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Abstract

Ab initio protein structure prediction is an important prob-
lem for which several algorithms have been developed. Algo-
rithms differ by how they represent 3D protein conformations
(on-lattice, off-lattice, coarse-grain or fine-grain model), by
the energy model they consider, and whether they are heuris-
tic or exact algorithms. This paper presents a local search
algorithm to find the native state for the Hydrophobic-Polar
(HP) model on the Face Centered Cubic (FCC) lattice; i.e. a
self-avoiding walk on the FCC lattice with maximum num-
ber of H-H contacts. The algorithm relies on a randomized,
structured initialization, a novel fitness function to guide the
search, and efficient data structures to obtain self-avoiding
walks. Experimental results on benchmark instances show
the efficiency and excellent performance of our algorithm,
and illustrate the biological pertinence of the FCC lattice.

Introduction
The prediction of 3-dimensional structure of a protein, given
only its amino acid sequence, i.e.,protein structure predic-
tion, remains one of the oldest, most recalcitrant, yet most
important problems in computational biology. In 1968, C.
Levinthal first raised the question of how a protein can find
its native state, i.e., its unique 3-dimensional conformation,
rapidly (within milliseconds to seconds), although there are
exponentially many possible conformations. Subsequently,
in a celebrated experiment in which bovine pancreatic ri-
bonuclease A was denatured (unfolded) by the addition of
urea, then found to return to its native conformation after re-
moval of denaturant urea, C. B. Anfinsen (1973) provided
the first evidence that, at least for a certain class of pro-
teins, the native state of a protein is its minimum free en-
ergy conformation, and that no specific folding pathways
or chaperone molecules appear to be necessary. In 1972,
the Swedish Royal Academy of Sciences granted the 1972
Nobel Prize in Chemistry to Anfinsen for “. . . studies on ri-
bonuclease, in particular the relationship between the amino
acid sequence and the biologically active conformation . . .”
(Anfinsen 1972).

From Anfinsen’s work, it is now generally assumed that
the native state of a protein is its minimum free energy
(MFE) conformation, and thus is a computational problem,
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albeit the space of possible conformations is exponentially
large. One of the first mathematical models for proteins is
the lattice HP-model, first introduced by Lau and Dill (1989)
for the 2-dimensional square lattice. Given a sequence of hy-
drophobic (H) and polar (P), aka hydrophilic, residues, the
energy of a self-avoiding walk on the lattice is defined to
be minus1 times the number of non-contiguous H-H con-
tacts at unit distance. For such a simple model, the native
state isdegeneratein the sense that there may be many min-
imum energy conformations; nevertheless, there is a well
defined minimum energyE0, dependent only on the input
HP-sequence, and the formulation of such a clean and sim-
ple model stimulated the development of various folding al-
gorithms, as well as efforts to better understand energetics.

Despite its simplicity, finding a minimum energy confor-
mation for the HP-model was shown to be NP-complete for
the 2-dimensional lattice by (Crescenziet al. 1998) and
for the 3-dimensional cubic lattice by Berger and Leighton
(1998). Yue and Dill (1996) applied “constraint-based ex-
haustive search” to determine the minimum energy confor-
mation(s) of several small proteins including crambin, when
represented as HP-sequences on the cubic lattice. Necessar-
ily, any exhaustive search is limited to very small proteins,
since the number of conformations for ann-mer on the 3-
dimensional cubic lattice is estimated to be approximately
4.5n (Madras & Slade 1996).

This paper presents a tabu search algorithm to predict pro-
tein tertiary structure under the Face Centered Cubic lattice
HP-model. The algorithm features a randomized, structured
initialization, a one-monomer move neighborhood, and a
new fitness function to guide the search. The configura-
tions explored by the algorithm are always feasible, yield-
ing an anytime algorithm for producing 3-dimensional pro-
tein structures. The algorithm was applied to the Harvard
instances (Yueet al. 1995), producing (to our knowledge)
the first foldings of these instances on the FCC lattice, Ex-
perimental results indicate the fundamental benefits of using
a FCC lattice since the resulting foldings have significantly
lower energies. Moreover, experimental results show that
these foldings can be obtained in reasonable time.

