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1 Introduction

The modern digital computer, a force which has shaped the latter part of the 20-th
century, can trace its origins back to work in mathematical logic concerning the
formalization of concepts such as proof and computable function. Numerous exam-
ples support this assertion. For instance, in his development of the universal Turing
machine, A.M. Turing seems to have been the first, along with J. von Neumann,
to have understood the potential of memory-stored programs executed by a uni-
versal computational device. Moreover, certain function classes and proof systems
can be viewed as prototypes of programming languages: lisp was developed from
the Church-Kleene λ-calculus; prolog was developed from resolution (Gentzen se-
quent calculus); polymorphic programming languages such as ml were inspired by
J.-Y. Girard’s system F; imperative programming languages such as pascal and c
can be viewed as an implementation of S.C. Kleene’s µ-recursive functions.

One recurring theme in recursion theory is that of a function algebra — i.e.
a smallest class of functions containing certain initial functions and closed un-
der certain operations (especially substitution and primitive recursion).1 In 1904,
G.H. Hardy [66] used related concepts to define sets of real numbers of cardinality
ℵ1. In 1923, Th. Skolem [131] introduced the primitive recursive functions, and in
1925, as a technical tool in his claimed sketch proof of the continuum hypothesis, D.
Hilbert [70] defined classes of higher type functionals by recursion. In 1928, W. Ack-
ermann [1] furnished a proof that the diagonal function ϕa(a, a) of Hilbert [70], a
variant of the Ackermann function, is not primitive recursive. In 1931, K. Gödel
[53] defined the primitive recursive functions, there calling them “rekursive Funk-
tionen”, and used them to arithmetize logical syntax via Gödel numbers for his
incompleteness theorem. Generalizing Ackermann’s work, in 1936 R. Péter [111]
defined and studied the k-fold recursive functions. The same year saw the introduc-
tion of the fundamental concepts of Turing machine (A.M. Turing [137]), λ-calculus
(A. Church [26]) and µ-recursive functions (S.C. Kleene [82]). By restricting the
scheme of primitive recursion to allow only limited summations and limited prod-
ucts, the elementary functions were introduced in 1943 by L. Kalmár [78]. In 1953,
A. Grzegorczyk [58] studied the classes Ek obtained by closing certain fast growing
“diagonal” functions under composition and bounded primitive recursion or bounded
minimization.

H. Scholz’s 1952 [122] question concerning the characterization of spectra {n ∈
N : (∃ model M of n elements)(M |= φ)} of first order sentences φ, which was
shown in 1974 by N. Jones and A. Selman [77] to equal ntime(2O(n)), was the
starting point for J.H. Bennett’s work [13] in 1962. Among other results, Bennett
introduced the key notions of positive extended rudimentary and extended rudimen-
tary (equivalent to the notions of nondeterministic polynomial time np and the
polynomial time hierarchy ph), characterized the spectra of sentences of higher
type logic as exactly the Kalmár elementary sets, and proved that rudimentary
coincides with Smullyan’s notion of constructive arithmetic (those sets definable in
the language {0, 1,+, ·,≤} of arithmetic by first order bounded quantifier formulas).
Only much later in 1976 did C. Wrathall [145] connect these concepts to computer
science by proving that the linear time hierarchy lth coincides with rudimentary,
hence constructive arithmetic, sets. In 1963 R. W. Ritchie [114] proved that Grze-
gorczyk’s class E2 is the collection of functions computable in linear space on a
Turing machine. In 1965, A. Cobham [40] characterized the polynomial time com-
putable functions as the smallest function algebra closed under Bennett’s scheme

1In [70], Hilbert stated that “substitution (i.e. replacement of an argument by a new variable
or function) and recursion (the scheme of deriving the function value for n + 1 from that of n)”
are “the elementary operations for the construction of functions”.

2



of bounded recursion on notation. 2 These arithmetization techniques led to a host
of characterizations of computational complexity classes by machine-independent
function algebras in the work of D. B. Thompson [135] in 1972 on polynomial
space, of K. Wagner [141] in 1979 on general time complexity classes. Function
algebra characterizations of parallel complexity classes were given more recently by
the author [39] in 1990 and B. Allen [3] in 1991, while certain small boolean circuit
complexity classes were treated by the author and G. Takeuti [37] in 1995. Higher
type analogues of certain characterizations were given in 1976 by K. Mehlhorn [96],
in 1991 by S. Cook and B. Kapron [80, 44] for sequential computation, and in
1993 by the author, A. Ignjatovic, B. Kapron [34] for parallel computation. In
1995 H. Vollmer and K. Wagner [140] Valiant’s class #P . Though distinct, the
arithmetization techniques of function algebras are related to those used in proving
numerous results like (i) np equals generalized first order spectra (R. Fagin [48]),
(ii) the characterization of complexity classes via finite models (the program of
descriptive complexity theory investigated by R. Fagin [49], N. Immerman [73, 74],
Y. Gurevich and S. Shelah [60], and others).

