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Abstract

In the absence of chaperone molecules, RNA folding is believed to depend on the dis-
tribution of kinetic traps in the energy landscape of all secondary structures. Kinetic
traps in the Nussinov energy model are precisely those secondary structures that are sat-
urated, meaning that no base pair can be added without introducing either a pseudoknot
or base triple. In this paper, we compute the asymptotic expected number of hairpins
in saturated structures. For instance, if every hairpin is required to contain at least
θ = 3 unpaired bases and the probability that any two positions can base-pair is p = 3/8,
then the asymptotic number of saturated structures is 1.34685 · n−3/2 · 1.62178n, and
the asymptotic expected number of hairpins follows a normal distribution with mean
0.06695640 · n + 0.01909350 · √n · N . Similar results are given for values θ = 1, 3
and p = 1, 1/2, 3/8; for instance, when θ = 1 and p = 1, the asymptotic expected
number of hairpins in saturated secondary structures is 0.123194 · n, a value greater
than the asymptotic expected number 0.105573 · n of hairpins over all secondary struc-
tures. Since RNA binding targets are often found in hairpin regions, it follows that
saturated structures present potentially more binding targets than non-saturated struc-
tures, on average. Next, we describe a novel algorithm to compute the hairpin pro-
file of a given RNA sequence: given RNA sequence a1, . . . , an, for each integer k, we
compute that secondary structure Sk having minimum energy in the Nussinov energy
model, taken over all secondary structures having k hairpins. We expect that an ex-
tension of our algorithm to the Turner energy model may provide more accurate struc-
ture prediction for particular RNAs, such as tRNAs and purine riboswitches, known
to have a particular number of hairpins. Mathematica�computations, C and Python
source code, and additional supplementary information are available at the web site
http://bioinformatics.bc.edu/clotelab/RNAhairpinProfile/.

1 Introduction

Since the function of RNA often depends on its structure, much work has been done on sec-
ondary structure prediction, using stochastic context free grammars [23, 18], thermodynamic
algorithms [44, 15, 24], and kinetic folding algorithms [10, 42, 6].

Formally, a secondary structure for a given RNA nucleotide sequence a1, . . . , an is a set
S of base pairs (i, j), such that (i) if (i, j) ∈ S then ai, aj form either a Watson-Crick
(AU,UA,CG,GC) or wobble (GU,UG) base pair, (ii) if (i, j) ∈ S then j − i > θ = 3 (a steric
constraint requiring that there be at least θ = 3 unpaired bases between any two paired
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bases), (iii) if (i, j) ∈ S then for all j′ 6= j and i′ 6= i, (i′, j) 6∈ S and (i, j′) 6∈ S (nonexistence
of base triples), (iv) if (i, j) ∈ S and (k, ℓ) ∈ S, then it is not the case that i < k < j < ℓ
(nonexistence of pseudoknots). For the purposes of this paper, following Stein and Waterman
[37], we consider the homopolymer model of RNA, in which condition (i) is dropped, thus
entailing that any base can pair with any other base, and we modify condition (ii) so that
θ = 1. With inessential additional complications in the combinatorics, we can handle the
situation where θ is any fixed positive constant, and where there is a fixed probability p,
called stickiness [40, 16], that any two positions can pair. For simplicity of argument, in the
homopolymer model, we take θ = 1 and p = 1. See Table 2 for asymptotic values computed
for θ = 1, 3 and p = 1, 1/2, 3/8.

An RNA secondary structure is saturated [3, 39, 5] if no base pair can be added without
violating the definition of secondary structure (i.e. without introducing either a pseudoknot
or base triple). Recalling that in the Nussinov energy model [31], the energy of a secondary
structure is −1 times the number of base pairs, it follows that saturated structures have a
maximal number of base pairs, though not necessarily a maximum number of base pairs. If a
given saturated structure S is not a minimum energy structure S0,

∗ then any folding pathway
from S to S0 must proceed by removing a base pair from S – an energetically unfavorable move
with respect to the Nussinov energy model. It follows that saturated structures form kinetic
traps in the Nussinov energy model. Since the kinetics of RNA structure formation is thought
to depend on the distribution of kinetic traps (i.e. saturated structures), it is of theoretical
interest to compute the number of saturated structures as well as structural features such as
the expected number of base pairs and expected number of hairpins. In previous work, we
determined the asymptotic number 1.07427·n−3/2 ·2.35467n of saturated secondary structures
[3] and the expected number 0.337361 · n of base pairs in saturated secondary structures [5].
These values should be compared with the asymptotic number 1.104366 · n−3/2 · 2.618034n of
all secondary structures, as computed by Stein and Waterman [37], and the expected number
0.276393 · n of base pairs over all secondary structures, as computed by Nebel [27].† In
this paper, we show that the expected number of hairpins in saturated secondary structures
is asymptotically equivalent to 0.123194 · n, which is greater than the asymptotic expected
number 0.105573 · n of hairpins over all secondary structures.‡

Secondary structures are conveniently displayed in Vienna dot bracket notation, consisting
of a balanced parenthesis expression with dots, where an unpaired nucleotide at position i
is depicted by a dot at that position, while a base pair (i, j) is depicted by the presence of
matching left and right parentheses located respectively at positions i and j. The precursor
microRNA with miRBase [13] accession code hvt-mir-H14 and ID MI0012627 has minimum
free energy structure, as computed by RNAfold from Vienna RNA Package [15], is given by

CGGACUCAUUCAGCGGGCAAUGUAGACUGUGUACCAAGUGACAGCUACAUUGCCCGCUGGGUUUCUG

((((...((((((((((((((((((.((((.(((...))))))))))))))))))))))))).))))