The rest of the paper is organized as follows. It first for-
malizes the problem and discusses related work. The paper
then presents the model, and the local search algorithm. The
last two sections present the experimental results, the con-



clusions, and future work.

Problem Formalization
The cubic lattice suffers from a fundamental flaw in mod-
eling real biopolymers; namely, if the parity of the posi-
tion in the linear chain of any two residues is the same,
then they cannot form a contact, i.e., be at unit distance
in any conformation. For this reason, this paper consid-
ers the face-centered cubic (FCC) lattice which is known
to better model biopolymers. Covell and Jernigan (1990)
have shown that the FCC lattice, proven to admit the tight-
est packing of spheres (Cipra 1998), is the most appropriate
3-dimensional lattice for fitting proteinCα-atoms as a self-
avoiding walk, and thatroot mean square deviation(rms)
values are smaller for the FCC lattice than for the cubic,
body-centered cubic and tetrahedral lattices. Hererms be-
tween twoCα-traces(p1, p2, . . . , pn) and (q1, q2, . . . , qn),

wherepi, qi ∈ R
3, is given by

√

P

n

i=1
(pi−qi)2

n
.

Formally, a lattice is defined to be the set of points in
Z

n that areintegral linear combinations of vectors having
integral coordinates; i.e.

L =

{

k
∑

i=1

ai~vi : ai ∈ Z

}

(1)

where~v1, . . . , ~vk ∈ Z
n. In this paper,n = 3, i.e., only

latticesL ⊆ Z
3 are considered. Ifk is minimum for which

(1) holds, then~v1, . . . , ~vk form a basis, andk is said to be
thedimension(also calledcoordinationor contactnumber)
of L. Two lattice pointsp, q ∈ L are said to bein contactif
q = p + ~vi for some vector~vi in the basis ofL.

The cubic lattice is formally defined as the closure of the
basis vectors(1, 0, 0), (0, 1, 0), (0, 0, 1) under all integral
linear combinations. In contrast, the face-centered cubic
(FCC) lattice is generated by the following 12 basis vectors,
which are identified with compass directions (Will 2005):
N : (1, 1, 0) S : (−1,−1, 0) W : (−1, 1, 0)
E : (1,−1, 0) NW+ : (0, 1, 1) NW− : (0, 1,−1)
NE+ : (1, 0, 1) NE− : (1, 0,− 1) SE+ : (0,−1, 1)
SW+ : (−1, 0, 1) SE− : (0,−1,−1) SW− : (−1, 0,−1).

It follows that the FCC lattice consists of all integer points
(x, y, z), such that(x + y + z) mod 2 = 0. Moreover,
p = (x, y, z) andq = (x′, y′, z′) are incontact, denoted
by co(p, q), if (x − x′) + (y − y′) + (z − z′) mod 2 ≡ 0,
|x − x′| ≤ 1, |y − y′| ≤ 1, and |z − z′| ≤ 1. We will
sometimes state that lattice pointsp, q are atunit distance,
when we formally mean that they are in contact, hence are
at Euclidean distance

√
2 on the FCC lattice.

Given a sequenceS of lengthn, let HH denote the set of
pairs(i, j) such thatSi = Sj = H and letCHH denote the
subset of HH for whichj = i + 1. The protein prediction
problem for the HP-model on the FCC lattice can be defined
as follows.

Given a protein sequenceS (sequence of amino acids)
of lengthn, find a self-avoiding walkp1, . . . , pn on the
FCC lattice that minimizes the energy

∑

(i,j)∈CHH

E(pi, pj)−
∑

(i,j)∈HH

E(pi, pj). (2)

Here,pi is the lattice position of theith monomer, and
energyE(pi, pj) = −1 if both pi, pj are neighbours in
the lattice and0 otherwise, so that equation (2) repre-
sents the energy for all non-contiguous H-H contacts.