From this short historical overview, it clearly emerges that function algebras and
computation models are intimately related as the software (class of programs) and
hardware (machine model) counterparts of each other. Historically, these notions
are among the central concepts of recursion theory, proof theory and theoretical
computer science. Perhaps this is the reason that K. Gödel [54] claimed in 1975
that the most important open problem in recursion theory is the classification of all
total recursive functions, presumably in a hierarchy of function algebras determined
by admitting more and more complex operations. While much work characterizing
ever larger subrecursive hierarchies has been done by W. Buchholz, J.-Y. Girard,
G.E. Sacks, K. Schütte, H. Schwichtenberg, G. Takeuti, S.S. Wainer and others,
in this paper we concentrate principally on subclasses of the primitive recursive
functions and their relations to computational complexity. For primitive recursive
functions, ε0-functions, etc. and strong higher type functionals, see the articles of
H. Schwichtenberg and D. Normann in this volume.

Apart from its interest as part of recursion theory, there are applications of
function algebras to proof theory, especially in the study of theories T of first and
second order arithmetic, whose provably total functions (having suitably definable
graphs) coincide with those of a particular function algebra. Using such techniques,
for instance, in [134] G. Takeuti provided a simpler proof of the existence of an
alternating logtime algorithm for the boolean formula evaluation problem, a result
first proved by S. Buss [20, 22] (see Theorem 2.11). For a further discussion of such
applications, see the recent monograph by J. Kraj́ıček [85].

Historically, Cobham’s machine independent characterization of the polynomial
time computable functions was the start of modern complexity theory, indicating a
robust and mathematically interesting field. As outlined in section 4, current work
on type 2 and higher type function algebras suggests directions for the extension of
complexity theory to higher type computation. The development of function alge-
bras is potentially important in computer science for programming language design.
New kinds of operations used in defining function algebras could possibly be incor-
porated in small, non-universal programming languages for dedicated purposes. All
the function algebras defined in this paper could be used to define free variable equa-
tional calculi. For instance, S. Cook’s system PV [43] comes from Theorem 3.19,
the author’s systems AV , ALV , ALV ′ [28, 30] come from Theorems 3.26 and 3.27,
J. Johannsen’s [75] systems TV,A2V come from Theorem 3.16, while M. O’Donnell
[105] has proposed equational calculus as a programming language.

In this paper, we will survey a selection of results which illustrate the arithme-

2According to [96], K. Weihrauch independently proved a similar characterization in 1972.
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tization techniques used in characterizing certain computation models by function
algebras.

2 Machine Models

Despite the immense diversity of abstract machine models and complexity classes
(see for instance [139] or [142]), only the most natural and robust models and
classes will be treated in this paper. Many of the following machine models are
familiar. Nevertheless, definitions are given in sufficient detail to provide an idea of
the required initial functions and closure operations which permit function algebra
characterizations of complexity classes.

2.1 Turing machines

In proving the recursive unsolvability of Hilbert’s Entscheidungsproblem (indepen-
dently established as well by A. Church [26] using the λ-calculus), A.M. Turing [137]
introduced the Turing machine, largely motivated by his attempt to make precise
the notion of computable (real) number, i.e., “those whose decimals which are cal-
culable by finite means”. Considering the “computer” as an idealized human clerk,
Turing argued that the “behavior of the computer at any moment is determined
by the symbols which he is observing, and his ‘state of mind’ at that moment”,
and specified that the number of “states of mind” should be finite, since “human
memory is necessarily limited”. Formally, we have the following.

Definition 2.1 A multitape Turing machine (tm)M is specified by (Q,Σ,Γ, δ, q0, k)
where k ∈ N,

• Q is a finite set of states containing the accept and reject states qA, qR, as
well as the start state q0,

• Σ [resp. Γ] is a finite read-only input [resp. read-write work] tape alphabet
not containing the blank symbol B,

• δ is the transition function and maps

(Q− {qA, qR})× (Σ ∪ {B})× (Γ ∪ {B})k

into
Q× (Γ ∪ {B})k × {−1, 0, 1}k+1.

A Turing machine is assumed to have a one-way infinite input tape and k one-way
infinite work tapes. The work tapes are initially blank, while on input w = w1 · · ·wn
with wi ∈ Σ, the initial input tape is of the form below.

