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Abstract

An RNA secondary structure is saturated if no base pairs can be added without
violating the definition of secondary structure. Here we describe a new algorithm,
RNAsat, which for a given RNA sequence a, an integral temperature 0 ≤ T ≤ 100
in degrees Celsius, and for all integers k, computes the Boltzmann partition function
ZT

k (a) =
∑

S∈SAT k(a) exp(−E(S)/RT ), where the sum is over all saturated secondary
structures of a which have exactly k base pairs, R is the universal gas constant and
E(S) denotes the free energy with respect to the Turner nearest neighbor energy model.
By dynamic programming, we compute ZT

k simultaneously for all values of k in time
O(n5) and space O(n3). Additionally, RNAsat computes the partition function QT

k (a) =∑
S∈Sk(a) exp(−E(S)/RT ), where the sum is over all secondary structures of a which

have k base pairs; the latter computation is performed simultaneously for all values of
k in O(n4) time and O(n3) space. Lastly, using the partition function ZT

k [resp. QT
k ]

with stochastic backtracking, RNAsat rigorously samples the collection of saturated
secondary structures [resp. secondary structures] having k base pairs; for QT

k this
provides a parametrized form of Sfold sampling [14]. Using RNAsat, (i) we compute the
ensemble free energy for saturated secondary structures having k base pairs, (ii) show
cooperativity of the Turner model, (iii) demonstrate a temperature-dependent phase
transition, (iv) illustrate the predictive advantage of RNAsat for precursor microRNA
cel-mir-72 of C. elegans and for the pseudoknot PKB 00152 of Pseudobase [40],
(v) illustrate the RNA shapes [18] of sampled secondary structures [resp. saturated
structures] having exactly k base pairs. A web server for RNAsat is under construction
at bioinformatics.bc.edu/clotelab/RNAsat/
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1 Introduction

In recent years, it has emerged that RNA plays a surprising and previously unsuspected role
in many biological processes, including retranslation of the genetic code (selenocysteine inser-
tion [5, 21], ribosomal frameshift [34]), post-transcriptional regulation via small interfering
RNA and microRNA [39, 26], conformational switches [42], metabolite-sensing riboswitches
which interact with small ligands and up- or down-regulate certain genes [3], small nucleolar
RNAs which guide the methylation of specific ribosomal nucleotides [37], etc.

The function of structural RNA certainly depends on RNA tertiary structure, which in [2]
has been shown to be largely determined by RNA secondary structure. The Turner nearest
neighbor model [32, 46] consists of experimentally determined enthalpy and entropy values
for stacked base pairs (both Watson-Crick and GU wobble pairs), as well as for hairpin loops,
bulges and interior loops (arbitrary multi-loop free energies are approximated by an affine
measure). Zuker’s algorithm [51] is a dynamic programming algorithm, which computes
the minimum free energy (mfe) secondary structure of an input RNA nucleotide sequence,
with respect to the nearest neighbor model. Though there are small discrepancies in certain
energy parameters (e.g. treatment of coaxial stacking and dangles1), Zuker’s mfold [50],
the Vienna RNA Package RNAfold [24] and Mathews and Turner’s RNAstructure [31] are
all implementations of Zuker’s algorithm for the Turner energy model [32], [46] and run in
O(n3) time and O(n2) space; i.e. time is cubic and space is quadratic in the length of the
input RNA nucleotide sequence.

Most current work on RNA secondary structure concerns the thermodynamic equilib-
rium minimum free energy structure (mfold, RNAfold, RNAstructure), or the low energy
ensemble of structures (Sfold [13], RNAsubopt [45]), or multiple sequence/structure align-
ment (Foldalign [20], Dynalign [30]), or the general shape of RNA secondary structures
(RNAshapes) [18, 38, 41], or applications and extensions of such software. One important
application area concerns the development of noncoding RNA genefinders, such as RNAz

[44, 43].
Considering molecular complexes, Dimitrov and Zuker [12] described how to efficiently

compute a multi-species partition function for interactions between two species of nucleic
acid sequences (e.g. between DNA and RNA). This led to the hybridization web server
DINAMelt and software UNAFOLD [27]; see also [4, 35]. Computation of the partition func-
tion for molecular complexes allows one to compute concentrations of various hybridization
products, clearly relevant in probe design for gene expression chips.

In contrast to much of the previously mentioned work, the current paper considers sec-
ondary structure energy landscape from a different point of view. We divide up the ex-
ponentially large collection of saturated [resp. all] secondary structures for a given RNA
sequence into disjoint families Fk, each indexed by k. Choosing Fk appropriately, we com-
pute partition functions at temperature T for the following: (i) ZT

k , for saturated secondary

1Dangles, either 5′ or 3′, are unpaired bases immediately adjacent to a paired base; dangles stack below
or on top of existent stacked base pairs, hence contribute a stabilizing energy. At 37 degrees Celsius, a 3′

dangle can have an energy of up to approximately −2 kcal/mol. When computing minimum free energy
structures and partition functions, dangles constitute an important factor.
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structures having k base pairs, (ii) QT
k , for all secondary structures having k base pairs, (iii)

ẐT
k , for saturated secondary structures having k base pairs fewer than the maximum possible

(i.e. Nussinov-Jacobson optimal), (iv) Q̂T
k , for all secondary structures having k base pairs

fewer than the maximum possible (i.e. Nussinov-Jacobson optimal). For each of these cases,
the partition function is computed with respect to the Turner energy model, and rigorous
sampling is provided.

Our guiding motivation is to use the partition function and derived thermodynamic
parameters (ensemble free energy, heat capacity, etc.) to better understand the nature and
distribution of kinetic traps in the folding landscape of RNA. To this end, given a secondary
structure S for an RNA sequence a1, . . . , an, we say that S is locally optimal with respect
to the Turner energy model, if E(S) ≤ E(S ′), for all secondary structures S ′, obtained
from S by either the removal of addition of one base pair.2 Unable currently to compute
the partition function for secondary structures which are locally optimal with respect to
the Turner energy model, we instead describe our software RNAsat, which computes the
partition function for saturated secondary structures with respect to the Turner energy
model. Computational experiments reported here with precursor microRNA cel-mir-72 of
C. elegans and with pseudoknot PKB 00152 from Pseudobase [40], suggest that saturated
structures and locally optimal structures are quite distinct concepts, and that there are
far fewer locally optimal structures than saturated structures. Nevertheless, the algorithms
described are non-trivial, and provide a tool to better understand the folding landscape of
RNA. The goal of the remaining paper is to explain the algorithms behind RNAsat; in future
work, we will investigate additional applications. We begin by some definitions.

Given an RNA sequence a = a1, . . . , an, a secondary structure is a well-balanced paren-
thesis expression with dots, where the nucleotides ai, aj form either Watson-Crick or GU
wobble pairs in positions positions i, j corresponding to the well-balanced left and right
parentheses. Formally, a secondary structure S on RNA sequence a1, . . . , an is defined to
be a set of ordered pairs corresponding to base pair positions, which satisfies the following
requirements.

1. Watson-Crick or GU wobble pairs: If (i, j) belongs to S, then pair (ai, aj) must be one
of the following canonical base pairs: (A,U), (U,A), (G,C), (C,G), (G,U), (U,G).

2. Threshold requirement: If (i, j) belongs to S, then j − i > θ.

3. Nonexistence of pseudoknots: If (i, j) and (k, `) belong to S, then it is not the case
that i < k < j < `.

4. No base triples: If (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j) belong to
S, then i = k.

In this paper, following convention, the threshold θ, or minimum number of unpaired bases
in a hairpin loop, is taken to be 3. For any additional background on RNA and dynamic

2Here E(S) is the energy of S using the Turner energy model [32, 46]. In the Nussinov-Jacobson energy
model, the notion of locally optimal and saturated coincide, and the corresponding problem was solved in
[6, 7].
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programming computation of secondary structures, the reader can consult the text [9] and
the recent review [15].

In [49], M. Zuker defined a saturated structure to be a secondary structure in which no
base pairs can be added without violating the definition of secondary structure (e.g. without
introducing a pseudoknot). More recently, Evers and Giegerich [16] defined a saturated
structure to be a secondary structure, such that no additional base pairs can be stacked and
for which there are no isolated base pairs. For this notion, Evers and Giegerich described
an algorithm which computes the total number of saturated structures – saturated in the
sense of [16]. It is not difficult to construct examples of structures which are saturated in the
sense of Zuker, but not in the sense of Evers-Giegerich, and vice-versa – i.e. these notions
are distinct; see [8] for explicit examples.

A related notion is that of locally optimal secondary structure. To define this notion, we
first define base pair distance, a metric between two secondary structures for the same RNA
sequence. If S, T are secondary structures for an RNA sequence a1, . . . , an, then d(S, T ) is
the number of elements in the symmetric difference of S, T ; i.e. the number of base pairs in
S, but not T , or vice-versa. Structure T is a neighbor of S if the base pair distance between
S, T is 1.

Given a fixed energy model, such as the base pair model of Nussinov-Jacobson [36] or the
nearest neighbor model of Turner [32, 46], a locally optimal secondary structure is a structure
S, such that no neighbor T of S has lower energy. In [6, 7] we developed an algorithm and
web server to compute the number of locally optimal secondary structures with respect to
the Nussinov-Jacobson energy model; for this energy model, local optimality coincides with
Zuker’s notion of saturated structure.

Locally optimal structures correspond to potential kinetic traps in the folding process.
Indeed, if S is a locally optimal secondary structure, which differs from the minimum free
energy (mfe) structure S0, then an energetically unfavorable neighbor S ′ of S must appear in
the folding path from S to mfe structure S0. The barrier tree of Flamm et al. [17] illustrates
this situation.

In this paper, we lift the algorithm of [6] to the Turner energy model; specifically we
proceed as follows. Given an RNA nucleotide sequence a = a1, . . . , an, for each value of k,
we compute the Boltzmann partition function ZT

k (a) =
∑

S∈SAT k(a) exp(−E(S)/RT ), where

SAT k(a) designates the collection of all saturated secondary structures S of a having exactly
k base pairs, R is the universal gas constant with value 1.98717 cal/mol per degree Kelvin,
0 ≤ T ≤ 100 is temperature in degrees Celsius, and where E(S) denotes the free energy,
using the Turner nearest neighbor energy model [32, 46]. By dynamic programming, we
compute ZT

k simultaneously for fixed T , for all values of k in time O(n5) and space O(n3).
Although the notion of saturated structure (in the sense of Zuker) is distinct from that of
locally optimal structure within the Turner nearest neighbor energy model, the work of this
paper is a step towards the goal of computing the partition function for all locally optimal
secondary structures.
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Our software, RNAsat, additionally computes the full partition function

QT (a) =
∑

S∈S(a)

exp(−E(S)/RT )

and its parametrized form QT
k (a) =

∑
S∈Sk(a) exp(−E(S)/RT ), where S(a) denotes the col-

lection of all secondary structures of RNA sequence a, and Sk(a) designates the collection of
all secondary structures S of a which have exactly k base pairs. The O(n3) time and O(n2)
space algorithm to compute the partition function QT (a) was first developed by McCaskill
[33]. McCaskill’s algorithm has additionally been implemented by Hofacker et al. in the
Vienna RNA Package [24], by D. Mathews [29], and by N. Markham and M. Zuker [28].
However, unlike these authors, we additionally compute in time O(n4) and space O(n3) the
partition function QT

k (a) for all secondary structures having exactly k base pairs, for all
values of 1 ≤ k ≤ n. We omit details, since the method is similar, though simpler, to the
method we present to compute the partition function of saturated structures having k base
pairs.