Related Work
Coarse-grain lattice models have been heavily studied in
the context of protein folding. In (Šali, Shakhnovich, &
Karplus 1994a; 1994b),̌Sali et al. measured the average
time required to reach the native state, formally themean
first passage time(MFPT), for a 27-mer on the3 × 3 × 3
cubic lattice using Monte Carlo simulation of protein fold-
ing. They claimed to have solved the Levinthal paradox by
showing that thermodynamics suffices to drive a protein to
rapidly find its native state. Subsequently P. Clote (1999)
applied Sinclair’s work on rapidly mixing Markov chains
(Sinclair 1993) towards a mathematical analysis of (Šali,
Shakhnovich, & Karplus 1994a).

Yue and Dill (2000) described an improvement to the
algorithm presented in (Yue & Dill 1996) with the Con-
straint Hydrophobic Core Construction (CHCC) algorithm
which was benchmarked with sample HP-sequences for the
HP-model on the cubic lattice. Hart and Istrail (1996) de-
scribed a novel approximation algorithm, guaranteed to pro-
vide within quadratic time a conformation whose energy is
no worse than three-eighths that of the optimal.

Backofen, Will, and Clote (2000) developed a genetic al-
gorithm to fold HP-sequences on arbitrary lattices (includ-
ing FCC). Using automorphism groups to handle arbitrary
lattices, the algorithm supportedpivot moves to determine
optimal conformations, using a“hydrophobic energy”term,
defined by a contact potential involving normalized polar
requirement hydrophobicity values (Woeseet al. 1966).
Using the symmetry-breaking algorithm (Crawfordet al.
1996), Backofen and Will (2002) developed a constraint-
programming algorithm to search for minimum energy con-
formations on the cubic and face-centered cubic lattice for
larger HP-sequences than could be handled by previous al-
gorithms. No results were given on the Harvard instances.

In (Tapiaet al. 2007) Amato and co-workers applied mo-
tion planning from robotics to sample the folding landscape
of (simple) proteins using kinetics. Zhang et al. (2007)
proposed a new Monte Carlo method, calledfragment re-
growth via energy-guided sequential sampling(FRESS),
benchmarked on the HP-model for lattices in two and three
dimensions. The algorithm was implemented for the cubic
latttice. In (Kou, Oh, & Wong 2006) Kou et al. describe
a new equi-energy (EE) sampling approach to estimate the
density of states (i.e. histogram of number of conformations
have energy−k, for all values ofk) for the HP-model on the
2-dimensional lattice. Also, Tabu search has been applied
with relatice success to the 2D lattice (Jianget al. 2003) and
to the cubic lattice (Blazewiczet al. 2005).

Our Model
This section presents our model for protein structure predic-
tion. The model associates a decision variablevi with every
amino acid’s position on the lattice. In other words, given



a sequence of amino acidsS such that|S| = n, the vari-
ablevi takes its value inZ3 and represents thex, y, andz
coordinates of theith amino acid ofS in the lattice. These
variables must satisfy the following constraints:

• Self-Avoiding Walk: For alli 6= j: vi 6= vj .

• FCC Lattice Constraints: The sum of the coordinates of
each point must be even.

• Adjacency: Two consecutive elementsi and i + 1 must
be neighbors in the lattice, i.e. incontactor at unit dis-
tance (as mentioned before, on the FCC, this means at
Euclidean distance

√
2).

These are all hard constraints. They will hold initially and
be preserved across local moves. In the following, we use
σ to denote a complete assignment of the variablesvi that
satisfies all the constraints.

The Fitness Function
The HP-model for protein structure predicate features an en-
ergy function which is rather poor in guiding the search to-
wards high-quality solutions. Indeed, the number of H-H
contacts only increases (decreases) when the algorithm po-
sitions (separates) two H amino acids at (from) unit distance;
any other does not change the energy. As a result, a local-
search algorithm based on such an objective will mostly per-
form a random walk.