B w1 w2 · · · wn B B · · ·
6

Each work tape has a tape head (above indicated by an arrow) capable of reading
the symbol in the currently scanned square, writing a symbol in that square and
remaining stationary or moving one square left or right. The leftmost cell is the
0-th cell. Since the input tape is read-only, the input tape head can scan a tape
cell and remain stationary or move one square left or right. A configuration is a
member of Q× (Σ ∪ {B})∗ × (Γ ∪ {B})∗k ×Nk+1, and indicates the current state,
tape contents, and head positions. Alternately, a configuration can be abbreviated
by underscoring the symbols currently scanned by a tape head, in order to indicate
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the current tape head position. For instance, (q,BabaB,BbbB) abbreviates the
configuration of a tm in state q, with an input tape, whose head currently scans
an a, and one work tape, whose head currently scans a b. A halted configuration is
one whose state is qA or qR.

Let

α = (q,BxB, α1, . . . , αk, n0, n1, . . . , nk)

β = (r,BxB, β1, . . . , βk,m0,m1, . . . ,mk)

be configurations for M on input x. Then β is the next configuration after α in M ’s
computation on x, denoted α `M β , if the following conditions are satisfied:

1. the n0-th cell of the input tape BxB contains symbol a,

2. for 1 ≤ i ≤ k the following hold:

(a) σi, τi ∈ Γ ∪ {B} and ui, vi, wi ∈ (Γ ∪ {B})∗

(b) αi = uiσivi and βi = uiτiwi

(c) |ui| = ni (Recall that the leftmost cell is the 0-th cell, so the n-th cell
has n cells to its left. This implies that σi [resp. τi] is the contents of
the ni-th cell of the i-th tape in configuration α [resp. β].)

3. δ(q, a, σ1, . . . , σk) = (r, τ1, . . . , τk,m0 − n0,m1 − n1, . . . ,mk − nk), where for
1 ≤ i ≤ k:

(a) mi < |βi|
(b) either vi = wi or vi = λ (the empty word), wi = B, and mi = ni + 1.

The reflexive, transitive closure of `M is denoted by `∗M , and a configuration C is
said to yield a configuration D in n-steps, denoted C `nM D, if there are C1, . . . , Cn
such that C = C1 `M C2 `M · · · `M Cn = D, while C yields D if C `∗M D. A
Turing machine M accepts a language L ⊆ Σ∗, denoted by L = L(M) , if L is the
collection of words w such that the initial configuration (q0, BwB,B, . . . , B) yields
(qA, BwB,B, . . . , B); a word w is accepted in n steps if (q0, BwB,B, . . . , B) `nM
(qA, BwB,B, . . . , B). The machine M accepts L ⊆ Σ∗ in time T (n) (resp. space
S(n)) if L = L(M) and for each word w ∈ L(M) of length n, w is accepted in at most
T (n) steps (resp. the maximum number of cells visited on each of M ’s work tapes is
S(n)). A language L ⊆ Σ∗ is decided by M in time T (n) (resp. space S(n)) if L [resp.
Σ∗ − L] is the collection of words for which M halts in state qA [resp. qR], and for
each word w ∈ Σ∗ of length n, M halts in at most T (n) steps (resp. the maximum
number of cells visited on each of M ’s work tapes is S(n)). This article concerns
complexity classes, so for the most part we identify the notions of acceptance and
decision (for most of the complexity classes here considered, machines of a certain
complexity class can be clocked so as to reject a word if they don’t accept it).

Recall that

O(f) = {g : (∃c > 0)(∃n0)(∀n ≥ n0)[g(n) ≤ c · f(n)]},
Ω(f) = {g : (∃c > 0)(∃n0)(∀n ≥ n0)[f(n) ≤ c · g(n)]}
Θ(f) = O(f) ∩ Ω(f)
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so that nO(1) denotes the set of all polynomially bounded functions. If T, S are
one-place functions, then

dtime(T (n)) = {L ⊆ Σ∗ : L accepted by a tm in time O(T (n))}
dspace(S(n)) = {L ⊆ Σ∗ : L accepted by a tm in space O(S(n))}

ptime = p = dtime(nO(1))

pspace = dspace(nO(1))

etime = ∪c≥1dtime(2c·n) = dtime(2O(n))

exptime = ∪c≥1dtime(2n
c

) = dtime(2n
O(1)

).

Finally, DTimeSpace(T (n), S(n)) is defined as

{L ⊆ Σ∗ : L accepted by a tm in time O(T (n)) and space O(S(n))}.