∗In the Nussinov energy landscape, due to degeneracy of the model, the minimum energy structure may not
be unique. Indeed, in [3], we show that even RNA homopolymers have quadratically many minimum energy
structures.

†In Theorem 10 of Nebel [27], it is shown that the number of unpaired nucleotides is asymptotically equal
to n√

5
, whence the stated result follows. One can compare as well with the asymptotic number of hairpins in

k-noncrossing structures, given in Table 2 of Nebel, Reidys and Wang [30].
‡In Theorem 16 of Nebel [27], it is shown that the expected number of hairpins over all secondary structures

is asymptotically equivalent to (1 −
2
√

5
5

) · n ∼ 0.105573 · n.
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Note that this structure is saturated. In the homopolymer model considered in this paper,
there are precisely five saturated structures for a homopolymer sequence of length 5, separated
by semi-colons:

( ( • ) ) ; • ( • • ) ; ( • • ) •; ( • ) • •; • • ( • )
while there are eight homopolymer structures for RNA of length 5, separated by semi-colons:

• • • • • ; ( • ) • • ; ( • • ) • ; ( • • • ) ; • ( • ) • ; • ( • • ) ; • • ( • ) ; ( ( • ) ) ;

A hairpin is defined to be a base pair (i, j), such that all positions from i + 1, . . . , j − 1 are
unpaired. It follows that the expected number of hairpins, over all saturated (homopolymer)
structures of length 5, is 5

5 = 1, while the expected number of hairpins, over all structures of
length 5, is 0+7·1

8 = 7
8 . Since the exhaustive list of all eight saturated structures of length 6 is

given by

( ( • ) ) •; • ( ( • ) ) ; ( ( • ) • ) ; ( • ( • ) ) ; ( ( •• ) ) ; ( • ) ( • ) ; ( •• ) ••; •• ( •• )
it follows that the expected number of hairpins, over all saturated structures of length 6, is
5·1+1·2

6 = 7
6 .

2 Context-free grammars and DSV method

In this section, we define non-ambiguous context-free grammars, describe the DSV methodol-
ogy, and state the Flajolet-Odlyzko theorem, from which we derive asymptotic results. Since
we have previously provided a detailed description of this method in Lorenz et al. [22], we
only sketch a brief overview, referring the reader to [22] for details.

Context-free grammars

Let Σ be a finite set of symbols. A language is a subset of Σ∗, the set of all words a1, . . . , an,
where ai ∈ Σ for all 0 ≤ i ≤ n and n is an arbitrary integer. In our application, Σ will consist
of left parenthesis ( , right parenthesis ) , and dot • when discussing secondary structures.
A context-free grammar is given by G = (V,Σ, R, S0), where V is a finite set of nonterminal
symbols (also called variables), Σ is a disjoint finite set of terminal symbols, S0 ∈ V is the
start nonterminal, and

R ⊂ V × (V ∪ Σ)∗

is a finite set of production rules. Elements of R are usually denoted by A → w, rather than
(A,w). If rules A → α1,. . . , A → αm all have the same left hand side, then this is usually
abbreviated by A → α1| · · · |αm.

If x, y ∈ (V ∪ Σ)∗ and A → w is a rule, then by replacing the occurrence of A in xAy we
obtain xwy. Such a derivation in one step is denoted by xAy ⇒G xwy, while the reflexive,
transitive closure of ⇒G is denoted ⇒∗

G. The language generated by context-free grammar G
is denoted by L(G), and defined by

L(G) = {w ∈ Σ∗ : S0 ⇒∗
G w}.

For any nonterminal S ∈ V , we also write L(S) to denote the language generated by rules
from G when using start symbol S. A derivation is said to be a leftmost derivation, provided
that each application of a rule is applied to the leftmost variable in the expression. A grammar
is non-ambiguous provided that no word w ∈ L(G) has two distinct leftmost derivations (this
condition is equivalent to requiring that no w ∈ L(G) have two distinct parse trees).
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Type of nonterminal Equation for generating function

S → T | U S(z) = T (z) + U(z)
S → T U S(z) = T (z)U(z)
S → t S(z) = z
S → ε S(z) = 1

Table 1: Translation between context-free grammars and generating functions. Here, G =
(V,Σ, S0, R) is a given context-free grammar, S, T and U are any nonterminal symbols in
V , and t is a terminal symbol in Σ. The generating functions for the languages L(S), L(T ),
L(U) are respectively denoted by S(z), T (z), U(z). Table taken from Lorenz et al. [22].

From grammars to generating functions

A general approach in enumerating combinatorial objects is to introduce generating functions.
The generating function for class C of objects is a complex function defined by C(z) =
∑

i≥0 cnzn, where cn is the number of objects length n that belong to C. For certain generating
functions C(z), it may be possible to derive a closed-form formula for the Taylor coefficient
cn of order n, denoted by [zn]C(z). Often, expecially when the collection of all combinatorial
objects is generated by a context free grammar, it is possible to efficiently derive the behavior
of cn when n approaches infinity, i.e. to derive a function g(n), such that limn→∞

cn

g(n) = 1,

denoted by asymptotic equality cn ∼ g(n).

Theorem 2.1 Let G = (V,Σ, R, S0) be a non-ambiguous context-free grammar. For each
nonterminal symbol S, let S(z) be the corresponding generating function, defined by applying
the translation scheme from Table 1. If C(z) =

∑

i≥0 cnzn is the length generating function
for L(G), where cn is the number of length n words in L(G), then S0(z) = C(z).