RNAsat can sample from the collection of saturated secondary structures having k base
pairs, using stochastic backtracking with ZT

k (a). Additionally, RNAsat can sample from the
collection of all secondary structures having k base pairs, using stochastic backtracking with
QT

k (a). Our sampling procedure is mathematically rigorous, and is analogous to the method
of Ding and Lawrence [14] with web server Sfold [13], except that we sample with respect
to ZT

k (a) and QT
k (a) for any temperature 0 ≤ T ≤ 100, whereas Ding and Lawrence use

McCaskill’s partition function Q(a) to sample all secondary structures at 37 degrees Celsius.
The algorithms of RNAsat to compute ZT

k (a) and sample saturated secondary structures
having k base pairs are quite distinct from any existing algorithms. As well, despite the
close relation of QT

k (a) to QT (a), to the best of our knowledge, no other software supports
the computation of QT

k (a) or samples, for given k, from the collection of secondary structures
having k base pairs.

Using partition functions, we develop the following applications. (i) We compute en-
semble free energies for saturated secondary structures having k base pairs, thus settling
the question of thermodynamic stability of saturated structures. (ii) We demonstrate that
the Turner nearest neighbor energy model [46] leads to cooperative folding, in the sense of
[11]. (iii) We compute and graph the relative density of states for saturated secondary struc-
tures having k base pairs as a function of temperature; these curves resemble temperature-
dependent phase transitions. (iv) We illustrate the predictive advantage of RNAsat for pre-
cursor microRNA cel-mir-72 of C. elegans and for pseudoknot PKB 00152 of Pseudobase
[40], (v) We compute frequencies of RNA shapes [18] of sampled secondary structures [resp.
saturated structures] having exactly k base pairs.

The plan of the paper is as follows. Section 2 presents key definitions used in our dy-
namic programming algorithm for saturated secondary structures. Additionally, this section
describes several applications of RNAsat. Section 3 presents the pseudocode and an explana-
tion of how to compute the Boltzmann partition function ZT

k (a) for all saturated secondary
structures having exactly k base pairs. Section 4 gives pseudocode for the algorithm to
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sample, for each k, from the ensemble of saturated secondary structures having k base pairs.
The sampling is rigorously performed according to the Boltzmann probability; i.e. lower
energy structures in the ensemble SATk(a) of saturated secondary structures of a having k
base pairs are more heavily weighted than higher energy structures. Since sampling from
the ensemble of saturated secondary structures is different from the procedure of [13], we
include a proof of correctness of our algorithm. Although our software RNAsat as well as
the pseudocode for sampling given in Figures 12, 13 and 14 is for the Turner energy model
[46], the proof of correctness is given for the simpler Nussinov-Jacobson energy model, in
the interests of readability.3

Finally, we note that in this paper, when the temperature T is clear from context, we
may write Zk, Z [resp. Qk, Z] in place of ZT

k , Zt [resp. QT
k , QT ], etc.

2 Overview and applications

In [36], Nussinov and Jacobson introduced a simple energy model, where each base pair in a
secondary structure S contributes an energy of −1.4 In this model, known as the Nussinov-
Jacobson energy model, the energy E(S) of secondary structure S equals −|S|, where |S|
denotes the number of base pairs in S. In [36] a dynamic programming algorithm5 was given
to compute the optimal secondary structure for a given RNA sequence; i.e. the optimal
secondary structure with respect to the Nussinov-Jacobson energy model is that structure
having the maximum number of base pairs (see [9] for implementation details).

Much earlier, a realistic nearest neighbor energy model was developed by Tinoco [23],
with experimentally measured stacking free energies; i.e. energy contributions come from
stacked base pairs rather than base pairs. The well-known Zuker algorithm [51] computes the
minimum free energy (mfe) over all secondary structures by adding contributions of negative
(stabilizing) energy terms for stacked base pairs and positive (destabilizing) energy terms
for hairpin loops, bulges, internal loops and multiloops. Initially implemented with energy
parameters from [23], successive refinements of Zuker’s algorithm have incorporated more
accurate energy parameters from [32] with refinements from [46] for stacked base pairs and
various loops (hairpin, bulge, internal loop, multi-branch loop) and 5′ and 3′ dangles, i.e.
unpaired nucleotides which stack onto a base pair. The energy term contributed by a base
pair depends on the base pair (if any) upon which it is stacks; for instance, Turner’s current

rules [46] at 37 degrees Celsius assign stacking free energy of −2.24 kcal/mol to
5′-AC-3′

3′-UG-5′
of

−3.26 kcal/mol to
5′-CC-3′

3′-GG-5′
and of −2.08 kcal/mol to

5′-AG-3′

3′-UC-5′
. Our software RNAsat uses

3The reader familiar with the Turner energy model should have no difficulty in constructing a similar
argument for Proposition 1.

4Of course, this model has trivial variants, such as assigning −3 for GC, −2 for AU and −1 for GU pairs.
In particular, Proposition 1 uses the notation bp(i, j) for the energy of base pair (i, j) in the RNA sequence
a1, . . . , an.

5This algorithm, known as the Nussinov-Jacobson algorithm, is also called the maximum circular matching
algorithm [22].
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free-energy values for stacked base pairs, dangles, hairpins, bulges, internal loops and multi-
loops from mfold 3.0 when T = 37◦ Celsius and energy values from mfold 2.3 otherwise.
In particular, following the approach of Zuker’s mfold, when loop size N exceeds 30, the
free energy, due to loss of entropy, is cT · ln(N/30), where cT is a temperature-dependent
constant; e.g. c37 = 1.079.

Following [6], given an RNA sequence a = a1, . . . , an, a secondary structure S for a is
defined to be k-saturated, if S is locally optimal, and S contains k base pairs fewer than the
maximum for a; i.e. k fewer base pairs than that of the Nussinov-Jacobson optimal structure.
If m denotes the number of base pairs in the Nussinov-Jacobson optimal structure for RNA
sequence a, then clearly any k-saturated secondary structure for a has m−k many base pairs,
and any saturated secondary structure S on a having k base pairs must be (m−k)-saturated.

In [6, 7], we developed a dynamic programming algorithm called RNALOSS, an acronym for
RNA locally optimal secondary structures, computed with respect to the Nussinov-Jacobson
energy model. This software computes, for a given RNA nucleotide sequence and each
integer k, the number of k-saturated secondary structures. Since the Boltzmann partition
function is essentially a weighted count, the algorithm of [6] can be used to compute, for
given RNA sequence a and all integers k, the Boltzmann partition function with respect to
the Nussinov-Jacobson energy function for all saturated secondary structures on a having k
base pairs.

In this paper, we lift the algorithm RNALOSS [6, 7] to an O(n5) time and O(n3) space
algorithm RNAsat to compute, for a given RNA sequence a and all integers k, the Boltz-
mann partition function ZT

k (a) with respect to the Turner energy model, for any integral
temperature T in degrees Celsius, 0 ≤ T ≤ 100.

2.1 Visible nucleotides and visible positions

To fix ideas, consider the toy sequence GGGGCCCCC. The maximum number of base pairs is
3, and there is one 0-saturated structure (with 3 base pairs) given by (((...))), twelve
1-saturated structures given by

GGGGCCCCC GGGGCCCCC GGGGCCCCC GGGGCCCCC

..((...)) .(.(...)) .((....)) ((...)..)

(..(...)) .((...).) (.(....)) (.(...)).

((....).) ((....)). ((...).). ((...))...

and three 2-saturated secondary structures, given by

GGGGCCCCC

(...)....

(....)...

...(....)

Note that the Nussinov-Jacobson algorithm predicts an optimal secondary structure of
(((...))) with three base pairs, whereas both mfold and RNAfold predict a minimum
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free energy structure ((....)). of −1.40 kcal/mol with one stacked base pair, one exterior
base pair, and dangles.

With over 12 trillion saturated structures for the 54 nucleotide hammerhead ribozyme
with EMBL accession number AF170517 (Rfam family RF00008 [19]), it is impossible in
general to enumerate all saturated structures. Instead, we apply dynamic programming
using the notions of visible nucleotides and visible positions defined in [6]. Given RNA
sequence a = a1, . . . , an, a position 1 ≤ i ≤ n is visible in secondary structure S if for all
base pairs (x, y) ∈ S, it is not the case that x ≤ i ≤ y. A nucleotide X ∈ {A,C,G, U} is
visible if X = ai, for some visible position i. Define V isNuc(S) ⊆ {A,C,G, U} to be the set
of visible nucleotides occurring in some position i < n − θ, i.e.

V isNuc(S) = {az : for all (x, y) ∈ S [(z < x or z > y) and z < n − θ]} .

To account for visible positions between n − θ, . . . , n, we define V isPos(S) = b, where
0 ≤ b ≤ θ + 1, and b is the greatest value in 0, . . . , θ + 1, such that for all 0 ≤ x < b, n − x
is external to every base pair of S. We say that structure S is s, b-visible if V isNuc(S) = s
and V isPos(S, 1, n) = b. For example, if a is the sequence AUUCCGGCA and if the minimum
number of unpaired bases in a hairpin loop is θ = 1,6 then the four secondary structures

AUUCCGGCA AUUCCGGCA AUUCCGGCA AUUCCGGCA

(.)(.)... ...(.)... (.)..(.). ..(.(.).)

are respectively {G}, 2-visible, {A,G,U}, 2-visible, {C}, 1-visible and {A,U}, 0-visible. For
given RNA sequence a = a1, . . . , an, for fixed temperature T , for all integers k, for all 24 = 16
possible sets s of visible nucleotides and for all possible values 0 ≤ b ≤ θ + 1 = 4 of visible
positions, our main algorithm, given in Figures 10 and 11, computes the partition function

ZT
k (a, i, j, s, b) =

∑

S∈SAT k(a,s,b)

exp(−E(S)/RT )

where SAT k(a, s, b) denotes the set of saturated secondary structures on a which are s, b-
visible and have exactly k base pairs. The definitions of V isNuc and V isPos are precisely
what is needed to compute ZT

k (a, i, j, s, b), assuming that all values of ZT
k (a, i′, j′, s′, b′) have

been computed and stored in a table for |j ′ − i′| < |j − i|. Using dynamic programming, for
all integers k, we compute as well the partition function

QT
k (a, i, j) =

∑

S∈Sk(a)

exp(−E(S)/RT )

where Sk(a) denotes the set of all secondary structures S having exactly k base pairs (i.e. in
QT

k , secondary structure S need not be saturated).
In [14], Ding and Lawrence describe how to sample secondary structures in a mathe-

matically rigorous fashion, by using stochastic backtracking with the partition function as

6In this paper, as well as in mfold, RNAfold and RNAstructure, θ is taken to be 3. We have temporarily
taken θ = 1 for perspicacity in this toy example.
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computed by McCaskill’s algorithm [33]. Though details are substantially more complicated,
we have implemented a sampling algorithm for the set of saturated secondary structures hav-
ing exactly k base pairs; see Figures 12, 13 and 14. Though not described here, using our
computation of QT

k (a), our software RNAsat includes a rigorous sampling as well for the
collection of all secondary structures having k base pairs; i.e. we provide a parametrized
version of Sfold [13]. In this fashion, RNAsat can additionally sample all [resp. saturated]
secondary structures irrespective of number of base pairs.