Definition 2.2 A nondeterministic multitape Turing machine (ntm)M is specified
by (Q,Σ,Γ,∆, q0, k) where Q,Σ,Γ, q0, k are as in Definition 2.1 and the transition
relation ∆ is contained in(

(Q− {qA, qR})× (Σ ∪ {B})× (Γ ∪ {B})k
)
×
(
Q× (Γ ∪ {B})k × {−1, 0, 1}k+1

)
.

If α, β are configurations in the computation of the nondeterministic Turing
machine (ntm) M on input x, then write α `M β if

(q, a, σ1, . . . , σk, r, τ1, . . . , τk,m0 − n0,m1 − n1, . . . ,mk − nk) ∈ ∆,

where σi, τi, a, ni,mi are as in the deterministic case.
With this change, the notions of configuration, yield and acceptance are anal-

ogous to the previously defined notions. A nondeterministic computation corre-
sponds to a computational tree whose root is the initial configuration, whose leaves
are halted computations, and whose internal nodes α have as children those configu-
rations β obtained in one step from α, α `M β. A word w ∈ Σ∗ is accepted if there is
an accepting path in the computation tree, though many non-accepting paths may
exist. A ntm M accepts a word of length n in time T (n) [resp. space S(n)] if the
depth of the associated computation tree is at most T (n) [resp. for each configura-
tion α in the computation tree the number of cells used on each work tape is at most
S(n)]. ntime(T (n)) [ resp. nspace(S(n)) ] is the collection of languages L ⊆ Σ∗

accepted by a ntm in time O(T (n)) [resp. space O(S(n))]; np = ntime(nO(1)).
Similarly, NTimeSpace(T (n), S(n)) is the set of languages L ⊆ Σ∗ accepted by

a ntm in time O(T (n)) and space O(S(n)).
With the previous definitions, any computation depending on all bits of the

input requires at least linear time, the minimum amount of time taken to scan the
input. However, by allowing a tm to access its input bitwise via pointers or random
access, sublinear runtimes can be achieved, as shown by Chandra et al. [24].

Definition 2.3 A Turing machine M with random access (ratm) is given by a
finite set Q of states, an input tape having no tape head, k work tapes, an index
query tape and an index answer tape . To permit random access, the alphabet Γ
is always assumed to contain the symbols 0, 1. Except for the input tape, all other
tapes have a tape head. M contains a distinguished input query state qI , in which
state M writes into the leftmost cell of the index answer tape that symbol which
appears in the k-th input tape cell, where k =

∑
i<m ki · 2i is the integer whose

binary representation is given by the contents

B km−1 km−2 · · · k0 B · · ·
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of the query index tape. Unlike the oracle Turing machine in Definition 2.5, the
query index tape is not automatically erased after making an input bit query. A
logtime ratm runs in time O(log n), where n is the length of the input.3

Logtime on a ratm is not so weak, and can compute certain simple functions, as
shown by the next result. In the following, the function value f(u) = v is computed
by a logtime Turing machine in the sense that on input (k, u), the machine outputs
the k-th bit of v in time logarithmic in the length of the input.

Fact 2.4 (Barrington-Immerman-Straubing [6]) Given an input of length n, a de-
terministic logtime ratm can

(i) compute the length of its input,
(ii) add and subtract integers of O(log n) bits,
(iii) decode a simple pairing function on strings of length O(n).

Proof. Since a ratm has no output tape, we adopt the convention that M com-
putes the function f : Σ∗ → Σ∗ if |f(x)| is bounded by a polynomial in |x|, and for
all bits, the i-th bit of f(x) is a iff M accepts (x, i, a). The proof of (i) uses binary
search, and according to [20], appears to have been first noticed by M. Dowd. The
proof of (ii) is clear, since addition and subtraction take time linear in the input
length. In (iii), for u, v ∈ Σ∗ the pair (u, v) can be encoded by τ(|u|)11τ(|v|)11uv,
where τ replaces each 0 [resp. 1] by 00 [resp. 01]. Decoding can then be done by
using addition and random access.

A.M. Turing [137] introduced the notion of relative computation using an oracle Tur-
ing machine .

Definition 2.5 Let B ⊆ Γ∗. An oracle Turing machine (otm) with oracle B is
a Turing machine M which in addition to a read-only input tape, a distinguished
output tape and finitely many work tapes, has a one-way infinite oracle query tape .
The machine M has oracle answer states qyes , qno as well as a special oracle query
state q? in which it queries whether the current contents of the oracle query tape
belongs to oracle B. The transition function δ of M is a mapping from

(Q− {qA, qR, q?})× (Σ ∪ {B})× (Γ ∪ {B})k+1

into
Q× (Γ ∪ {B})k+1 × {−1, 0, 1}k+2.