3 Expected number of hairpins in saturated structures

A hairpin is a base pair (i, j) such that no position strictly between i and j is paired. In the
homopolymer model with θ = 1 and p = 1, a hairpin occurring within a saturated structure
must have exactly one or two unpaired bases between the closing base pair.

Define the context free grammar G1 with nonterminal symbols S,R, start symbol S, and
production rules

S → •| • •|R • |R • •| (S ) |S (S )

R → (S ) |R (S )

A nucleotide position i in {1, . . . , n} is said to be visible in a given structure S if there is no
base pair (x, y) ∈ S for which x ≤ i ≤ y. In other words, visible positions are external to
every base pair of S. A straightforward proof by induction on word length establishes that G1

is a non-ambiguous grammar for the collection of all saturated secondary structures [5], and
that the nonterminal S generates all saturated structures, while the nonterminal R generates
all saturated structures which have no visible positions.

In order to count the expected number of hairpins in saturated structures, we need to
mark occurrences of hairpins by a finer grammar. To that end, we define the alternate non-
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ambiguous grammar G2 with production rules

S → D|N
D → •| • •
N → RD| (D ) | (N ) |S (D ) |S (N )

R → (D ) | (N ) |R (D ) |R (N )

where S generates all saturated structures, R generates all saturated structures that have no
visible positions, D generates a saturated empty structure (dots, i.e. only • or ••), and N
generates saturated structures that contain at least one base pair (not dots). It easily follows
by DSV methodology [5] and a Mathematica�computation that G1 and G2 are equivalent
grammars, both non-ambiguously generating exactly the saturated secondary structures (see
web supplement for computation). Define

S(z, u) =

∞
∑

n=0

∞
∑

k=0

sn,kz
nuk (1)

where the coefficient sn,k in the series expansion of S represents the number of secondary
structures on [1, n] having k hairpins. Thus

∑

k k · sn,k

sn
is the expected number of hairpins in

saturated secondary structures on [1, n]. By using the methods of [5], we can compute the
expected number of hairpins in saturated structures by

E(Xn) =
[zn]∂S(z,u)

∂u (z, 1)

[zn]S(z, 1)
(2)

where Xn is the random variable for the number of hairpins in a saturated secondary structure
(see web supplement for details of this complicated computation). However, a substantially
simpler and more complete result can be obtained by application of Drmota’s Theorem 2,
described below.

Now, by applying the DSV methodology from Table table:DSV to grammar G2, we have
the system of equations

S = D + N

D = z + z2

N = R · D + Dz2 + Nz2 + S · Dz2 + S · Nz2

R = Dz2 + Nz2 + R · Dz2 + R · Nz2

whence we can mark the introduction of a hairpin by the auxilliary variable u, thus yielding

S = D + N

D = z + z2

N = R · D + D · uz2 + N · z2 + S · D · uz2 + S · N · z2

R = D · uz2 + N · z2 + R · D · uz2 + R · N · z2
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Using three distinct approaches, in [3, 5, 11], we computed the asymptotic number of sat-
urated secondary structures, for θ = 1, p = 1. In our opinion, the simplest approach consists
of: (i) giving a non-ambiguous context free grammar to generate all saturated structures,
(ii) using the DSV methodology described below to obtain a functional relation of the form
Φ(z, S(z)) = S(z), (iii) applying the Drmota-Lalley-Woods Theorem [9, VII.6], stated as
Theorem 1 below. The following description of the theorems of Drmota-Lalley-Woods (The-
orem 1) and of Drmota (Theorem 2), up to the end of Remark 2, is adapted from our paper
[11].

For r ≥ 1, a weighted combinatorial class indexed by r parameters is a set A together with a
weight function W from A to R and r parameter-functions P1, . . . , Pr from A to N such that for
any fixed integers n1, . . . , nr, the set of structures γ ∈ A such that P1(γ) = n1, . . . , Pr(γ) = nr

is finite. This set is denoted A[n1, . . . , nr]. For example, when r = 1, we could take A[n]
to be the set of saturated secondary structures for a homopolymer of length n; when r = 2,
we could take A[n1, n2] to be the set of saturated secondary structures for a homopolymer of
length n1 having n2 hairpins.

For a weighted combinatorial class indexed by r parameters, the corresponding multivari-
ate generating function is

A(z1, . . . , zr) :=
∑

γ∈A

z
P1(γ)
1 · · · zPr(γ)

r W (γ). (3)

Here, we say that variable zi marks the parameter Pi, for 1 ≤ i ≤ r. We also use the notation

[zn1
1 . . . znr

r ]A(z1, . . . , zr) :=
∑

γ∈A[n1,...,nr]

W (γ).

In combinatorial analysis, one often considers a weight function, W (S) = 1, that assigns
weight 1 to each structure S; however, structures S can be weighted; for instance, when
considering stickiness p, we could assign a weight W (S) = pm, where structure S has exactly
m hairpins. The variables zi are a priori considered as formal, but one can also evaluate a
generating function at given values, provided the sum converges. The convergence domain of
A(z1, . . . , zr) is the set of r-tuples (z1, . . . , zr) of nonnegative real values such that A(z1, . . . , zr)
converges. In our applications, we consider only values 1, 2 for r, where A(z1) = S(z) =
∑∞

n=0 snzn is the generating function for the set of saturated structures, and A(z1, z2) =
S(z, u) =

∑∞
n=0

∑n
m=0 sn,mznum is the bivariate generating function for saturated structures

having m hairpins.
Consider a functional equation of the form

y = S(z) = Φ(z, a(z)) = Φ(z, y), (4)

where Φ(z, y) is a rational expression in z, y. Such an equation is called admissible if the
following conditions are satisfied:� The rational expression Φ(z, y) has a series expansion in z and y with non-negative

coefficients, is nonaffine in y, and satisfies§ Φ(0, 0) = 0 and Φy(0, 0) = 0.� The unique generating function y = S(z) solution of (4) is aperiodic, i.e., can not be
written as S(z) = zqS̃(zp) for some integers p, q with p ≥ 2.