To address this issue, our algorithm introduces a fitness
function to guide the algorithm effectively. Definedistance
between two amino acids asd(i, j)2 = (xi − xj)

2 + (yi −
yj)

2 + (zi − zj)
2, i.e., the square of the Euclidean distance

between theith and thejth amino acids in the current con-
formation of a sequenceS of lengthn. Now consider the
deviation from the unit distance (to the power of2) to be
dv(i, j) = d(i, j)2 − 2. Our fitness function (orcost) is:

f(σ) =

n
∑

i,j:i+1<j

(dv(i, j))k × (si = H, sj = H)

where the sum is overi, j such thati + 1 < j andk ≥ 1
is a parameter of the algorithm. In particular, larger values
of k give more weight to unit distances. Observe that these
values are only defined wheni andj correspond to H-type
amino acids. The fitness functionf is thus a measure of the
deviation from the unit distance for every pair of (non con-
secutive) H-type amino acids. Therefore, in order to maxi-
mize the number of HH contacts, we need to minimizef .

One may viewf as a guide towards a compact structure
where H-amino acids are close together, thus yielding sev-
eral HH contacts. It is clear that, in order to achieve unit
distance between H-type amino acids, they need to be close
to each other. The impact of this fitness function will be
better understood in the Experimental Results section. Note
thatf(σ∗) = 0 means that all pairs of H-type amino acids
are at unit distance inσ∗.

The Alldifferent Constraint
One of the constraints requires that all amino acid positions
on the lattice be different. Representing this constraint ex-

Figure 1: Initial structure for instance S4 (Will 2005, p. 130).

plicitly is very costly and slows down the search consider-
ably. Instead, the algorithm maintains the constraint implic-
itly. Each time a local move is performed onvi, the algo-
rithm only checks those amino acidsvj (j 6= i) whose norm
is equal to||vi||, sincevi = vj ⇒ ||vi|| = |vj ||. The con-
straint check is performed inO(1) expected time, since the
number of amino acids with the same norm is very low, even
in the latest stages of the search process when the molecule
is densely packed.

The Neighborhood
In this work, we allowed only one-monomer moves, in
which only a single monomer changes position between two
successive conformations. Our benchmarks suggest that a
one-monomer move set suffices for good results on the FCC
lattice, although since this is not the case for the CC lattice,
Šali et al. (̌Sali, Shakhnovich, & Karplus 1994a) consid-
eredcrankshaft(2-monomer) moves as well. Ifp1, . . . , pn

denote current positions of monomers1, . . . , n, then define
the neighborhoodN(i) of the ith monomer as the setP of
pointsp such thatd(p, pi)

2 = 2 , p ∈ P . A neighborhood
of a tentative solutionσ consists in moving monomeri to
one of its neighbors, i.e., a point in

S(σ, i) = {p ∈ Z
3 | p ∈ N(i− 1) ∧ p ∈ N(i + 1)}

The neighborhood ofσ can then be defined as

N (σ) = {(i, p) | 0 < i < n ∧ p ∈ S(σ, i)}.

A Randomized Initialization
The initial solution has a significant impact on the quality
and the speed of the local search algorithm. Given our one-
monomer neighborhood and our fitness function, it is impor-
tant to generate a feasible and compact initial solution with
some HH contacts. The initialization iterates the following
steps while there are amino acids to place.

1. Repeat a random number of times

(a) Repeat Forward for a random number of steps.
(b) Move Left.
(c) Repeat Backward for a random number of steps.



1. PSPLS(S)
2. forall i ∈ S
3. tabu[i]← {};
4. σ ← initial configuration;
5. σ∗ ← σ;
6. l← 0;
7. s← 0;
8. while l ≤ maxIt do
9. select(i, p) ∈ N (σ)

minimizing f(σ[vi ← p]);
10. τ ← RANDOM([4,n/2]);
11. tabu[i]←

tabu[i] ∪ {move(i, p, σ)};
12. σ ← σ[v1 ↔ p];
13. if f(σ) < f(σ∗) then
14. σ∗ ← σ;
15. s← 0;
16. else ifs > maxStable then
17. σ ←random configuration;
18. s← 0;
19. forall i ∈ S do
20. tabu[i] = {};
21. else
22. s++;
23. l++;

Figure 2: The Local Search Algorithm.

2. Move Up.

3. Switch moves with their opposites (e.g., Forward be-
comes Backward and Left becomes Right).

An initial configuration for the “S4” instance is depicted in
figure 1.