A computation is defined as previously, except that if M is in state q? then the
machine queries whether the word given by the current contents of the oracle query
tape belongs to B. Dependent on the outcome of the oracle query, M goes into
state qyes or qno, and simultaneously erases the query tape and places the oracle
tape head at the leftmost square. This entire sequence of events takes place in one
step. Finally, nondeterministic oracle Turing machines are analogously defined by
adding the oracle apparatus to the ntm model.

For A ⊆ Σ∗ and B ⊆ Γ∗, write A ≤T B if A can be decided by an oracle Turing
machine with oracle B. Similarly write A ≤PT B [resp. A ≤NPT B] if A can be
computed by a deterministic [resp. nondeterministic] oracle Turing machine with
oracle B in polynomial time. Let ΣP0 = P and ΣPn+1 be

{A : (∃B ∈ ΣPn )(A ≤NPT B)}.
3Logarithms are with respect to base 2.
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In [24], A. Chandra, D. Kozen and L. Stockmeyer introduced the alternat-
ing Turing machine (atm) , a model suitable for formalizing divide and conquer
algorithms.4 When used with random access, this model allows sublinear runtimes
and can be viewed as a kind of parallel computational device; in particular, uni-
form boolean circuit families, another parallel computation model, can be related
to atm’s.

Definition 2.6 An alternating multitape Turing machine (atm) M is specified by
(Q,Σ,Γ,∆, q0, k, `) where ` : (Q−{qA, qR})→ {∧,∨} and Q,Σ,Γ,∆, q0, k are as in
Definition 2.2 of a nondeterministic machine.

The function ` labels non-halting states as universal (∧) and existential (∨). An
accepting computation tree T is a subtree of the computation tree of M on x such
that for any configuration α ∈ T ,

• the root of T is the initial configuration of M on x,

• if α is a leaf of T , then α is an accepting configuration,

• if α is universal, then for all β, α `M β ⇒ β ∈ T , and

• if α is existential, then there exists β ∈ T for which α `M β.

The atm M accepts input x if there is a non-empty accepting computation tree of
M on x; otherwise x is rejected . L(M) denotes the set of x ∈ Σ∗ accepted by M .
The language L(M) is accepted by M in time T (n) [resp. space S(n) ] if for each
w ∈ L(M) of length n, there is an accepting computation tree T of depth at most
T (n) [resp. in which at most S(n) cells are used for each of the work tapes and
index tapes at any node in the tree T ]. The number of alternations M makes in an
accepting computation tree T is defined to be the maximum number of alternations
between existential and universal nodes in a path from the root to a leaf.

Convention 2.7 From now on, unless otherwise indicated, for any sublinear run-
time T (n) = o(n), the intended Turing machine model is ratm, while for runtimes
T (n) = Ω(n), the intended Turing machine model is the conventional tm. This
convention applies to deterministic, nondeterministic, and alternating Turing ma-
chines. While it is a simple exercise to show that ptime is the same class, regardless
of model, it appears to be an open problem to determine the relationship between
dtime(T (n)) on tm and ratm, for T (n) = Ω(n).

Definition 2.8

atime(T (n)) = {L ⊆ Σ∗ : L accepted by an atm in time O(T (n))}
aspace(S(n)) = {L ⊆ Σ∗ : L accepted by an atm in space O(S(n))}

alogtime = atime(O(log n))

apolylogtime = ∪k≥1atime(O(logk n))

alintime = atime(O(n)).

The logtime hierarchy lh [resp. the linear time hierarchy lth , resp. the polynomial
time hierarchy ph ] is the collection of languages L ⊆ Σ∗, for which L is accepted by
an atm in time O(log n) [resp. O(n), resp. nO(1)] with at most O(1) alternations.5

Σk-time(T (n)) is the collection of languages accepted by an atm in time O(T (n))
with at most k alternations, beginning with an existential state.

4Divide and conquer algorithms are generally space efficient. The parallel computation thesis
states that sequential space equals parallel time (see [17]). In this sense, atm’s provide a parallel
computation model.

5It follows from [51, 2] that lh is a hierarchy, where the collection of languages accepted by
k-alternations is properly contained in the collection of languages accepted by k + 1-alternations.
The question of whether lth or ph is a proper hierarchy is still open.
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The class alogtime is surprisingly powerful. It is not difficult to see that it
contains all of the regular languages. To see this, recall that a finite state automaton
M is a 5-tuple (Q, q0,Σ, δ, F ), where Q is a finite set of states, q0 is the initial state,
Σ a finite alphabet, δ : Q×Σ→ Q and F ⊆ Q. For the empty word λ, let δ∗(λ) = q0,
and for w1 · · ·wn ∈ Σ∗, let δ∗(w1 · · ·wn) = δ(δ∗(w1 · · ·wn−1), wn). A word w ∈ Σ∗

is accepted by the finite state automaton M if δ∗(w) ∈ F . The language L is accepted
by M , denoted by L = L(M), if it consists of the words accepted by M . Finally, a
language L is regular if it is accepted by a finite state automaton.