§Subscript notation is used for partial derivatives.
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There is an easy criterion to check the aperiodicity condition: it suffices to prove that there
is some n0 such that [zn]S(z) > 0 for n ≥ n0.

Theorem 1 (Drmota-Lalley-Wood) Let y = S(z) be the generating function that is the
unique solution of an admissible equation y = Φ(z, y). Then

[zn]S(z) ∼ c γnn−3/2,

where γ = 1/z0, with (z0, y0) the unique pair in the convergence domain of Φ(t, y) that is
solution of the singularity system:

y = Φ(z, y), Φy(z, y) = 1;

and where

c =
√

z0Φz(z0, y0)/(2πΦy,y(z0, y0)).

Remark 1 The Drmota-Lalley-Wood theorem is proved in [9, VII.6] where Φ(z, y) a polyno-
mial; however, it can be checked that the same conclusions hold if Φ(z, y) is a bivariate series
that diverges at all its singularities.

An equation of the form
S(z, u) = Φ(z, u, S(z, u)), (5)

where Φ(z, u, y) is a rational expression in z, u and y, is called simple¶ if Φ(z, u, y) is non-
constant in u, has a series expansion (in z, u, y) with non-negative coefficients, the equation
y = Φ(z, 1, y) is admissible (as previously defined), and there is a 3 × 3-matrix m[i, j] with
integer coefficients and nonzero determinant such that [zm[i,1]um[i,2]ym[i,3]]Φ(z, u, y) > 0 for
all i ∈ {1, 2, 3}.

Theorem 2 (Drmota [7]) Let y = S(z, u) be a generating function that is the unique so-
lution of a simple equation y = Φ(z, u, y). Assume that the generating function b(z, u) =
∑

γ∈G z|γ|uχ(γ)W (γ) of a weighted combinatorial class G is given by b(z, u) = Ψ(z, u, S(z, u)),
with Ψ(z, u, y) a rational expression with non-negative coefficients (in the series expansion),
nonconstant in y, and such that the convergence domain of Ψ(z, 1, y) is included in the one
of Φ(z, 1, y). For n ≥ 0 let Gn := {γ ∈ G, |γ| = n}, and define the random variable Xn as
χ(γ), with γ a random structure in Gn under the distribution

P (γ) =
W (γ)

∑

γ∈Gn
W (γ)

.

For u > 0 in a neighborhood of 1, denote by ρ(u) the radius of convergence of y : z → S(z, u),
and let

µ = −ρ′(1)

ρ(1)
, σ2 = −ρ′′(1)

ρ(1)
+ µ2 + µ.

Then µ and σ are strictly positive and
Xn − µ · n

σ
√

n
converges as a random variable to a normal

distribution.

¶We follow Drmota [7], in using the term simple, whereas the term admissible was used in [11].
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Remark 2 Again the theorem was originally proved for polynomial systems, but the argu-
ments of the proof hold more generally when Φ is rational. The role of the condition involving
the existence of a nonsingular 3 × 3 matrix is to grant the strict positivity of σ, as proved
in [8].

We now describe how to compute the expected number of hairpins in saturated secondary
structures, where θ = 1 and p = 1. The computations for other values of θ, p in Table 2
proceed similarly. In particular, the Mathematica�computations and auxilliary data can be
downloaded at the web supplement site

http://bioinformatics.bc.edu/clotelab/RNAhairpinProfile/.

Let the constant p = 1 denote stickiness. By DSV methodology, we obtain the equations

S = D + N

D = z + z2

N = RD + pDz2 + pNz2 + pSDz2 + pSNz2

R = pDz2 + pNz2 + pRDz2 + pRNz2

corresponding to the context free grammar that generates the collection of saturated struc-
tures. This system contains 4 equations in 5 variables, hence we can eliminate variables
N,D,R to obtain the equation

S3z4 + S(1 − z2) + S2z2(−2 + z2) = z(1 + z)

from which we obtain the functional relation

Φ(z, S) =
S3z4 + S2z2(−2 + z2) − z(1 + z)

z2 − 1

which satisfies S(z) = Φ(z, S(z)). By numerical solution of the system of equations

Φ(z, S) = S

ΦS(z, S) =
∂Φ(z, S)

∂S
= 1

we obtain the solutions

z = 3.2141, S = −0.587227

z = −0.854537, S = 0.988667

z = 0.424687, S = 1.6569

z = −2.29493, S = −0.513379

z = −0.244657 + 0.5601i, S = −0.741229 + 0.680476i

z = −0.244657 − 0.5601i, S = −0.741229 − 0.680476i

from which it follows that z0 = 0.42468731042025953 is the dominant singularity; i.e. having
least modulus |z|. The corresponding value of S is S0 = 1.6568963458689725. We now apply
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the Drmota-Lalley-Woods Theorem, where y = S(z). It follows that the asymptotic number
of saturated secondary structures, for θ = 1 and p = 1, is

1.07427 · n−3/2 · 2.35467n.

