0.15
POS ENTROPY 0.19±0.08 0.19±0.08 0.23±0.09 0.35±0.18
GC CONTENT 48.33±7.02 48.34±7.02 74.75±5.55 48.34±7.02
LN DUAL PROB -94.59±27.22 -94.54±27.19 -66.37±16.96 -117.22±33.37
LN PROB -10.12±4.04 -10.09±4.03 -13.71±5.16 -2.34±0.95
MH STR DIV 0.1±0.04 0.1±0.04 0.13±0.05 0.18±0.09
VIENNA STR DIV 0.06±0.03 0.06±0.03 0.09±0.03 0.11±0.06

Table 3: Analysis of bacterial RNAs [3]. See Table 2 for an explanation of col-

umn headers and various measures. Since bacterial noncoding RNA is generally

much longer than precursor microRNA, no subsequent filtering step was under-

taken to ensure that sample sequence MFE structure is identical to that of wild

type pre-miRNA. However an additional column is given for sequences required by

RNAdualPF to have GC-content is within 5% of WT value. (column header GC 5%).

MEASURE GC 5% Exact GC No GC WT

BP DIST TARGET 0.1±0.05 0.1±0.05 0.16±0.07 0±0
ENERGY MFE -0.43±0.13 -0.43±0.13 -0.64±0.16 -0.28±0.13
ENERGY TARGET -0.36±0.14 -0.36±0.14 -0.54±0.19 -0.28±0.13
ENSEMBLE DEFECT 0.18±0.07 0.18±0.07 0.25±0.11 0.16±0.12
EXP BP DIST 0.11±0.05 0.11±0.05 0.17±0.07 0.1±0.08
PROP NAT CONTACT 0.87±0.09 0.87±0.09 0.78±0.14 0.81±0.17
POS ENTROPY 0.22±0.09 0.21±0.09 0.25±0.1 0.4±0.25
GC CONTENT 46.27±10.91 46.27±10.91 75.12±5.89 46.27±10.91
LN DUAL PROB -110.35±54.12 -110.34±54.12 -73.5±33.32 -136.7±65.62
LN PROB -13.94±7.74 -13.9±7.71 -18.11±10.59 -2.83±1.71
MH STR DIV 0.12±0.05 0.12±0.05 0.13±0.05 0.2±0.12
VIENNA STR DIV 0.07±0.03 0.07±0.03 0.09±0.04 0.13±0.08

Table 4: Analysis of the Rfam 12.0 database. For each RNA family from Rfam

12.0, we selected that sequence whose MFE structure had smallest base pair dis-

tance to the Rfam consensus structure for the family. These sequences constituted

the collection WT. See Table 3 for an explanation of column headers and various

measures.