The Tabu-Search Algorithm
We are now ready to present the basic local search algorithm.
The algorithm, depicted in Figure 2, a tabu search with a
restarting component. Lines 2-7 perform the initializations.
In particular, the tabu list is initialized in lines 2-3, theinitial
solution is generated in line 4, while lines 6 and 7 initialize
the iteration counterk, and the stability counters. The initial
configurationσ is obtained in the manner explained above.
The best solution found so farσ∗ is initialized toσ.

The tabu list is distributed across the amino acids and
maintains a set of moves. A move is formally defined as

move(i, p, σ) = p− σ(vi−1)

whereσ(vi−1) denotes the position of amino acidi−1 in as-
signmentσ andp is the new position for amino acidi. Note
that the subtraction ofvi−1 from p yields one of the basic
vectors previously defined (N,S,W,E, ...). The tabu tenure
is randomly selected between4 and half the length of the
sequence.

The core of the algorithm is given in lines 8-23, where lo-
cal moves are iterated for a number of iterations. The local
move is selected in line 9. Here, we useσ[vi ← p] to de-
note the solution obtained by changing the value ofvi to p
in σ. The key idea is to select the best move in the neigh-
borhood which is not tabu (meaning it has been previously

performed) or which improves the best solution. The tabu
list is updated in line 11, and the new tentative solution is
computed in line 12. Lines 13-15 update the best solution,
while lines 16-20 specify the restarting component.

The restarting component simply reinitializes the search
from a random configuration whenever the best solution
found so far has not been improved upon formaxStableit-
erations. Note that the stability counters is incremented in
line 22 and reset to zero in line 15 (when a new best solution
is found) and in line 18 (when the search is restarted).

Dealing with Hs and Ps
The algorithm also differentiates H-type and P-type amino
acids, For H-type amino acids, it performs a complete ex-
ploration of the neighborhood and chooses the best possi-
ble. However, for P-type amino acids, all neighbors have the
same the fitness function. Therefore, since we are always
choosing the best neighbor, the algorithm moves a P-type
amino acid only if all H-type moves yield a solution with at
most the same cost. In that case, the algorithm chooses an
amino acid and a move completely at random. This simple
optimization produces significant reduction in the computa-
tional cost of the algorithm.

Experimental Results
All the results presented in this section have been produced
by a C implementation of the algorithm, run on a single core
of a 60 Intel based, dual-core, dual processor, Dell Pow-
eredge 1855 blade server. Each blade has 8G of memory
and a 300G local disk, and each execution was carried out
on a single core. The maximum number of iterations was
set to 10 million, and the stability parameter to 10000. All
tables show results for different values of thek parameter
(ranging from1 to 3). All best results are given as supple-
mental material to this publication.

The Harvard Instances
Reference (Yueet al. 1995) contains a comparison of sev-
eral methods folding10 different proteins on the cubic lat-
tice. These proteins are called ”Harvard instances”. The
cubic lattice has been deeply studied as pointed out in the
introduction, but the FCC lattice has been shown to admit
the tightest packing of spheres (Cipra 1998), indicating that
it allows for more complex 3D structures.

Table 1 present the first results (to our knowledge) for the
Harvard instances on the FCC lattice. These results are par-
ticularly interesting from a biology standpoint. They indi-
cate that the energy of the best solution on the FCC lattice is
always at least twice as low as the optimal energy for the cu-
bic lattice, clearly showing the benefits of the FCC lattice for
capturing richer 3D information. Since our algorithm is not
guaranteed to find the optimal solution, the benefits may be
even greater in practice, clearly suggesting that more investi-
gation of the FCC lattice is necessary. Note that, in the FCC
lattice, every point has twice as many neighbors as in the cu-
bic lattice (12 instead of6), thus dramatically increasing the
combinatorics of the folding. From an efficiency standpoint,
the best results are all obtained in less than 5 minutes and
often much less, indicating the potential of the approach.