This value agrees with that obtained in [3, 5, 11].
We now turn to the computation of the mean and standard deviation of the expected

number of hairpins, using Drmota’s Theorem. By weighting the previously given equations
with an auxilliary variable u, used each introduction of a hairpin, we obtain the system of
equations

S = D + N

D = z + z2

N = RD + puDz2 + pNz2 + puSDz2 + pSNz2

R = puDz2 + pNz2 + puRDz2 + pRNz2

This system contains 4 equations and 6 variables, thus we eliminate all variables except for
z, u, S to obtain the functional Φ(z, u, S), defined to be equal to the following:

S3z4 + S2z2(−2 + z2 + 2(−1 + u)z3 + 2(−1 + u)z4) − (−z(1 + z)(−1 − (−1 + u)z2 + (−1 + u)2z5 + (−1 + u)2z6))

−(1 + z)(1 − z − 2(−1 + u)z3 + 2(−1 + u)z5 + (−1 + u)2z6 + (−1 + u)2z7)

Express each of S − Φ(z, u, S) and 1 − ∂Φ(z,u,S)
∂S as rational expressions having the same

common denomiator c; i.e. a
c = S − Φ(z, u, S) and b

c = 1 − ∂Φ(z,u,S)
∂S . Compute the resultant

Res(a, b) of a, b with respect to variable S, to obtain

−4z11 − 5z12 + 6z13 + 23z14 + 12uz14 + 34z15

+26uz15 + 12z16 + 20uz16 − 30z17 + 38uz17 − 12u2z17 −
61z18 + 94uz18 − 37u2z18 − 74z19 + 124uz19 − 50u2z19

−65z20 + 122uz20 − 61u2z20 + 4u3z20 − 52z21 + 120uz21

−84u2z21 + 16u3z21 − 36z22 + 96uz22 − 84u2z22 + 24u3z22

−16z23 + 48uz23 − 48u2z23 + 16u3z23 − 4z24

+12uz24 − 12u2z24 + 4u3z24

Let RES denote the expression obtained by replacing variable z in the previous expression
by the function z(u). From Drmota’s Theorem we have that

µ = −z′(1)

z(1)
, σ2 = −z′′(1)

z(1)
+ µ2 + µ

which by computation (see web supplement) yields µ = 0.123194 and σ2 = 0.0341867. By
Drmota’s Theorem it follows that the number of hairpins in saturated structures with θ = 1
and p = 1 is normally distributed with mean 0.12319400 · n + 0.03418670 · √n · N .

We have just proved the following.

Theorem 3 The asymptotic expected number of hairpins for saturated structures, where θ =
1 and p = 1, is

0.123194 · n.
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Figure 1: Ratio of the asymptotic expected number of hairpins of saturated secondary struc-
tures and the actual value, computed by dynamic programming.

This result should be compared with Theorem 16 of [27], where Nebel proves that the asymp-
totic expected number of hairpins in a secondary structure of a homopolymer of size n is

(

1 − 2 ·
√

5

5

)

n ≈ 0.105573 · n. (6)

In other words, the expected number of hairpins in saturated structures is asymptotically
approximately 16−17% larger than the expected number of hairpins, taken over all structures.

Figure 1 shows the ratio of the asymptotic value 0.123194 · n and the value, computed by
dynamic programming, as explained in the Appendix (Python source code available on web
supplement). Convergence is rather slow, compared to the rapid convergence of asymptotic
results, such as those of Nebel [27], which concern expected values, when taken over all
secondary structures.

Computations for different values of θ, p

By alternatively taking stickiness p to be 1/2 and 3/8, and by slightly modifying the context
free grammar (for the case of θ = 3), we obtain the number of saturated secondary structures
given in Table 2. For example, when θ = 3, the slightly modified non-ambiguous grammar
G3 has production rules

S → D|N
D → •| • •| • • • | • • • •
N → RD| ( • • • ) | ( • • • • ) | (N ) |S ( • • • ) |S ( • • • • ) |S (N )

R → ( • • • ) | ( • • • • ) | (N ) |R ( • • • ) |R ( • • • • ) |R (N )

where S generates all saturated structures, R generates all saturated structures that have
no visible positions, D generates a structure of size 1,2,3 or 4 having no base pairs (hence
saturated), and N generates saturated structures that contain at least one base pair. Using

10



θ p number of saturated structures expected number of hairpins

1 1 1.07427 · n−3/2 · 2.35467n 0.12319400 · n + 0.03418670 · √n · N
1 1/2 1.37347 · n−3/2 · 1.87138n 0.12426000 · n + 0.03415170 · √n · N
1 3/8 1.52744 · n−3/2 · 1.70513n 0.12447200 · n + 0.03410150 · √n · N
3 1 0.76229 · n−3/2 · 2.10305n 0.05983930 · n + 0.01801440 · √n · N
3 1/2 1.13709 · n−3/2 · 1.74543n 0.06514370 · n + 0.01882460 · √n · N
3 3/8 1.34685 · n−3/2 · 1.62178n 0.06695640 · n + 0.01909350 · √n · N

Table 2: Asymptotic number of saturated secondary structures and asymptotic expected
number of hairpins in saturated structures, for sample values of θ, p. Here, θ denotes the
minimum required number of unpaired bases in every hairpin loop. The expected number of
hairpins follows a normal distribution, as indicated, where N denotes the standard normal
distribution with mean 0 and standard deviation of 1. For asymptotic analysis, following
Stein and Waterman [37], θ is often taken to be 1, while in RNA structure prediction software
UNAFOLD [24] and RNAfold [15], θ is taken to be 3. The parameter p, often called stickiness,
denotes the probability that any two positions can base-pair. In asymptotic analysis, often p
is taken to be 1; if RNA sequences are randomly generated with a probability of 50% for C
and G, then p = 1/2, while if RNA sequences are randomly generated with probability 1/4
for each nucleotide A,C,G,U, then p = 3/8. The asymptotic number of saturated structures
was previously computed in [3, 5, 11] for θ = 1 and p = 1 and in [11] for θ = 1 and p = 3/8.