Fact 2.9 If L ⊆ Σ∗ is regular, then L ∈ alogtime.

Proof. Suppose that L is recognized by a finite state automaton M given by
(Q, q0,Σ, δ, F ). For each word w of Σ∗, associate the mapping fw : Q→ Q obtained
by repeatedly applying the transition function δ on the letters from w. Formally, if
w = w1 · · ·wn then

fw(q) = δ(· · · δ(δ(q, w1), w2), . . . , wn) · · ·).

When M is the minimal finite state automaton recognizing the regular language L,
then the (finite) collection {fw : w ∈ Σ∗}, constructed as above from M , is called
the syntactic monoid of L.

Now, given the word w = w1 · · ·wn ∈ Σ∗, associate fwn , . . . , fw1 with the leaves
of a binary tree T , and at each internal node of T , compute the composition of
two children nodes (the tree’s root is at the top). The root of T then contains
fw = fwn

◦ · · · ◦ fw1
. It follows that w ∈ L if and only if fw(q0) ∈ F . This

construction can be formalized to yield an alogtime algorithm.

Much more striking are the results of D. Barrington6 and S. Buss. First, define
a language L to be complete for alogtime under dlogtime reductions, if L ∈
alogtime and for any L′ ∈ alogtime, there is a logtime many-one function f
with the property that |f(u)| is polynomial in |u|, and u ∈ L′ iff f(u) ∈ L. Here,
the function value f(u) = v is computed by a logtime Turing machine in the sense
that on input (k, u), the machine outputs the k-th bit of v in time logarithmic in
the length of the input.

Theorem 2.10 (D. Barrington [7]) Let G be any finite non-solvable permutation
group (for example S5). Then the word problem

{(σ1, . . . , σn) : σi ∈ G, σ1 ◦ σ2 ◦ · · · ◦ σn = id}

for G is complete for alogtime under dlogtime reductions.

Sketch of Proof. If G is a group, then the commutator of elements a, b ∈ G is
the element aba−1b−1. The commutator subgroup of G, denoted by [G,G], is the
subgroup of G generated by all the commutators of G. For any group G, define
G(0) = G, and G(n+1) = [Gn, Gn]. By definition, a group G is solvable if there
is a finite series G = G(0) ≥ G(1) ≥ · · · ≥ G(n) = {e}. If G is finite, then G is
non-solvable if and only if G = G(0) ≥ G(1) ≥ · · · ≥ G(n) = G(n+1) 6= {e}, i.e. G(n)

is non-trivial and equal to its commutator subgroup. For example, the groups Ak,
Sk for k ≥ 5 are non-solvable.

Assume now that G is a non-solvable group with series G = G(0) ≥ · · · ≥
G(n) = H, and that H is non-trivial and equal to its commutator subgroup [H,H];
i.e. there exists m such that every element of H can be expressed as a product

6D. Barrington changed his name to D. Mix Barrington, so that some articles appear under
the former name and some under the latter name.
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Πm
i=1aibia

−1
i b−1i of m commutators of H. Using this observation, Barrington showed

how to represent conjunctions and disjunctions as a word problem over H.
Namely, given a non-identity element g ∈ H and an alternating and/or com-

putation tree T (x) for the computation of M on x, describe a word wT (x) in the
elements of H such that

wT (x) =

{
e if M accepts x

g else.

This is done by induction on depth of node A in T (x). Recall that H = [H,H] and
every element of H can be written as the product of m commutators of H. Then
Barrington observed that if A = (B ∨ C) then

wA(g) = wB∨C(g)

= Πm
i=1wB(bi)wC(ci)wB(b−1i )wC(c−1i ).

Similarly, B ∧ C and ¬B can be expressed. Inductively one forms the word wT (x)

whose product equals e exactly when M accepts x.
From the above discussion, with a close look at uniformity issues, it follows that

the word problem for a finite non-solvable permutation group is hard for alogtime.
On the other hand, the word problem is clearly in alogtime, since one can compose
n permutations by associating them with the leaves of a binary tree, whose internal
nodes compute the composition of their children.

Theorem 2.11 (S. Buss [20, 22]) The boolean formula valuation problem

{Θ : Θ is a true variable-free propositional logic formula}

is complete for alogtime under dlogtime reductions.