2.2 Applications

For an input RNA sequence, fixed temperature T and fixed value of k, we can generate
(say) 1000 samples of saturated secondary structures, each having exactly k base pairs and
sampled using the Boltzmann partition function ZT

k . Subsequent frequency analysis of the
samples, when T and k are varied, allow us to investigate aspects of the ensemble of low
energy saturated structures. In this section, we present (i) ensemble free energies for satu-
rated secondary structures having k base pairs, (ii) a demonstration of cooperative folding
in the Turner energy model, (iii) a temperature-dependent phase transition for saturated
structures, (iv) additional experiments including precursor microRNA cel-mir-72 from C.
elegans and pseudoknot PKB 00152 from Pseudobase [40], (v) a frequency analysis of RNA
shapes at various temperatures for all [resp. saturated] secondary structures of a 149 nt.
SAM riboswitch having k base pairs fewer than that of the Nussinov-Jacobson optimal
structure (see [18] for the definition of RNA shape).

Ensemble free energy

Figure 1 depicts the ensemble free energy Gk = −RT ln ZT
k , where the universal gas con-

stant R is Avogadro’s number times the Boltzmann constant and T is temperature in degrees
Kelvin. Note the thermodynamic stability of saturated secondary structures, leading sup-
port to the suggestion that saturated structures form a potential kinetic trap in the folding
process.

Cooperative folding

In [48] Zimm and Bragg introduce a nearest neighbor model for helix-coil transition of a
protein, i.e. where the probability that a residue is in the helix (resp. coil) state is conditional
on the state of its nearest neighbor. As indicated by the sigmoidal curves of the number
of residues in coil state as a function of temperature, the Zimm-Bragg model illustrates
cooperativity in the helix to coil transition of a polypeptide. (See Chapter 26 of [11] for a
good treatment of cooperativity and the Zimm-Bragg and Ising models.) Figure 2 shows
that the Turner model gives rise to a sigmoidal curve, typical of cooperative folding, while
the Nussinov-Jacobson model does not. Assuming that the average number of base pairs in
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the ensemble of secondary structures is inversely proportional to the UV absorbance7 in a
spectrophotometer, notice the similarity between the Turner model curve in Figure 2 with
the experimentally determined RNA melting curve of [25].

Apparent phase transition

Define the relative density of states ρT
k for saturated secondary structures of a given RNA

sequence having exactly k base pairs at temperature T to be the relative Boltzmann prob-
ability, i.e. ρT

k = ZT , for each integer k. Since secondary structure S for a is k-saturated
exactly when |S| = m − k, where m denotes the maximum number of base pairs in a sec-
ondary structure on a, this immediately allows us to compute the relative density of states
ρ̂T

k = ẐT
k /ẐT for k-saturated secondary structures. Figure 3 displays overlaid graphs, for

each fixed k, of the relative density of states for k-saturated structures as a function of tem-
perature. The 0-saturated density is close to 1 at 0 degrees Celsius, gradually declines with
rising temperature. With rising temperature, the 1-saturated density gradually increases to
a peak, then diminuishes, etc.

It should be mentioned that Figures 2 and 3 of the current paper are similar in form,
although distinct, to Figure 2 of [12] and Figure 1 of [28]. Figure 2 of the current paper depicts
the expected number of base pairs of a single RNA molecule as a function of temperature,8

while one of the curves in Figure 2 of [12] depicts the fraction of random coil as a function
of temperature. Figure 3 of the current paper depicts the relative density of states of k-
saturated secondary structures, for small values of k, as a function of temperature. Though
unrelated, Figure 2 of [12] depicts the fraction of various species (duplex, hairpin, random
coil) as a function of temperature – both graphs depict rising and falling concentrations as
a function of temperature.

Experiments with microRNA cel-mir-72 and pseudoknot PKB 00152

In this section, we describe several additional experiments. Figures 4 and 5 illustrate the
difference between the minimum free energy (mfe) secondary structure for 96 nt. precursor
microRNA cel-mir-72, from C. elegans, with accession number MI0000043 from miRBase
linked to Rfam [19]. The left panel of Figure 4 depicts the mfe structure, as computed
with RNAfold from Vienna RNA Package 1.5. The right panel of this figure displays the
consensus structure,9 as determined by 1000 saturated structures sampled using RNAsat.
The consensus structure, which by definition consist of the base pairs occurring in strictly

7Absorbance of UV light at 260 nm is due to especially pyrimidines when light impinges vertically to
the plane of the base. Base pairing reduces likelihood of vertical impingement, hence the more base pairing
that occurs in a secondary structure, the less UV absorbance will be detected. See [47] for more on UV
absorbance.

8This expected number could alternatively be obtained by summing over all base pairs the Boltzmann
probability of base-pairing, as computed by McCaskill’s algorithm – remark due to M. Zuker (personal
communication).

9The consensus structure consists of those base pairs which appear in strictly greater than half the sampled
structures.
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more than half the sampled structures, clearly resembles the familiar approximate stem-
loop structure which precursor microRNAs are believed to adopt. Figure 5 displays dotplot
presentations of Boltzmann pair frequencies; in the upper triangular portion, square are
depicted in the position (i, j) with area proportional to frequency that base pair (i, j) occurs
in the sampled ensemble. In the lower triangular portion, the minimum free energy structure
is represented, in that a black square appears in position (j, i) if base pair (i, j) occurs in the
mfe structure, as computed using version 1.5 of RNAfold. The left panel of Figure 5 depicts
the base pair frequencies from 1000 sampled secondary structures, using the implementation
of McCaskill’s algorithm [33] in RNAsat; since RNAsat computes QT

k for each k, by sampling,
we first compute the Boltzmann probability that a secondary structure has k base pairs, then
we sample accordingly. The middle panel depicts the dotplot of base pair frequencies from
1000 samples of approximately locally optimal secondary structures, produced by a greedy
algorithm suggested by one of the referees. The greedy algorithm first samples a low energy
structure using McCaskill’s algorithm, and subsequently adds that base pair which can be
added which would lead to the greatest decrease in energy. Clearly the dotplot in the left
and middle panels are similar. In contrast, the right panel depicts base pair frequencies from
1000 sampled saturated secondary structures. It follows that approximately locally optimal
structures, as determined by the greedy algorithm, resemble the structures sampled by the
method of Ding and Lawrence [14]. These appear to be distinct from sampled saturated
structures.

In the set of experiments displayed in Figures 6, 7, 8 and Table 3, we considered the
26 nt. pseudoknot PK2 of the upstream pseudoknot domain (UPD) of the 3′ UTR of RNA
beta, with EMBL accession number X03854 and start position 3088. This data is taken from
the Pseudobase database [40] with accession number PKB 00152. The RNA sequence and
secondary structure, with annotated pseudoknot, is as follows:

UGGUGCCCAUCAACCAUAUGAUGGGA

.(((.[[[[[[[)))...]]]]]]].

Figure 6 displays the minimum free energy (mfe) secondary structure and corresponding dot
plot of Boltzmann pair probabilities, as computed using version 1.5 of Vienna RNA Package
RNAfold. RNAfold correctly detects one of the helices, computed to have energy of −10.5
kcal/mol, as illustrated as follows:

UGGUGCCCAUCAACCAUAUGAUGGGA

.....(((((((......))))))).

The left panel of Figure 7 displays the dot plot of pair frequencies, computed by sam-
pling 1000 structures using RNAsat. For each k, RNAsat computes the Boltzmann prob-
ability QT

k /
∑

k QT
k of all secondary structures having k base pairs, and then samples ap-

propriately. The same dot plot is produced by Sfold [14] (data not shown). Note that
this dot plot is identical to the right panel of Figure 6. The right panel of Figure 7 dis-
plays the dot plot of pair frequencies computed by sampling 1000 locally optimal structures.
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All locally optimal structures were computed by brute force, by first enumerating all sec-
ondary structures by using Vienna RNA Package RNAsubopt, and subsequently checking
whether the structure is locally optimal with respect to the Turner energy model; i.e. no
neighbor has lower energy. This produces a set LocOpt of all 780 locally optimal struc-
tures for PKB 00152. Note by contrast that there are 111,014 saturated structures of PKB
00152. We then sample 1000 locally optimal structures from LocOpt, each with probabil-
ity Pr[S] = exp(−E(S)/RT )/

∑
S exp(−E(S)/RT ), where the sum is taken over LocOpt.

Among these 1000 sampled structures, with few exceptions, the mfe structure occurs. In
contrast, Table 3 presents data on the frequency of occurrence of saturated structures, when
1000 saturated structures are sampled from the collection of 111,014 saturated structures of
PKB 00152.

The left panel of Figure 7 displays the dot plot of 1000 saturated structures sampled
by RNAsat. Notice how alternative base pairs appear, corresponding to the pseudoknot,
a feature not detected using mfe calculation, McCaskill’s algorithm, or sampling over all
secondary structures. The right panel of Figure 7 presents the histogram of energies of all
sampled saturated structures.