Seq. Opt. E CL k Lowest E FCC median time
1 -66 2209.67

1 -32 2 -68 113.05
3 -67 117.72

1 -68 88.04
2 -34 2 -69 264.56

3 -69 284.54

1 -67 11.94
3 -34 2 -67 105.44

3 -68 72.16

1 -66 161.40
4 -33 2 -65 35.98

3 -66 44.47

1 -66 164.38
5 -32 2 -66 52.80

3 -66 88.82

1 -68 3.86
6 -32 2 -69 117.111

3 -70 149.29

1 -68 7.59
7 -32 2 -68 169.22

3 -67 63.98

1 -63 75.08
8 -31 2 -64 23.15

3 -64 0.01

1 -68 197.19
9 -34 2 -69 197.06

3 -69 89.48

1 -66 30.48
10 -33 2 -66 113.6

2 -66 43.33

Table 1: Results for the Harvard sequences for each value of
k. In bold lowest energy found for the FCC lattice. Optimal
value for the Cubic lattice is also depicted. Median time to
reach the best solution is in seconds.

Other Instances
We also compare our solutions with the only FCC foldings
available in the literature. Table 2 shows a comparison for4
instances found in (Will 2005, p. 130). Optimal results1 are
also shown. Figure 3 depicts a 3D view of the best config-
uration found for S4 for the variousk values. As expected,
the hydrophobic amino acids are clustered in the center of
the protein. Although it is only an approximation of reality,
it is still significant from the biological standpoint. We also
present results for the R instances appearing in (Backofen
& Will 2006). These instances are proteins of length200
and are mentioned also in (Will 2005, p. 129) although no
optimal configurations were given.

Note that the best results are achieved for parameterk =
2, while k = 3 yields a faster convergence to a lower qual-
ity solution. We interpret this to mean thatk = 3 gives too
high a weight to unit distances, whilek = 2 represents a
smoother weight that carries the search towards higher qual-
ity solutions.

Finally, figure 4 depicts the improvement of the solutions

1Personal Communication with Sebastian Will.

Seq. Native E k Lowest E median time
1 -315 708.90

S1 -357 2 -325 959.20
3 -310 0.39

1 -312 548.38
S2 -360 2 -315 1151

3 -307 0.42

1 -299 704.58
S3 -367 2 -307 68.58

3 -299 1.8

1 -307 855.75
S4 -370 2 -318 788.55

3 -290 9.13

Table 2: Results for S sequences for eachk. In bold lowest
energy found. Time to best solution in seconds.

Seq. Native E k Lowest E median time
1 -261 1.3

R1 -384 2 -270 2.28
3 -284 125.65

1 -282 47.9
R2 -383 2 -274 127.92

3 -290 1128.59

1 -282 386.98
R3 -385 2 -278 1.43

3 -276 2.65

Table 3: Results for R sequences for eachk. In bold lowest
energy found. Time to best solution in seconds.

of our algorithm over time. The algorithm exhibits a steep
descent, followed by a long plateau, and then another steep
descent.

Conclusion
This paper presented a local search algorithm for finding the
best self avoiding walk for the Hydrophobic-Polar (HP) en-
ergy model on the Face Centred Cubic (FCC) lattice. The
algorithm relies on a randomized, structured initialization, a
novel fitness function to guide the search, and efficient data
structures to obtain self-avoiding walks. Experimental re-
sults on standard Harvard instances show the benefits of con-
sidering the FCC lattice from a biological standpoint and the
efficiency of the approach. In particular, on the well-known
Harvard instances, the foldings obtained by the algorithm
on the FCC lattice have an energy at least twice as low as
the optimal energy for the cubic lattice, clearly showing the
benefits of capturing richer 3D information. To our knowl-
edge, these are the first experimental results for the Harvard
instances on the FCC lattice.

Our current work explores more complex energy mod-
els and off-lattice setups. Preliminary results show that
changing the energy (i.e., adding weights to contacts) can
be achieved with minimal modification and with similar per-
formance. The algorithm can be adapted to RNA structure
prediction, which we are currently exploring and validating
from a biological standpoint.



(a) k=1, E=-307. (b) k=2, E=-318. (c) k=3, E=-290.

Figure 3: Lowest energy found for instance S4 (Will 2005, p. 130), with 164 amino acids.
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Figure 4: Algorithm Behavior over Time for instance S4 for each value ofk.
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