The proof of Theorem 2.11 is long and difficult, so cannot be sketched here. The
results of Barrington and Buss are complementary in the sense that the word prob-
lem for S5 is clearly in alogtime, but not obviously complete, while the boolean
formula evaluation problem is clearly complete but not obviously in alogtime.

In [120], W. Savitch proved that nspace(S(n)) ⊆ dspace(S2(n)), for any space
constructible S(n) ≥ log n. The following theorem, due to Chandra, Kozen and
Stockmeyer [24], is in part a generalization of Savitch’s result that pspace =
npspace, and relates alternating time and space to deterministic time and space.

Theorem 2.12 (Chandra, Kozen, Stockmeyer [24]) For f(n) ≥ n,

atime(f(n)) ⊆ dspace(f(n)) ⊆ nspace(f(n)) ⊆ ∪c>0atime(c · f(n)2).

For f(n) ≥ log n,
aspace(f(n)) ⊆ ∪c>0dtime(cf(n)).

From definitions, it is clear that

lh ⊆ alogtime ⊆ logspace ⊆ ptime ⊆ ph ⊆ pspace

and
lh ⊆ lth ⊆ alintime ⊆ dlinspace ⊆ pspace.

By Furst, Saxe, Sipser [51] and Ajtai [2], integer multiplication does not belong to
lh (since multiplication × is a function, what is meant is that × 6∈ flh, where the
latter is the class of functions of polynomial growth rate, whose bitgraph belongs
to lh; this is defined later). Note that Buss [21] has even shown that the graph
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of multiplication does not belong to lh. Since the graph of integer multiplication
belongs to alogtime, the first containment above is proper. With this exception,
nothing else is known about whether the other containments are proper.

All the previous machine models concern language recognition problems. Pred-
icates R ⊆ (Σ∗)k can be recognized by allowing input of the form

Bx1Bx2B · · ·BxnB

consisting of n inputs xi ∈ Σ∗, each separated by the blank B 6∈ Σ. By adding a
write-only output tape with a tape head capable only of writing and moving to the
right, and by allowing input of the form Bx1Bx2B · · ·BxnB, a tm or ratm can
compute an n-place function. In the literature, function classes such as the polyno-
mial time computable functions were so introduced. To provide uniform notation
for such function classes, along with newer classes of sublinear time computable
functions, we proceed differently.

Definition 2.13 A function f(x1, . . . , xn) has polynomial growth resp. linear growth
resp. logarithmic growth if

|f(x1, . . . , xn)| = O( max
1≤i≤n

|xi|k), for some k

resp.
|f(x1, . . . , xn)| = O( max

1≤i≤n
|xi|)

resp.
|f(x1, . . . , xn)| = O(log( max

1≤i≤n
|xi|).

The graph Gf satisfies Gf (~x, y) iff f(~x) = y. The bitgraph Bf satisfies Bf (~x, i) iff
the i-th bit of f(~x) is 1. If C is a complexity class, then FC [resp. LinFC resp.
LogFC ] is the class of functions of polynomial [resp. linear resp. logarithmic]
growth whose bitgraph belongs to C. In this paper, GC will abbreviate LinFC. The
iteration f (n)(x) is defined by induction on n: f (0)(x) = x, f (n+1)(x) = f(f (n)(x)).

With this notation, the iteration log(n) x should not be confused with the power
logn x = (log x)n.

There are other extensions of the Turing machine model not covered in this
survey, such as the probabilistic Turing machine (yielding classes such as r and bpp,
see [139]), the genetic Turing machine (defined by P. Pudlák [113], who showed
that polynomial time bounded genetic tm’s compute exactly pspace), and the
quantum Turing machine (first introduced by D. Deutsch [47], and for which P. Shor
[129] proved that integer factorization is computable in bounded error probabilistic
quantum polynomial time bqp).

2.2 Parallel machine model

“Having one processor per data element changes the way one thinks.”
W.D. Hillis and G.L. Steele, Jr. [71]

Emerging around 1976-77 from the work of Goldschlager [56, 57], Fortune-Wyllie
[50], and Shiloach-Vishkin [128], the parallel random access machine (pram) pro-
vides an abstract model of parallel computation for algorithm development. While
existent “massively parallel” computers generally require a specific communication
network (e.g. hypercube, mesh, etc.) for message passing between processors (and
such details are of immense practical importance), the pram abstracts out all such
processor communication details and postulates a global shared memory . Indi-
vidual processors of a pram additionally have local memory, and while operating
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synchronously on the same program, are capable of performing arithmetic and log-
ical operations as well as local and global read/write in both direct and indirect
addressing mode. Processors may have different data stored in their local memories
and have access to their unique processor identity number pid . Thus the effect of
an instruction like “add the contents of the pid-th global memory register to local
memory register 2 and store in local memory register 7” may be quite different
in different processors. Different models of pram have been studied, depending
on the strength of local arithmetic operations allowed, and whether simultaneous
read/write in the same global memory register is allowed by several processors. This
yields erew, crew, and crcw models, according to whether exclusive read, ex-
clusive write, concurrent read or concurrent write are allowed. An excellent survey
of parallel algorithms and models is R.M. Karp and V. Ramachandran [81]. The
formal development follows.