θ p number of all structures expected number of hairpins

1 1 1.10437 · n−3/2 · 2.61803n 0.1055730 · n + 0.179611 · √n · N
1 1/2 1.45030 · n−3/2 · 2.18543n 0.0986392 · n + 0.176918 · √n · N
1 3/8 1.63740 · n−3/2 · 2.04101n 0.0950281 · n + 0.175330 · √n · N
3 1 0.71312 · n−3/2 · 2.28879n 0.0530486 · n + 0.128013 · √n · N
3 1/2 1.04267 · n−3/2 · 1.96401n 0.0546750 · n + 0.128864 · √n · N
3 3/8 1.22479 · n−3/2 · 1.85479n 0.0546382 · n + 0.128845 · √n · N

Table 3: Asymptotic number of all secondary structures and asymptotic expected number of
hairpins in all structures, for sample values of θ, p. Here, θ, p are as in Table 2. Values are
presented here for comparison with those from Table 2.

DSV methodology and accounting for stickiness p, we have the corresponding equations

S = D + N

D = z + z2 + z3 + z4

N = RD + p(z3 + z4)z2 + pNz2 + pS(z3 + z4)z2 + pSNz2

R = p(z3 + z4)z2 + pNz2 + pR(z3 + z4)z2 + pRNz2

The computation then follows as explained above. Full details of all computations from
Table 2 are given on the web supplement.

Since all of the values in Table 2 were previously computed by other authors, we created
this table as a cross check of our method, and as well to make available our substantially
simpler computations available in the web supplement. The asymptotic number 1.10437 ·
n−3/2 · 2.61803n of all structures was computed for θ = 1, p = 1 in [37], while the values for
θ = 1, 2, 3, 5 and p = 1 can be found in Table 1 of [16]. The expected number of hairpins

11



Num hairpins Energy Structure

1 -5 (((((..)))))
2 -4 (((..)(..)))
3 -3 (..)(..)(..)

Table 4: Table of the energy Ek and the minimum energy structure Sk, taken over all struc-
tures having k hairpins, obtained by running our program from Algorithm 3.1 on the input
RNA sequence ACGUACGUACGU.

was computed for θ = 1 and arbitrary 0 ≤ p ≤ 1 in Theorem 3 of [28], although the term
σ
√

nN is not given in that paper, since a different method was used. The expected number
of hairpins was computed for θ = 3 and p = 1, 1/2, 3/8, 1/4 in Table 3 of [16]. In particular,

for the expected number of hairpins can be computed as Nn

Sn
· Ln(1)

Nn
· n, where values Nn

Sn

and Ln(1)
Nn

· n are found in Table 3 of [16]. Note that due to roundoff error in Table 3 of
[16], there are slight discrepancies between values in our Table 3 and those from [16]. In
particular, for θ = 3 and p = 1, 1/2, 3/8 respectively we obtain expected number of hairpins
0.0530486 · n, 0.0546750 · n, and 0.0546382 · n our Table 3, while corresponding results from
[16] are 0.05302635 · n, 0.05468732 · n, and 0.05465211 · n.

Minimum energy structure having exactly k hairpins

In this section, we describe a novel O(n5) time and O(n3) space algorithm, to compute,
given an RNA sequence, simultaneously for each value of k, the minimum energy Ek over all
secondary structures having exactly k hairpins (recall that energy is with respect to the Nussi-
nov energy model). Moreover, the algorithm computes for each k, the secondary structure Sk

having k hairpins and energy Ek.
To fix ideas, we describe the output for a toy example, where for simplicity we define the

minimum number θ of unpaired bases in a hairpin loop to be 1. Table 4 describes the energy
Ek and the minimum energy structure Sk, taken over all structures having k hairpins, obtained
by running our program from Algorithm 3.1 on the input RNA sequence ACGUACGUACGU. For
this example, there are no structures having four or more hairpins. See Table 5 for the output
of our C implementation of Algorithm 3.1 for a transfer RNA from Rfam family RF00005
[12], where θ = 3.

For instance, among structures having k = 1 hairpin loop, the structure

ACGUACGUACGU

(((((..)))))

has the largest number (5) of base pairs; i.e. the Nussinov energy is −5.
The algorithm is described as follows. Let a1, . . . , an be a given RNA sequence, and let