Shape frequencies of saturated and locally optimal structures

In Tables 1 and 2, we present shape frequencies for sampled structures of the SAM riboswitch
with EMBL accession number AL939119.1/177986-178133. As defined by Giegerich and co-
workers [18, 38, 41], the shape of a given secondary structure is a homomorphic mapping
from the secondary structure into a more compact structure, which succinctly describes basic
features of the secondary structure; see [18] for the formal definition. For instance, the π-
shape of the cloverleaf secondary structure of tRNA is [[][][]], while the less succinct
π′-shape is [ [ ] [ ] [ ] ] . By a simple linear time algorithm not described here, we can
compute the π- and π′-shape of a given secondary structure; for reasons of space, we only
present π-shapes in the data shown. Notice how the frequency of certain shapes for the
SAM riboswitch depends on temperature (25, 37, 50 degrees Celsius), and on the number k
of base pairs fewer than that of the Nussinov-Jacobson optimal structure for this riboswitch,
which has 55 base pairs. Note the quite different shape frequencies of saturated structures
versus general structures sampled by RNAsat, as displayed in Tables 1 and 2. Sample data is
presented for different temperatures (25, 37 and 50 degrees Celsius) and for different values
of k, where k designates the number of base pairs fewer than that of the Nussinov-Jacobson
optimal structure (in the case at hand, this number is 55). By ‘gen’, we mean a general
sampling, i.e. without any restriction on the value of k.

Collectively, the data for these examples suggest that there may in general be far fewer
locally optimal structures than saturated structures, and that the ensemble of locally optimal
structures resembles the Boltzmann ensemble of low energy structures, both quite different
from the ensemble of saturated structures.
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3 Computing the Boltzmann partition function ZT
k

3.1 Recurrence relations for McCaskill’s algorithm

In [33], McCaskill described a cubic time algorithm to compute the partition function
Q =

∑
S e−βE(S), where the sum is over all secondary structures of a given RNA sequence

a1, . . . , an. (Recall that we ‘Z’ to denote the partition function for saturated structures,
while ‘Q’ denotes the partition function without the restriction to saturated structures.) In
particular, McCaskill defined

Qi,j =
∑

S

e−βE(S) (1)

where the sum in equation (1) is taken over all secondary structures S of a[i, j] = ai, . . . , aj.
Following [24], let QB

i,j denote the partition function restricted to those secondary structures
on a[i, j] in which (i, j) is a base pair. Similarly, QM

i,j [resp. QM1
i,j ] denotes the partition

function for those secondary structures on a[i, j] in which a[i, j] is part of a multiloop having
one or more [resp. exactly one] helix. With this notation, the recurrence relations for
McCaskill’s algorithm are given as follows.

Qi,j = Qi,j−1 +
∑

i≤x<j QB
i,xQx+1,j

QB
i,j = e−βH(i,j) +

∑
i<x<y<j QB

x,ye
−βI(i,j,x,y) +

∑
i<x<j QM

i+1,xQ
M1
x+1,j−1e

−βa

QM
i,j =

∑
i<x<j e−β(x−i−1)cQM

x+1,j +
∑

i<x<j QM
i,xQ

B
x+1,je

−βb + QM
i,j−1e

−βc

QM1
i,j = QM1

i,j−1e
βc + QB

i,je
βb

Qi,i = 1, QB
i,i = 0, QM

i,i = 0, QM1
i,i = 0

Here, H(i, j) is the free energy of a hairpin loop closed by base pair (i, j), and I(i, j, x, y)
is the free energy of an interior loop between base pair (i, j) and base pair (x, y). The free
energy of a multiloop having B base pairs and U unpaired bases is approximated by the
affine function a + bB + cU .

It is now straightforward to modify these recursion equations, in order to compute Qi,j(k),
the partition function for all secondary structures on a[i, j] having exactly k base pairs. We
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have the following.

Qi,j(k) = Qi,j−1(k) +
∑

1≤`<k QB
i,x(`)Qx+1,j(k − `)

QB
i,j(1) = e−βH(i,j)

QB
i,j(k + 1) =

∑
i<x<y<j QB

x,y(k)e−βI(i,j,x,y)+
∑

1≤`<k

∑
i<x<j QM

i+1,x(`)Q
M1
x+1,j−1(k + 1 − `)e−βa

QM
i,j(k) =

∑
i<x<j e−β(x−i−1)cQM

x+1,j(k)+
∑

1≤`<k

∑
i<x<j QM

i,x(`)Q
B
x+1,j(k − `)e−βb+

QM
i,j−1(k)e−βc

QM1
i,j (k) = QM1

i,j−1(k)eβc + QB
i,j(k)eβb

Qi,i(k) = 1, QB
i,i(k) = 0, QM

i,i (k) = 0, QM1(k)i,i = 0

The difficulty of adding visibility predicates s, b, necessary to compute the partition function
Zi,j(k) for saturated structures on a[i, j] having exactly k base pairs can be illustrated in an
attempt to define the multiloop partition function ZM

i,j (k, s, b) for k base pairs and visibility
predicates s, b. The term ∑

i<x<j

e−β(x−i−1)cZM
x+1,j(k, s, b)

contributes to the partition function ZM
i,j (k, s ∪ {ai+1, . . . , ax}, b), but there are other terms

making it difficult to express how ZM
i,j (k, s, b) depends on previously computed terms ZM

i,x(`, s0, b0),
ZB

x+1,j(k − `, s1, b1), etc. For this reason, after giving an overview of RNAsat, we present the
pseudocode in Figures 10, 11, 12, 13, 14.

3.2 Notation

Given an RNA sequence a1, . . . , an and fixed absolute temperature T , Boltzmann parti-
tion function values are computed using dynamic programming, where (essentially) two-
dimensional arrays Zs, Z ′

s, Zm
s , Zm, Ze are progressively filled along off-diagonals at increas-

ing distance d = 1, 2, . . . from the principal diagonal. In this manner, when defining the
value Z[i, j], for 1 ≤ i < j ≤ n, where Z collectively denotes any of Zs, Z ′

s, Zm
s , Zm, Ze,

the values of Z[i′, j′] are already stored for all 1 ≤ i′ < j′ ≤ n such that (j ′ − i′) < (j − i).
As described in Section 2.1, additional visibility parameters s, b are required to inductively
account for all saturated structures. Each of s, b ranges over finitely many values; indeed
s ⊆ {A,C,G, U} and 0 ≤ b ≤ θ + 1 = 4. It follows that each of the arrays Zs, Z ′

s, Zm
s ,

Zm, Ze is not two-dimensional as initially described, but rather of the form Z[k, i, j, s, b].
Note that in the particular case s = ∅ and b = 0, the secondary structures S considered in
Zs(k, i, j, ∅, 0) are such that (i, j) ∈ S; i.e. i and j base-pair together in S.

The pseudocode description of the partition function algorithm in Figures 10 and 11
requires some explanation of notation used. The function maxBP (i, j) returns the maximum
number of base pairs possible in a secondary structure on ai, . . . , aj, i.e. equal to the number
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of base pairs in the Nussinov-Jacobson optimal structure on ai, . . . , aj. The function nucl(i, j)
returns the set {ai, . . . , aj}; note that nucl(i, j) ⊆ {A,C,G, U} is a set, not a multi-set or
list. The function, basepairWithSet(s,i) returns true if the nucleotide ai at position i can
base-pair with a nucleotide in the set s, and false otherwise. This function is invoked when
s is a set of visible nucleotides (i.e. external to any base pair).

Energy contributions for different types of loops (helix, bulge, interior loop and multi-
loop) are defined as follows. For 1 ≤ i < j ≤ n, hairpin(i, j) denotes the energy contribution
of a hairpin loop on RNA subsequence ai, . . . , aj; i.e. ai and aj form a closing base pair of the
loop region ai+1, . . . , aj−1, where the latter are not base-paired. The energy contribution for
a stacked base pair, bulge or interior loop is denoted by stack(i1, i2, j1, j2), where (i1, j2) is
the exterior closing base pair, and (i2, j1) is the interior closing base pair. Finally, the energy
associated with a multi-loop is computed by the affine function α1 + i · α2 + n · α3, where
i is the number of base pairs in the multi-loop and n the number of unpaired nucleotides.
Both 5′ and 3′ dangles are taken into account by our algorithm, and we denote the energy
contribution by dangle(i, j). Specifically, if i < j, then the function dangle(i, j) returns the
energy of the 3′ dangle of i+1 on i plus the energy of the 5′ dangle of j−1 on j. Additionally,
if i < j, then by convention, the function dangle(j, i) returns the energy of the 5′ dangle of
i−1 on i plus the energy of the 3′ dangle of j +1 on j. Note that energy values of 3′ dangles
are higher than those of 5′ dangles. Our manner of handling dangles is similar to that of [24]
in RNAfold.

Although a single array Z suffices to compute the partition function with respect to
the Nussinov-Jacobson energy model, this is no longer the case for the Turner model. In
the latter case, for each k, i, j, s, b, we must distinguish the partition function according to
the last secondary structure element encountered (i.e. hairpin, stem, bulge, internal loop,
multi-loop or exterior loop). Each of these 5 conditions requires a distinct array Z.

• Zs: Secondary structures such that the first and the last paired nucleotides base-pair
together. An example is ...(***).., where . denotes an unpaired position, ***

denotes any valid substructure. The subscript s in Zs suggests “stem”.

• Z ′
s: Secondary structures such that the leftmost and rightmost nucleotides of the sub-

sequence base pair together. Fields s and b are irrelevant in this case and so omitted.
The well-balanced parenthesis expression with dots (***) is an example.

• Ze: At least 2 hairpin loops occur in an exterior loop (unpaired nucleotides do not
receive a penalty since they are external to any base pair). An example of this type of
structure is given by ...(***)..(***)...

• Zm
s : Same as Zs, except that a penalty for unpaired bases occurring in a multi-loop

is added for each nucleotide occurring outside the stem. An example of this type of
structure is given by ...(..(***).(***)...).

• Zm: At least 2 hairpin loops appear in a multi-loop. In this case,a penalty is added
for unpaired bases outside each stem.
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It may seem that the case Z ′
s is included in the case Zs; however, values stored in Zs(i, j, k, ∅, 0)

differ from those of Z ′
s(i, j, k) because of dangle energy contributions (see algorithm descrip-

tion).
In order to reduce space complexity, we use the function segmentBasePair(i1, j1, i2, j2)

which returns true if one can form a valid base pair for the segments [i1, j1] and [i2, j2]
and false otherwise. More formally, segmentBasePair(i1, j1, i2, j2) holds exactly when
(∃x, y ∈ {i1, . . . , j1} ∪ {i2, . . . , j2}) such that x < y and x, y can form a valid Watson-Crick
or wobble pair.

The results of the segmentBasePair function can be computed in O(1) time using an
2-dimensional array nbSingleBp which stores in a cell nbSingleBp[i, j] the number of sin-
gle base pairs (i.e. the number of secondary structures with one and only one base pair)
over the subsequence ai, · · · , aj. Indeed, one can note that the number of basepairs than
can be formed over the two intervals [i1, j1] and [i2, j2] is equal to nbSingleBp[i1, j2] −
nbSingleBp[i1, i2]−nbSingleBp[j1, j2]+nbSingleBp[j1, i2]. Using this remark, we can com-
pute this value and return true if and only if the result is positive (false otherwise). Note
that when only two index are given, the function segmentBasePair operates for a single
interval [i1, j1]. The same array nbSingleBp can be used for this task.