BP (i, j, k) denote the maximum number of base pairs for a k-hairpin structure in the region
ai, . . . , aj . In a manner reminiscent of our work in [2], we use dynamic programming to
compute, for all intervals [i, j], and all values of k, the maximum number of base pairs in a
structure having k hairpins on subsequence ai, . . . , aj . We treat three cases. Case 1 considers
structures on [i, j] in which j is unpaired in [i, j]. Case 2 considers structures on [i, j] in which
i, j form a base pair. Case 3 considers structures on [i, j] in which r, j form a base pair, for
some intermediate i < r < j.
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Figure 2: Structure prediction of the 119 nt 5S rRNA with EMBL accession code X13035.1/1-
119, having sequence GACAACGUCC AUACCACGUU GAAAACACCG GUUCUCGUCC
GAUCACCGAA GUUAAGCAAC GUCGGGCGCG GUCAGUACUU GGAUGGGUGA
CCGCCUGGGA ACACCGCGUG ACGUUGGCU. (A) Minimum energy structure S2 over
all structures having exactly 2 hairpins, produced by our program. (B) Output of our im-
plementation of the Nussinov-Jacobson algorithm [31], which computes the minimum energy
structure. (C) Consensus structure from the Rfam database [12]. The base pair distance be-
tween structure A and C is 18, while the base pair distance between B and C is 77; moreover,
visual inspection indicates that the output of our program (A) indeed closely resembles the
Rfam consensus structure (C). This suggests that an implementation of Algorithm 3.1 using
the Turner energy model [43] could improve structure prediction for RNA molecules, that are
known to generally fold into structures with a given number of hairpins.
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Figure 3: Structure prediction of the 79 nt tRNA with EMBL accession code
AF493542.1/6654-6722, having sequence AUUCUUUUAG UAUUAACUAG UACAGCUGAC
UUCCAAUCAG CUAGUUUCGG UCUAGUCCGA AAAAGAAUA. (A) Minimum energy
structure S3 over all structures having exactly 3 hairpins, produced by our program. (B)
Output of our implementation of the Nussinov-Jacobson algorithm [31], which computes the
minimum energy structure. (C) Consensus structure from the Rfam database [12]. The base
pair distance between structure A and C is 14, while the base pair distance between B and C
is 30; moreover, visual inspection indicates that the output of our program (A) indeed closely
resembles the Rfam consensus structure (C).
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Num hairpins Energy Structure

1 -27 ((((((((.(.(((((((((.((((((((.(...).)))))).)))).))).))))).))))..)))).
2 -27 (((((((((((((((((.(((...))))..))..))).).))))(((((((...))).)))))))))).
3 -27 ((((((((((((((....))))(((((((.(...).)))))).)))(((((...))).)))))))))).
4 -26 (((((((((((...)((((((...)((((.(...).)))))))))))((((...))).))))).)))).
5 -25 (((((((((...)((((((((...)((((.(...).))))))))))(.(...)))(...))))))))).
6 -24 (...)((((...)((((((((...)((((.(...).))))))))))(((((...))).)))))(...))
7 -22 (...)((((...)((((((((...)((((.(...).))))))))))(.(...)))(...))))(...).
8 -21 (...)((((...)((.(((((...)((((.(...).)))))))))(...)(...)(...))))(...))
9 -19 (...)((((...)(....)((...)((((.(...).)))))((...)((...).)(...))))(...))
10 -17 (...)((((((...).)(...)(((....))(...)(.....)))(...)(...)(...))))(...).
11 -14 (...)(...)(...).((...)(((....))(...)(.....)(...)))(...)(...)(......).

Table 5: Output of our C implementation of Algorithm 3.1 on the transfer RNA described in
Figure 3.

Algorithm 3.1

1. for d=THETA+1 to n-1

2. for i=1 to n-THETA

3. j = i+d;

4. if (j>n) break;

5. for k=1 to n/2 //note n/2 max number of base pairs

6. //CASE 1: j does not pair in [i,j]

7. max = BP(i,j-1,k)

8. //CASE 2: i and j pair together

9. if a[i] can pair with a[j]

10. num = BP(i+1,j-1,k)

11. if (k=1 and num=0) or num>0

12. num += 1 //add 1 due to the basepair (i,j)

13. if (max<=num)

14. max = num

15. //CASE 3: r and j pair, for some i<r<j

16. for r=i+1 to j-THETA-1

17. if a[r] can pair with a[j]

18. //Case 3: k = k0+k1 and r,j basepair

19. //Case 3a: k0=0, k1=k and no bp in region i..r-1

20. if no positions can pair in region [i,r-1]

21. num = BP(r+1,j-1,k)

22. if (k=1 and num=0) or num>0

23. num += 1 //add 1 due to base pair (r,j)

24. if (max<num)

25. max = num

26. for k0=1 to kk0

14



27. k1=k-k0

28. x = BP(i,r-1,k0)

29. y = BP(r+1,j-1,k1)

30. if (k1=1 and x>0 and y=0) or (x>0 and y>0)

31. num = x+y+1 //add 1 for basepair (r,j)

32. if (max<num)

33. max=num

34. BP(i,j,k) = max

35. return BP

Having computed the maximum number of base pairs BP (1, n, k) (minimum energy −BP (1, n, k))
over all secondary structures having exactly k hairpins, a standard backtracking method pro-
duces the structures Sk having minimum energy over all structures having k hairpins.

4 Discussion

Formation of hairpins appears to be an important aspect in RNA structure evolution [26], a
mechanism that could suggest an explanation for the pervasively transcribed RNA of unknown
function (i.e. RNA dark matter) discovered by the Encode Consortium [38]. In this paper, we
have used algebraic combinatorics to compute the asymptotic expected number of hairpins
in saturated secondary structures of RNA. Though theoretical, our work adds to the growing
literature of asymptotic results concerning RNA structure – see for instance [37, 27, 28, 34,
3, 5, 17, 32, 29, 20, 4, 21].