3.3 Algorithm description

When considering substring ai, . . . , aj of the input RNA sequence, the partition function
algorithm, given in Figures 10 and 11, treats 3 distinct cases, according to whether i, j are
base-paired, or r, j are base-paired for some intermediate i < r ≤ j − θ − 1, or j is not
base-paired. Case 1, treated in lines 7 to 20, considers all saturated secondary structures
containing base pair (i, j), while Case 2, treated in lines 21 to 36, considers those containing
base pair (r, j), for some intermediate r, i < r ≤ j − θ − 1. Case 3, treated in lines 38
to 52, considers those saturated secondary structures in which j does not base-pair with
any position in {i, . . . , j − θ − 1} – note that it can happen (later) that j base-pairs with a
nucleotide in {1, . . . , i − 1} or {j + θ + 1, . . . , n}. This latter case is the most difficult, and
indeed is the reason for having introduced the visibility parameters s, b in the first place.

In each block of of pseudocode, several possibilities are discussed. In Case 1, we consider
the occurrence of a hairpin (lines 9-11), the closing of a multi-loop (line 12-14) and any
stacked base pairs, bulges and internal loops (lines 15-19). The break statements at lines 16
and 18 prevent useless loops. Indeed, if the predicate segmentBasePair(i, x, y, j) is true,
then segmentBasePair(i, x′, y′, j) is also true for all x ≥ x′ and y′ ≤ y. In Case 2, extension
with unpaired bases on the left is examined in lines 23 to 26, while concatenation of helices
appearing in a multi-loop or an exterior loop is handled in lines 27 to 36. Note that in this
case lines 32-33 correspond to an initialization of the helical sequence, while lines 34-35 add
a new stem to an already existent helical sequence. In Case 3, before any extension with an
unpaired nucleotide on the right, we distinguish the “general case” (lines 41-45), such that
0 ≤ b ≤ θ, from the special case (lines 46 to 51), where b = θ + 1. Any extension requires us
to check that the rightmost nucleotide cannot already base-pair, before forming a base pair
with the rightmost position; i.e. that (j − θ − 1, j) cannot base-pair.
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3.4 Complexity

As earlier mentioned, s and b are of constant size (s can take at most 16 values and b can
take at most 5 values). The partition function algorithm given in Figures 10 and 11 runs
in time O(n4) with space requirement of O(n3). In practice, our implementation requires
roughly 1 minute and 250 MByte to run for an input RNA sequence of 100 nucleotides.

4 Boltzmann sampling of saturated secondary struc-

tures

The Boltzmann partition function can be used to weight each secondary structure with
respect to its energy contribution in the ensemble of all possible secondary structures. In
analogy to Ding and Lawrence [14], who gave the first correct and mathematically rigorous
sampling algorithm for RNA structures, we proceed as follows.

4.1 Notation

Here we define additional functions required for the sampling algorithm, depicted in Figures
12 and 13. The function remove(i, s), where i ∈ N and s ⊆ {A,U,G,C}, returns the
subset s \ {ai} of s which does not contain the nucleotide at position i. The function
compatible(i, j, s) returns true if the set of all nucleotides present in ai, . . . , aj equals s, and
returns false otherwise. The power set function P(s) returns the collection of all subsets of
s, and function addBasePair(i,j,sample) adds the base pair (i, j) to a secondary structure
(called sample below). All other functions have been previously defined. The Z-tables, i.e.
Ze, Zm, etc., used in our sampling algorithm are the same as those used in our partition
function algorithm. Additionally, in the case of exterior loop, we define a new array Z ′

e

such that Z ′
e(i, j, k, s, b) = Zs(i, j, k, s, b) + Ze(i, j, k, s, b), for all i, j, k, s and b. This array

stores the values of the partition function for helical sequences belonging to an exterior loop,
regardless of the number of helical sequences (one or more instead of at least two).

4.2 Algorithm description

The linear time sampling algorithm works by calling itself recursively. We begin with an
empty secondary structure, denoted sample, and we stipulate the number k of base pairs
that the sample should ultimately contain. Since the Boltzmann probability at temperature
T for the collection of saturated secondary structures having k base pairs equals the relative
density of states ρT

k = ZT
k /

∑
k ZT

k , the value of k is obtained by sampling. Moreover, ZT
k =∑

s,b ZT
k [k, 1, n, s, b], and hence initial values of s, b are obtained by sampling – say s0, b0.

Given the visibility constraint s0, b0, in the sample to be produced, either (1, n) ∈ sample,
or (r, n) ∈ sample for some intermediate 1 < r ≤ n − θ − 1, or n is not base-paired in
sample. Each of these alternatives determines visibility parameters, which must then agree
with the initially determined values s0, b0. The structure sample is then progressively filled
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by recursive calls of the sampling algorithm. At the end of the sampling algorithm the
completed structure sample having k base pairs is returned.

Subfunctions are designed to sample a specific (or a set of specific) secondary structure
elements and to decide which ones will be called recursively. Three such subfunctions are
needed. They are respectively associated with the sampling of base pairs in helices (Fig-
ure 12), decomposition of helix sequences in multi-loop (Figure 13) and decomposition of
helix sequences in exterior loop (Figure 14). All functions follow the same approach. First, a
random number in the real interval (0, 1) is generated according to the uniform distribution
(line 1 in Figures 12 and 13) and then this random number is used together with (previ-
ously computed, stored) partition function values to choose the next case according to the
Boltzmann probability.

The sampling function samplingHelix (Figure 12) is the only function to write a base
pair in the sample structure (line 3). The recursive call in the case of a stem structure is
developed in lines 5 to 10, and the occurrence of a multi-loop is discussed in lines 12 to 17.

The function samplingMultiLoop (Figure 13) discusses the value of b and its possible
ancestors. In lines 3 to 13, we assume that the upper bound for b is reached. The distance d
from the rightmost nucleotide to the rightmost base-paired nucleotide is thus at least θ + 1.
We consider two possible values for its ancestor, namely θ + 1 (d > θ + 1) and θ (d = θ + 1).
When 1 ≤ b ≤ θ (lines 14 to 19) this discussion does not pertain since there is only one
possibility (i.e. b − 1).

When b = 0 (lines 20 to 36), the rightmost base is paired. This means that we need to
extract the rightmost helix from the helical sequence of the multi-loop. Thus, we search for
a valid cut point r (lines 21 and 22) and recursively call the helix sampling algorithm on
the rightmost helix and recursively call the multi-loop sampling algorithm on the left part.
Once the cut point r has been chosen, we take care of the left string status (line 23). If
this segment can base-pair (lines 24 to 37), then the left part contains at least one helix and
hence the function calls itself recursively on this segment while samplingHelix is called on
the right part. Line 28 to 32 treat the case of a left part which contains at least two helices.
This implies that the multi-loop sampling is not terminated and then field lastHelix keeps
the false value for the recursive sampling (line 30). In lines 33 to 37, we treat the case
of left and right parts containing one and only one helix. Otherwise (lines 38 to 42), the
left string cannot base-pair and the helix is the last one in the multi-loop. Before calling
samplingHelix on the right side and terminating the sampling of the multi-loop we must
check the correctness of this configuration (line 38). Hence we check first that more than
one stem will appear in the multi-loop and next that the argument s is compatible with the
visibility set of the left string.

When sampling an exterior loop (Figure 14), the principles are identical to those already
described for function samplingMultiLoop. We need only to omit the energy contributions
from dangle and to use array Zs, Ze and Z ′

e instead of Zm
s and Zm. This implies a sim-

plification when sampling an exterior loop which contains at least two helices (lines 28 to
32).
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4.3 Correctness of the sampling algorithm

To prove the correctness of the sampling algorithm, we need to demonstrate that a saturated
structure can be decomposed into smaller saturated structures. This is done in the following
Lemma 1. In this section, we consider a fixed RNA sequence a1, . . . , an, and use the notation
[i, j] to denote the interval {i, i + 1, . . . , j} of integral values between i and j.

Lemma 1

Assume that Si,j is a saturated secondary structure on RNA subsequence ai, . . . , aj, and that
Si,j has k base pairs. Then exactly one of the following cases holds.

1. Nucleotides i and j base-pair and enclose a saturated secondary structure with k − 1
base pairs.

2. There exists an index i < r ≤ j − θ − 1 such that (r, j) ∈ Si,j , and there exist
two saturated secondary structures Si,r−1 and Sr,j having respectively k1 and k2 base
pairs on ai, . . . , ar−1 and ar, . . . , aj respectively, where k = k1 + k2 + 1 and Si,j =
Si,r−1 ∪ Sr,j−1 ∪ {(r, j)}.

3. Position j) is not base-paired and the secondary structure Si,j−1 restricted to ai, . . . , aj−1

is saturated.

Proof. Assume that nucleotides i and j base-pair with each other, and consider the sec-
ondary structure Si+1,j−1 restricted to ai+1, . . . , aj−1. If Si+1,j−1 is not saturated, then for
some i < x < y < j, the base pair (x, y) can be added to Si+1,j−1. But then Si,j ∪ {(x, y)}
would be a valid secondary structure, contradicting local optimality of Si,j.

Assume now that nucleotides i and j do not base-pair together. Then either the nucleotide
at position j base-pairs with a nucleotide at position i < r ≤ j−θ−1, or position j is unpaired
with any position in the interval [i, j]. In the former case, Si,j can be decomposed into two
distinct secondary structures Si,r−1 and Sr,j−1 along with the base pair (r, j). If either of
the substructures is not saturated, then for some x, y satisfying i ≤ x < y ≤ r − 1 resp.
r ≤ x < y ≤ j − 1, the base pair (x, y) could be added to Si,r−1 resp. Sr,j−1. But then
Si,j ∪{(x, y)} would be a valid secondary structure, contradicting local optimality of Si,j . In
the latter case, if for i ≤ x < y ≤ j − 1 the base pair (x, y) could be added to Si,j−1, without
violating the definition of secondary structure, then since Si,j = Si,j−1, the same is true for
Si,j , which contradicts local optimality of Si,j. This concludes the proof. ¤

Lemma 1 states that every saturated secondary structure can be decomposed into smaller
saturated secondary structures. themselves saturated. This is the justification for a recursive
sampling algorithm for saturated structures. While RNAsat executes correct sampling with
respect to the Turner energy model, for readability, we present the proof of correctness
for the simpler Nussinov-Jacobson model.10 The following proposition gives the Boltzmann
probabilities for each configuration described in Lemma 1.

10This is similar to the presentation style of [22], where details are given for the Nussinov-Jacobson model,
although the authors implemented their algorithm for the Turner energy model.
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Proposition 1

Let ai, . . . , aj be a subword from the RNA sequence a1, . . . , an. Let bp(i, j) denote the
Nussinov-Jacobson energy associated with base pair (i, j); in particular, if ai, aj do not form
a Watson-Crick or wobble pair, then bp(i, j) = +∞. For all possible positive numbers of
base pairs 0 < k ≤ maxBP (1, n) and all possible visibility parameters s and b, we have the
following.

Z(k, i, j, s, b) = e−
bp(i,j)

RT

∑

s′,b′

Z(k − 1, i + 1, j − 1, s′, b′) (2)

+
∑

comp. k′,r,s′,b′

Z(k′, i, r − 1, s′, b′) · e−
bp(r,j)

RT

∑

s′′,b′′

Z(k − k′ − 1, r + 1, j − 1, s′′, b′′) (3)

+
∑

comp. s′,b′

Z(k, i, j − 1, s′, b′). (4)

In the terms (3) and (4), the sum is taken over all values s′, b′ which are compatible with
values s, b.

Proof. The proof is by simultaneous induction on k, s, b. By definition, we have

Z(k, i, j, s, b) =
∑

Si,j is loc. opt.

e
−E(Si,j)

RT

where S is constrained by parameters k, s and b. Depending on the status of position j
(base-paired or not), there are three cases. (i) (i, j) is a base pair, (ii) (r, j) is a base pair,
for some i < r ≤ j − θ − 1, (iii) j is not base-paired with any position in the interval [i, j].
This yields the following equation, where ‘s.t.’ abbreviates “such that”, and ‘bp’ abbreviates
“base-pair”.

Z(k, i, j, s, b) =
∑

Si,j s.t. (i,j) bp

e
−E(Si,j)

RT +
∑

Si,j s.t. (r,j) bp

e
−E(Si,j)

RT +
∑

Si,j s.t. j not bp

e
−E(Si,j)

RT

Case 1. (i, j) is a base pair of Si,j . Let Si+1,j−1 denote the restriction of Si,j to ai+1, . . . , aj−1,
obtained after removal of the extremal base pair (i, j). The energy E(Si,j) of a secondary
structure Si,j on ai, . . . , aj such that (i, j) ∈ Si,j can be decomposed as E(Si,j) = bp(i, j) +
E(Si+1,j−1). Hence the first sum can be written as

∑

Si,j s.t. (i,j) bp

e
−E(Si,j)

RT =
∑

Si+1,j−1

e
−(bp(i,j)+E(Si+1,j−1))

RT

= e
−bp(i,j)

RT

∑

Si+1,j−1

e
−E(Si+1,j−1)

RT

By Case 1 of Lemma 1 we know that Si+1,j−1 is saturated. We then cluster such secondary
structures Si+1,j−1, each having k − 1 base pairs, according to their visibility parameters s′

and b′.
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∑

Si,j s.t. (i,j) bp

e
−E(Si,j)

RT = e
−bp(i,j)

RT

∑

s′,b′

∑

Si+1,j−1(s′,b′)

e
−E(Si+1,j−1)

RT

= e
−bp(i,j)

RT

∑

s′,b′

Z(k − 1, i + 1, j − 1, s′, b′)

This completes the proof for Case 2 of proposition 1.

Case 2. For some intermediate position r, with i < r ≤ j − θ − 1 (r, j) ∈ Si,j . By Case
2 of Lemma 1, the substructures Si,r−1 and Sr+1,j−1 are saturated. The energy E(Si,j) of a
secondary structure on ai, . . . , aj, such that (r, j) ∈ Si,j, can be decomposed as E(Si,j) =
bp(r, j) + E(Si,r−1) + E(Sr+1,j−1).

∑

Si,j s.t. (r,j) bp

e
−E(Si,j)

RT = e
−bp(j,r)

RT ·
∑

Si,r−1,Sr+1,j−1

e
−(E(Si,r−1)+E(Sr+1,j−1))

RT

= e
−bp(j,r)

RT ·
∑

Si,r−1

e
−(E(Si,r−1))

RT ·
∑

Sr+1,j−1

e
−(E(Sr+1,j−1))

RT

Let k′ denote the number of base pairs of Si,r−1, and s′ and b′ denote the visibility parameters
of Si,r−1. Note that s′, b′ must be compatible with s, b; i.e. since (r, j) is a base pair of Si,j ,
it must be that b = 0 and s = s′ ∪ {ar−1−m : 0 ≤ m < b′}. Cluster the left substructures
Si,r−1 by (compatible) visibility parameters s′, b′. By Lemma 1, the left substructure Si,r−1

is saturated, hence the sum can be rewritten as follows.

∑

Si,j s.t. (r,j) bp

e
−E(Si,j)

RT = e
−bp(r,j)

RT ·
∑

comp. k′,r,s′,b′

∑

Si,r−1(k′,r,s′,b′)

e
−(E(Si,r−1(k′,r,s′,b′)))

RT ·
∑

Sr+1,j−1

e
−(E(Sr+1,j−1))

RT

=
∑

comp. k′,r,s′,b′

Z(k′, r − 1, s′, b′) ·
∑

Sr+1,j−1

e
−(E(Sr+1,j−1))

RT

Since (r, j) is a base pair, by induction we can apply Case 2 of this proposition to the right
substructure Sr,j−1. This concludes the proof of Case 3.

∑

Si,j s.t. (r,j) bp

e
−E(Si,j)

RT =
∑

comp. k′,r,s′,b′

Z(k′, r−1, s′, b′) ·e
−bp(i,j)

RT ·
∑

s′′,b′′

Z(k2−1, i+1, j−1, s′′, b′′).

Case 3. In this case, the rightmost position j is not base-paired with any position in
the interval [i, j]. Hence, E(Si,j) = E(Si,j−1), where Si,j−1 denotes the secondary structure
restricted ai, . . . , aj−1.

∑

Si,j s.t. j not bp

e
−E(Si,j)

RT =
∑

Si,j−1

e
−E(Si,j−1)

RT
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Let s′ and b′ denote the visibility parameters of Si,j−1. Note that these parameters must be
compatible with s and b; i.e. since j is unpaired in Si,j , it must be that b = max(b′+1, θ+1),
and s = s′∪{aj−θ−1} if b′ = θ +1 while s = s′ if 0 ≤ b′ ≤ θ. (This is the reason for line 10 in
Figures 13 and 14.) Cluster the secondary structures Si,j−1 by these compatible parameters
s′, b′. Lemma 1 ensures that these secondary structures are saturated, hence by induction
we have the following.

∑

Si,j s.t. j not bp

e
−E(Si,j)

RT =
∑

comp. s′,b′

∑

Si,j−1(s′,b′)

e
−E(Si,j−1(s′,b′))

RT

=
∑

comp. s′,b′

Z(k, i, j − 1, s′, b′)

This concludes the proof of proposition 1. ¤
Proposition 1 implies the correctness of the sampling algorithm for locally optimal sec-

ondary structures with respect to the Nussinov-Jacobson energy model. This explanation
should suffice to explain the underlying ideas in the pseudocode for sampling with respect
to the Turner energy model, given in Figures 12, 13 and 14.
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[5] A. Böck, K. Forschhammer, J. Heider, and C. Baron. Selenoprotein synthesis: An
expansion of the genetic code. Trends Biochem. Sci., 16:463–467, 1991.

[6] P. Clote. An efficient algorithm to compute the landscape of locally optimal rna sec-
ondary structures with respect to the Nussinov-Jacobson energy model. Journal of
Computational Biology, 12(1):83–101, 2005.

[7] P. Clote. RNALOSS: A web server for RNA locally optimal secondary structures.
Nucleic Acids Res., 33(Web Server issue):W600–604, 2005.

[8] P. Clote. Combinatorics of saturated secondary structures of RNA. Journal of Compu-
tational Biology, 13:1640–1657, 2006. 9.

[9] P. Clote and R. Backofen. Computational Molecular Biology: An Introduction. John
Wiley & Sons, 2000. 279 pages.
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shape frequency temperature k
[[[ ][ ]][ ]] 0.580000 37 gen
[ ][ ][ ][ ] 0.180000 37 gen
[[ ][ ][ ]] 0.130000 37 gen
[ ][ ][ ] 0.090000 37 gen
[ ][ ][ ] 0.620000 37 10
[ ][ ][ ][ ] 0.260000 37 10
[ ][ ] 0.110000 37 10
[ ][ ][ ] 0.620000 25 10
[ ][ ][ ][ ] 0.260000 25 10
[ ][ ] 0.110000 25 10
[ ][ ][ ] 0.780000 50 10
[ ][ ][ ][ ] 0.170000 50 10
[ ][ ] 0.040000 50 10

Table 1: Shape frequencies for 100 sampled structures (with no restriction to being satu-
rated) of the 149 nt. SAM riboswitch with EMBL accession number AL939119.1/177986-
178133. Shapes with low frequency are not displayed for reasons of space economy. Notice
how the frequency of certain shapes depends on temperature (25, 37, 50 degrees Celsius), and
on the number k of base pairs fewer than that of the Nussinov-Jacobson optimal structure
for this riboswitch, which has 55 base pairs. By ‘sat’, we mean that there is no restriction
on k; i.e. the sampling is general over all secondary structures, where the probability of
sampling a k-saturated structure is Q̂T

k /
∑

k Q̂T
k . The shape frequencies for these structures

should be compared with those for saturated structures, presented in Table 2.
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shape frequency temperature k
[[ ][ ]][[ ][ ]] 0.500000 37 gen
[[[ ][ ]][ ]] 0.320000 37 gen
[[ ][ ][ ]] 0.150000 37 gen
[[ ][ ][ ][ ]] 0.280000 37 10
[[[ ][ ]][ ][ ]] 0.160000 37 10
[[ ][ ][ ]] 0.120000 37 10
[[ ][[ ][ ][ ]]] 0.060000 37 10
[ ][[ ][ ]][ ][ ][ ] 0.050000 37 10
[ ][ ][ ][ ][ ] 0.050000 37 10
[[ ][ ][ ][ ]] 0.200000 25 10
[[[ ][ ]][ ][ ]] 0.180000 25 10
[[ ][ ][ ]] 0.140000 25 10
[[ ][ ][ ][ ]] 0.290000 50 10
[ ][ ][ ][ ][ ] 0.150000 50 10
[[ ][ ][ ]] 0.100000 50 10
[[[ ][ ]][ ][ ][ ]] 0.060000 50 10
[[[ ][ ]][ ][ ]] 0.060000 50 10
[ ][ ][ ][ ] 0.050000 50 10