How does the asymptotic espected number of haipins (taken either over saturated struc-
tures as in Theorem 3, or taken over all structures as in Nebel [27]) compare with the number
of hairpins in available RNA structure databases? We analyzed the average number of hair-
pins as a function of sequence length for RNA secondary structures in both the STRAND
database [1] as well as a collection of D.H. Mathews [25]. The STRAND database consists of
4,666 RNA structures, deriving from the Protein Data Bank [35], Sprinzl’s tRNA database
[36], Gutell’s database [14], etc. Mathews data collection consists of 1,192 RNA structures,
deriving from most of the same databases. See [1] resp. [25] for references to those databases
that contributed to each collection. Table 6 summarizes the equations of least-squares fit of
the STRAND and Mathews’ RNA databases, while Figure 4 presents a scatter plot for the
STRAND database. Broadly speaking, there is a rough agreement between the asymptotic
expected number of hairpins 0.0669564·n in saturated structures with θ = 3 and p = 3/8 from
Table 2 and the average number 0.0236·n of hairpins from the STRAND database, as given in
Table 6. In the web supplement, we present a computation of the asymptotic number of all sec-
ondary structures and the asymptotic expected number of hairpins, taken over all secondary
structures, where θ = 3 and p = 3/8. Asymptotically, there are 1.22479·n−3/2 ·1.85479n many
arbitrary secondary structures and 0.0546382 ·n+0.0166011 ·√n ·N expected hairpins, which
is in somewhat better agreement with the value of 0.0236 · n from the STRAND database –
see Table 3. As previously mentioned in [16] the “distribution of loop sizes and loop degrees
seems to be dominated by the combinatorics”.

In [41], Weinberg and Nebel apply length-dependent context free grammars in RNA sec-
ondary structure prediction, while in [33], Rivas et al. describe stochastic context free gram-
mars that incorporate frequencies of various motifs, such as hairpins, in a length-dependent
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Database Least-squares fit R2

STRAND (all RNAs) 0.0236 · n − 0.5312 0.8153
STRAND (remove outliers) 0.0258 · n + 0.2531 0.9535

Mathews (all RNAs) 0.0215 · n − 0.1642 0.9616
Mathews (remove outliers) 0.0134 · n + 1.0691 0.6549

Table 6: The average number of hairpins, as a function of sequence length n, computed for
the STRAND [1] and Mathews [25] RNA structure collections. Values reported after removal
of outliers represent averages taken over at least three distinct RNAs of the same length n.
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Figure 4: Scatter plot of average number of hairpins in the STRAND database [1], consisting
of 4,666 RNA structures. Left panel taken over all data; right panel after removal of outliers,
where outliers are defined to be averages taken over less than three distinct RNA sequences
for a fixed length n.

manner. With such extensions, Rivas et al. have shown that stochastic context free grammar
methods perform comparable to thermodynamics-based methods, such as UNAFOLD [24]
and RNAfold [15]. Our new program, described in Algorithm 3.1 can be viewed as a com-
putation of the minimum energy structure, with respect to the Nussinov model, dependent
on the assumption that the structure has exactly k hairpins. Seen in this light, there is a
loose connection with the work [41, 33]. We expect an even better prediction by extending
Algorithm 3.1 to the Turner energy model.
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Appendix

Computing the number of hairpins in saturated structures

To produce Figure 1, we computed by dynamic programming the expected number of hairpins
in saturated structures for a homopolymer of size n. In the interests of brevity, we must refer
the interested reader to [3] for background material on recurrence relations for the number
of saturated structures. The recurrence relations require the auxiliary notion of saturated
structure with no visible positions, defined as follows. A secondary structure S on sequence
a1, . . . , an has no visible positions, if for all 1 ≤ i ≤ n in which ai is unpaired, there is no base
pair (x, y) for which x < i < y.

Let D(n, k) denote the number of saturated secondary structures having exactly k hairpins.
Let E(n, k) denote the number of saturated secondary structures having exactly k hairpins,
which have no visible positions. Define D(0, 0) = D(1, 0) = D(2, 0) = D(3, 0) = 1 and
E(0, 0) = E(3, 1) = 1; for all other values of 0 ≤ n ≤ 3 and 0 ≤ k ≤ 3, let D(n, k) =
E(n, k) = 0.

The inductive case is given by:

D(n, k) = E(n − 1, k) + E(n − 2, k) +

n−2
∑

r=1

D(r − 1, k − 1)D(n − r − 1, 0) +

n−2
∑

r=1

k−1
∑

s=0

D(r − 1, s)D(n − r − 1, k − s)

E(n, k) =

n−2
∑

r=1

E(r − 1, k − 1)D(n − r − 1, 0) +

n−2
∑

r=1

k−1
∑

s=0

E(r − 1, s)D(n − r − 1, k − s).

Since the justification for these recursion is similar to that of [3], we do not provide further
details. These recursions are implemented using dynamic programming to compute the num-
ber of saturated structures on a homopolymer of size n having exactly k hairpins. It follows
that the expected number of hairpins for a homopolymer of size n is

n
∑

k=0

k · D(n, k)

S(n)

where S(n) =
∑n

k=0 D(n, k) is the total number of saturated structures for a homopolymer
of size n. The Python code is available on the web supplement.

Definition of resultant

In the proof of Theorem 3, we compute the resultant of two multivariable polynomials. For the
benefit of the reader, we define this concept here. For any commutative ring A, indeterminate
X and two multivariate polynomials

p1 = vnXn + · · · + v1X + v0

p2 = umXm + · · · + u1X + u0
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respectively having roots α1, . . . , αn and β1, . . . , βm in the algebraic closure of A, the resultant
of p1, p2 with respect to X is defined to be

vn
num

m

n
∏

i=1

m
∏

j=1

(αi − βj).

In applications, for instance g1, g2 could be functions in variables S,R, u, z, but construed
to be polynomials over indeterminate R with coefficients from the ring Z(z, u, S). In such a
case, the resultant Res(g1, g2) of g1, g2 is a polynomial in Z[z, u, S], whose roots are the z-, u-
and S-coordinates of the intersection of curves corresponding to g1, g2. Moreover, it is known
that there exist polynomials q1, q2 ∈ Z[z, u, S][R] such that

g1 · q1 + g2 · q2 = Res(g1, g2). (7)

For more background on resultants, see [19].
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