Table 2: Shape frequencies for 100 sampled saturated structures of the 149 nt. SAM
riboswitch with EMBL accession number AL939119.1/177986-178133. Shapes with low fre-
quency are not displayed for reasons of space economy. Notice how the frequency of certain
shapes depends on temperature (25, 37, 50 degrees Celsius), and on the number k of base
pairs fewer than that of the Nussinov-Jacobson optimal structure for this riboswitch, which
has 55 base pairs. By ‘sat’, we mean that there is no restriction on k; i.e. the sampling is
general over all saturated structures, where the probability of sampling a k-saturated struc-
ture is ẐT

k /
∑

k ẐT
k . The shape frequencies for these saturated structures should be compared

with those for general structures, presented in Table 1.
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secStr freq energy
...(.((((((((...).)))))))) 0.455000 -3.500000
...(.((((((.(.....)))))))) 0.312000 -3.300000
((((....)))).((((...)))).. 0.194000 -3.000000
...(.(((((((....)..))))))) 0.022000 -1.900000
(....((((((((...).)))))))) 0.005000 -0.600000
(....((((((.(.....)))))))) 0.005000 -0.400000
(...)((((((((...).))))))). 0.002000 -0.300000
(...)((((((.(.....))))))). 0.002000 -0.100000
(....(((((((....)..))))))) 0.001000 1.000000
...(.(((((...(.....))))))) 0.001000 0.400000
...(.(.((((.(.....)))))).) 0.001000 1.400000

Table 3: Saturated structures for pseudoknot PKB 00152. One thousand saturated struc-
tures were sampled from the collection of all 111,014 saturated structures for the RNA
sequence UGGUGCCCAUCAACCAUAUGAUGGGA with secondary structure and anno-
tated pseudoknot .(((.[[[[[[[)))...]]]]]]].. For each structure, the frequency and
energy in kcal/mol are additionally indicated.
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Figure 1: Graph of the ensemble free energy Gk = −RT ln ẐT
k for k-saturated secondary

structures for hammerhead type III ribozyme with Rfam [19] accession number AF170517
for both the Turner energy model (left panel) and the Nussinov-Jacobson energy model

(right panel). As explained in the text, ẐT
k is the sum over all k-saturated structures S of

exp(−E(S)/RT ). The x-axis of each graph indicates the value of k, the saturation parameter
– recall that a secondary structure S is k-saturated if S is saturated and has k fewer base
pairs than that of the Nussinov-Jacobson optimal structure. Ensemble free energy Gk is
given on the y-axis. It follows that energy values for k = 0 correspond to the ensemble
free energy of 0-saturated structures, those having the maximum number of base pairs.
Each graph displays six curves, corresponding respectively to temperature in degrees Celsius
of 0, 20, 40, 60, 80, 100. The curve for T = 0◦ lies on the bottom, with curves for higher
temperatures lying above those for lower temperatures. Note that the lowest ensemble free
energy for the Turner model (left panel) occurs when k = 1. For the Turner energy model,
ensemble free energy is in units of kcal/mol. Energy units are (roughly) in kcal/mol for
for the Nussinov-Jacobson (NJ) energy model, for the following reason. For each of the 57
seed hammerhead type III ribozymes in Rfam, we computed the minimum free energy using
Vienna RNA Package RNAfold. Additionally, we computed the maximum number of base
pairs using our implementation of the Nussinov-Jacobson algorithm. From this, we obtain
an average minimum free energy per base pair of −0.923385 for Rfam family RF00008 of
type III hammerhead ribozymes. Since this value is close to the value −1 assigned per base
pair in the Nussinov Jacobson model, it follows that the energy units in the left and right
graphs of this figure are comparable.
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Figure 2: Graph of the expected number of base pairs as a function of temperature for
signal recognition particle with Rfam [19] accession number X12643. Temperature in degrees
Celsius is given on the x-axis, while the expected number of base pairs 〈base pairs/n〉,
normalized by sequence length n, is given on the y-axis. Expected number of base pairs is
computed by 〈base pairs〉 =

∑
k k·QT

k /QT , where QT
k is the partition function at temperature

T for all secondary structures having exactly k base pairs, and QT =
∑

k QT
k is the partition

function at temperature T for all secondary structures. Although QT is the value obtained
by McCaskill’s algorithm [33], and can be obtained using RNAfold -p, the values QT

k can
only be obtained with our software.
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Figure 3: (i) Left panel: Graph of relative density of states for k-saturated secondary
structures of precursor microRNA ath-MIR156c of Arabidopsis thaliana, for values of 0 ≤
k ≤ 10, as a function of temperature in degrees Celsius. Notice that for T = 0, over 90% of
the saturated structures are 0-saturated (i.e. have the maximum number of base pairs). As
temperature rises, fewer saturated structures are 0-saturated, as indicated by the gradual
decline of the first curve. At the same time, there is a gradual increase, as temperature
increases, of the proportion of 1-saturated structures (i.e. have one fewer base pair than
the maximum), etc. (ii) Right panel: Curve of specific heat for ath-MIR156c, produced by
RNAheat from Vienna RNA Package. Temperature is given on the x-axis and specific heat
on the y-axis.
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Figure 4: Precursor microRNA cel-mir-72 of length 96 from Caenorhabditis elegans with se-
quence GUAGUCAUGACGAUUCCCCUAUUCUACUACUACUAUUCUGCUGAAGGUC-
CCGUCAGAGCUAGGCAAGAUGUUGGCAUAGCUGAAUGAUCGCUAUA (data from
Sanger Center miRBase linked by Rfam [19]). (Left) Minimum free energy structure, as
computed with RNAfold from Vienna RNA Package 1.5. (Right) Consensus structure from
1000 sampled saturated structures, using RNAsat. Here, the consensus structure consists of
those base pairs occurring in strictly greater than half the sampled structures.
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Figure 5: Precursor microRNA cel-mir-72 of length 96 from Caenorhabditis elegans. (Left)
Dot plot of base pair frequencies from 1000 samples over all secondary structures. This im-
plementation of McCaskill’s algorithm [33] within RNAsat). (Middle) Dot plot of base pair
frequencies from 1000 samples of approximately locally optimal secondary structures, pro-
duced by a greedy algorithm described in the text. (Right) Dot plot of base pair frequencies
from 1000 samples of saturated secondary structures produced by RNAsat. It is of interest
that the Boltzmann centroid output by the Sfold [13] server is empty; i.e. the centroid has
no base pairs.
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Figure 6: Pseudoknot PK2 of the upstream pseudoknot domain (UPD) of the 3′ UTR of
RNA beta, with Pseudobase [40] number PKB 00152, EMBL accession number X03854 and
start position 3088. The RNA sequence is UGGUGCCCAUCAACCAUAUGAUGGGA and
the secondary structure with annotated pseudoknot is .(((.[[[[[[[)))...]]]]]]].. The
left panel displays the minimum free energy secondary structure predicted by version 1.5 of
Vienna RNA Package RNAfold. The right panel displays the Boltzmann pair probabilities,
as calculated using McCaskill’s algorithm [33] using RNAfold -p.
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Figure 7: Dotplots of pseudoknot PKB 00152 as described in the caption of Figure
6, where the lower triangular portion depicts the minimum free energy structure, while
the upper triangular portion describes pair frequencies according to the experiment per-
formed. (Left panel) Pair frequencies, computed by sampling 1000 locally optimal struc-
tures, where all locally optimal structures were computed brute force by exhaustive
search (see text for details); subsequently structure S was sampled with probability
exp(−E(S)/RT )/

∑
S exp(−E(S)/RT ), where the sum is taken over all locally optimal

structures. Note that this dot plot is Identical to that of Figure 6, and is identical to
the dot plot produced by Sfold [13]. (Right panel) Pair frequencies, computed by sampling
1000 saturated structures using RNAsat. Notice how alternative base pairs appear, a feature
not detected using mfe calculation, McCaskill’s algorithm, or sampling over all secondary
structures. This figure again illustrates the point that saturated structures are different
in nature than locally optimal structures, which latter seem to be similar in nature to the
Boltzmann low energy ensemble. One might speculate that this data suggests the existence
of a folding funnel for RNA secondary structure.
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Figure 8: (Left panel) Energy histogram for pseudoknot PKB 00152, the RNA sequence
described in the caption of Figure 6. Histogram of energies of all saturated secondary struc-
tures. All saturated structures were determined brute force by exhaustive search. Note the
energy variation for saturated structures. The histogram of energies of all locally optimal
structures, as determined brute force by exhaustive search, is not shown because all locally
optimal structures have the same energy as that of the mfe structure, i.e. −10.5 kcal/mol.
(Right panel) Graph of the relative density of states ρ(k) = Zk/Z as a function of k, the
number of base pairs, for precursor microRNA cbr-mir-42 from C. briggsae. The lower
curve with wider spread is that of cbr-mir-42, while the higher curve with more narrow
spread is that of random RNA of the same length and dinucleotide frequency, as produced
by our implementation of the Altschul-Erikson algorithm – see [1, 10].
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Figure 9: Diagram for inductive extension of visibility predicates and overview of the three
cases which arise in computing the partition function ZT

k (i, j, s, b) for saturated (s, b)-visible
structures on the subsequence ai, . . . , aj having k base pairs. The Feynman diagrams ex-
plaining the recursions are not different than those for McCaskill’s algorithm [33], with the
exception that the number of base pairs and visibility predicates V isNuc, V isPos depend
in a precise manner on previously computed values which are stored in the dynamic pro-
gramming table. For that reason, in this figure, we describe that dependence. The solid
left rectangle in each of the four panels represents the set s = V isNuc(S, i, j − 1) of visible
nucleotides in positions i, . . . , (j−1)− θ−1. The dotted left rectangle in the first panel rep-
resents the s′ = V isNuc(S, i, j) of visible nucleotides in positions i, . . . , j − θ − 1. The solid
right rectangle in each of the four panels represents the value b = V isPos(S, i, j−1) equal to
the number of visible positions (j−1)−θ, . . . , j−1 which occur to the right of the rightmost
position basepaired in interval [i, j − 1]. The dotted right rectangle in the first panel repre-
sents the value b′ = V isPos(S, i, j) equal to the number of visible positions j−θ, . . . , j which
occur to the right of the rightmost position basepaired in interval [i, j]. The black dot to
the right of the rectangular regions represents the position j. By induction, we assume that
ZT

` (i, j − 1, u, v) has been computed for all values `, u ⊆ {A,C,G, U} and b ≤ θ. We now
describe how the contributions from (s, b)-visible structures on ai, . . . , aj−1 can be extended
to contributions from (s′, b′)-visible structures on ai, . . . , aj. (First panel) Schematic view of
how to update the visibility parameters inductively. (Second panel) In case 1, j basepairs
with i, and the resulting structure is (s′, b′)-visible, where s′ = ∅, b′ = 0. Thus ZT

k (i, j, s′, b′)
receives contributions from hairpin loops, bulges, internal loops and multi-loops closed by
base pair (i, j) having k base pairs and visibility parameters (s, b). (Third panel) In case 2,
j basepairs with intermediate r, for some i < r ≤ j − θ − 1, and the resulting structure is
(s′, b′)-visible, where s′ = V is(S, i, r − 1), b′ = 0. Thus ZT

k (i, j, s′, b′) receives contributions
from hairpin loops, bulges, internal loops and multi-loops closed by base pair (i, j) having k
base pairs and visibility parameters (s, b). (Right panel) In case 3, j does not basepair. In
this case, the resulting structure is (s′, b′)-visible, where s′ = s ∪ {aj−θ−1 if V isPos(S) = θ,
and otherwise s′ = s. The new visible position b′ = max(b, θ). Thus ZT

k (i, j, s′, b′) receives
contributions from hairpin loops, bulges, internal loops and multi-loops on (i, j − 1) having
k base pairs and visibility parameters (s, b).
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1. for d = θ to n − 1
2. for i = 0 to n − 1 {
3. j = i + d // skip if j > n

4. jCanBasePair = FALSE
5. for r = i to j − θ − 1 {
6. if r, j base pair {
7. if r = i // CASE 1: j base pair with i

8. if segmentBasePair(i + 1, j − 1) = false // (i,j) is a hairpin

9. Z ′
s(i, j, 1) = e−

hairpin(i,j)
RT

10. Zm
s (i, j, 1, ∅, 0) = Zs(i, j, 1, ∅, 0) = Z ′

s(i, j, 1) · e
−

dangle(i,j)
RT

11. for all 1 < nBP ≤ maxBP (i, j)
12. for all s ∈ P({A,C,G, U}) // (i,j) close a multi-loop

13. for all 0 ≤ b ≤ θ + 1

14. Z ′
s(i, j, nBP ) += Zm(i+1, j−1, nBP −1, s, b) · e−

α1+α2
RT ·e−

dangle(j,i)
RT

15. for x = i + 1 to j − θ − 2 // stack, bulge or internal loop

16. if segmentBasePair(i + 1, x − 1) = true then break

17. for y = j − 1 downto x + θ + 1
18. if segmentBasePair(i+1, x−1, y +1, j−1) = true then break

19. Z ′
s(i, j, nBP ) += Z ′

s(x, y, nBP − 1) · e−
stack(i,x,y,j)

RT

20. Zm
s (i, j, nBP, ∅, 0) = Zs(i, j, nBP, ∅, 0) = Z ′

s(i, j, nBP ) · e−
dangle(i,j)

RT

21. if i < r < j // CASE 2: j base pair with intermediate r

22. for all 1 ≤ nBP ≤ maxBP (i, j)
23. if segmentBasePair(i, r − 1) = false

24. s = nucl(i, r − 1)
25. Zs(i, j, nBP, s, 0) += Zs(r, j, nBP, ∅, 0)

26. Zm
s (i, j, nBP, s, 0) += Zs(r, j, nBP, ∅, 0) · e−

(r−1−i)α3
RT

27. for all 0 ≤ n1 < maxBP (i, r − 1)
28. n2 = nBP − n1

29. for all s ∈ P({A,C,G, U})
30. for all 0 ≤ b ≤ θ + 1
31. s0 = s ∪ nucl(r − 1 − b − 1, r − 1)
32. Ze(i, j, nBP, s0, 0) += Zs(i, r − 1, n1, s, b) · Zs(r, j, n2, ∅, 0)
33. Ze(i, j, nBP, s0, 0) += Ze(i, r − 1, n1) · Zs(r, j, n2, ∅, 0)

34. Zm(i, j, nBP, s0, 0) += Zm
s (i, r − 1, n1) · Zs(r, j, n2, ∅, 0) · e

−
2α2
RT

35. Zm(i, j, nBP, s0, 0) += Zm(i, r − 1, n1) · Zs(r, j, n2, ∅, 0) · e
−

α2
RT

36. }
37. }

Figure 10: Algorithm to compute the Boltzmann partition function for saturated secondary
structure having k base pairs, with respect to the Turner energy model.
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38. for all 1 < nBP ≤ maxBP (i, j)
39. for all s ∈ P({A,C,G, U})
40. if basepairWithSet(s, j) = false {
41. for all 0 ≤ b < θ // general case

42. Ze(i, j, nBP, s, b + 1) += Ze(i, j − 1, nBP, s, b)
43. Zm(i, j, nBP, s, b + 1) += Zm(i, j − 1, nBP, s, b) · e−

α3
RT

44. Zs(i, j, nBP, s, b + 1) += Zs(i, j − 1, nBP, s, b)
45. Zm

s (i, j, nBP, s, b + 1) += Zm
s (i, j − 1, nBP, s, b) · e−

α3
RT

46. if canBasePair(j − θ − 1, j) = false // special case

47. s0 = s ∪ nucl(j − θ − 1, j − θ − 1)
48. Ze(i, j, nBP, s0, θ + 1) += Ze(i, j − 1, nBP, s, θ + 1)
49. Zm(i, j, nBP, s0, θ + 1) += Zm(i, j − 1, nBP, s, θ + 1) · e−

α3
RT

50. Zs(i, j, nBP, s0, θ + 1) += Zs(i, j − 1, nBP, s, θ + 1)
51. Zm

s (i, j, nBP, s0, θ + 1) += Zm
s (i, j − 1, nBP, s, θ + 1) · e−

α3
RT

52. }
53. }

Figure 11: Continuation of algorithm from Figure 10, to compute the Boltzmann partition
function for saturated secondary structure having k base pairs, with respect to the Turner
energy model.
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0. samplingHelix(k,i,j,sample)

1. va =random()

2. current = 0
3. addBasePair(i,j,sample)

4. if k = 0 return // no more base pairs to add; end of sampling

5. for x = i + 1 to j − θ − 1
6. for y = x + θ + 1 to j
7. if canBasePair(x, y) = true AND segmentBasepair(i, x, y, j) = false

8. current += stack(i,x,y,j)·Z′

s(x,y,k−1)
Z′

s(i,j,k)

9. if va < current
10. samplingHelix(k-1,x,y,sample) // (i,j) belongs to a helix

11. return

12. for s ∈ P({A,C,G, U})
13. for b = 0 to θ + 1

14. current += e
−dangle(j,i)

RT ·e
−α1−α2

RT ·Zm(i+1,j−1,k−1,s,b)
Z′

s(i,j,k)

15. if va < current
16. samplingMultiLoop(k-1,i+1,j-1,s,b,sample,0)

//(i,j) closes a multi-loop

17. return

Figure 12: Sampling algorithm for helix. This function is called only after having determined
that i, j can base-pair.
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0. samplingMultiLoop(k,i,j,s,b,sample,lastHelix)

1. va =random()

2. current = 0
3. if b = θ + 1 // previous b can take two values

4. for b′ = θ to θ + 1

5. current += e
−α3
RT ·Zm(i,j−1,k,s,b′)

Zm(i,j,k,s,b)
6. if va < current
7. samplingMultiLoop(k,i,j-1,s,b’,sample,lastHelix)

8. return

9. s′ = remove(j − θ − 1, s)
10. if b′ = θ + 1 AND s′ 6= s

11. current += e
−α3
RT ·Zm(i,j−1,k,s′,b′)

Zm(i,j,k,s,b)
12. samplingSingleLoop(k,i,j-1,s’,b’,sample,lastHelix)

13. return

14. else if b > 0

16. current += e
−α3
RT ·Zm(i,j−1,k,s,b′)

Zm(i,j,k,s,b)
17. if va < current
18. samplingMultiLoop(k,i,j-1,s,b-1,sample,lastHelix)

19. return

20. else // b = 0

21. for r = i to j − θ − 1
22. if canBasePair(r, n) = true

23. if lastHelix=false AND segmentBasePair(i, r − 1) = true

24. for s′ ∈ P(s)
25. for b′ = 0 to θ + 1
26. for k1 = 0 to k − 1
27. k2 = k − k1

28. current += e
−α2
RT ·Zm(i,r−1,k1,s′,b′)·e

−dangle(r,j)
RT ·Z′

s(r,j,k2)
Zm(i,j,k,s,b)

29. if va < current // multi-loop sampling is NOT terminated

30. samplingMultiLoop(k1,i,r-1,s’,b’,sample,false)

31. samplingHelix(k2,r,j,sample)

32. return

33. current += e
−2·α2

RT ·Zm
s (i,r−1,k1,s′,b′)·e

−dangle(r,j)
RT ·Z′

s(r,j,k2)
Zm(i,j,k,s,b)

34. if va < current // sampling last two helices in multi-loop

35. samplingMultiLoop(k1,i,r-1,s’,b’,sample,true)

36. samplingHelix(k2,r,j,sample)

37. return

38. else if lastHelix=true AND compatible(i, r − 1, s) = true

39. current += e
−(α2+α3·(r−i))

RT ·e
−dangle(r,j)

RT ·Z′

s(r,j,k)
Zm(i,j,k,s,b)

40. if va < current
41. samplingHelix(k,r,j,sample)

42. return

Figure 13: Sampling algorithm for multi-loop.
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0. samplingExteriorLoop(k,i,j,s,b,sample)

1. va =random()

2. current = 0
3. if b = θ + 1 // previous b can take two values

4. for b′ = θ to θ + 1
5. current += Ze(i,j−1,k,s,b′)

Ze(i,j,k,s,b)

6. if va < current
7. samplingExteriorLoop(k,i,j-1,s,b’,sample)

8. return

9. s′ = remove(j − θ − 1, s)
10. if b′ = θ + 1 AND s′ 6= s
11. current += Ze(i,j−1,k,s′,b′)

Ze(i,j,k,s,b)

12. samplingSingleLoop(k,i,j-1,s’,b’,sample)

13. return

14. else if b > 0
16. current += Ze(i,j−1,k,s,b′)

Ze(i,j,k,s,b)

17. if va < current
18. samplingExteriorLoop(k,i,j-1,s,b-1,sample)

19. return

20. else // b = 0

21. for r = i to j − θ − 1
22. if canBasePair(r, j) = true

23. if segmentBasePair(i, r − 1) = true

24. for s′ ∈ P(s)
25. for b′ = 0 to θ + 1
26. for k1 = 0 to k − 1
27. k2 = k − k1

28. current += Z′

e(i,r−1,k1,s′,b′)·e
−dangle(r,j)

RT ·Z′

s(r,j,k2)
Ze(i,j,k,s,b)

29. if va < current
30. samplingExteriorLoop(k1,i,r-1,s’,b’,sample,false)

31. samplingHelix(k2,r,j,sample)

32. return

33. else if compatible(i, r − 1, s) = true

34. current += e
−dangle(r,j)

RT ·Z′

s(r,j,k)
Ze(i,j,k,s,b)

35. if va < current
36. samplingHelix(k,r,j,sample)

37. return

Figure 14: Sampling algorithm for exterior loop.
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