A concurrent random access machine cram has a sequence R0, R1, . . . of random
access machines which operate in a synchronous fashion in parallel. Each Ri has
its own local memory, an infinite collection of registers, each of which can hold an
arbitrary non-negative integer. Global memory consists of an infinite collection of
registers accessible to all processors, which are used for reading the input, processor
message passing, and output. Global registers are designated Mg

0 ,M
g
1 ,M

g
2 , . . ., and

local registers by M0,M1,M2, . . . – local registers of processor Pi might be denoted
Mi,0,Mi,1, . . .. A global memory register can be read simultaneously by several
processors (concurrent read, rather than exclusive read). In the case where more
than one processor may attempt to write to the same global memory register, the
lowest numbered processor succeeds (priority resolution of write conflict in this
concurrent write rather than exclusive write model). An input x is initially given
bitwise in the global registers, the register Mg

i holding the i-th bit of x. All other
registers initially contain the blank symbol B (different from 0, 1) which designates
that the register is empty. Similarly at termination, the output y is specified in
the global memory, the register Mg

i holding the i-th bit of y. At termination of a
computation all other global registers contain the blank symbol. [The input/output
convention of one integer per global memory register yields an equivalent model for
the complexity classes here considered.] Let res (result), op0, op1, op2 (operands
0,1,2) be non-negative integers. If any register occurring on the right side of an
instruction contains ‘B’, then the register on the left side of the instruction will be
assigned the value ‘B’ (undefined).

Instructions are as follows.

Mres = constant

Mres = processor number

Mres = Mop1

Mres = Mop1 + Mop2

Mres = Mop1
.−Mop2

Mres = MSP(Mop1,Mop2)

Mres = LSP(Mop1,Mop2)

Mres = ∗Mop1

Mres = ∗Mg
op1

∗Mres = Mop1

∗Mg
res = Mop1

GOTO label

GOTO label IF Mop1 = Mop2

GOTO label IF Mop1 ≤Mop2

HALT
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Cutoff subtraction is defined by x .− y = x − y, provided that x ≥ y, else 0. The
shift operators MSP and LSP are defined by

• MSP(x, y) = bx/2yc, provided that y < |x|, otherwise ‘B’,

• LSP(x, y) = x− 2y · (bx/2yc), provided that y ≤ |x|, otherwise ‘B’.

The cram model is due to N. Immerman [74], though there slightly different con-
ventions are made.

Instructions with ‘∗’ concern indirect addressing. The instruction Mres = ∗Mop1

assigns to local register Mres the contents of local register with address given by the
value Mop1. Similarly, Mres = ∗Mg

op1 performs an indirect read from global memory
into local memory. The instruction ∗Mres = Mop1 assigns the value of local register
Mop1 to the local register whose address is given by the current contents of the
local register Mres. Similarly, ∗Mg

res = Mop1 performs an indirect write into global
memory.

In summary, the cram has instructions for (i) local operations — addition,
cutoff subtraction, shift, (ii) global and local indirect reading and writing, (iii)
control instructions — goto, conditional goto and halt. A program is a finite
sequence of instructions, where each individual processor of a cram has the same
program. Each instruction has unit-cost (uniform time cost). During the course
of a computation, only finitely many active processors perform computations. An
input x of length n is accepted by a cram M in time T (n) with P (n) many active
processors, if M halts after T (n) time where processors P0, . . . , Pn−1 synchronously
execute the program. The class TimeProc(T (n), P (n)) consists of those languages
accepted by a cram in time T (n) with P (n) many processors.

Example 2.14 The following is a cram program for computing |x| = dlog2(x+1)e,
where comments begin by ‘%’.

Let Mres = BIT(Mop1,Mop2) be the instruction which, for i = Mop2 computes the
coefficient of 2i in the binary representation of the integer stored in Mop1, provided
that i < |Mop1|, and otherwise returns the value ‘B’.

1 M1 = processor number

2 M2 = *Mg
1 % in Pi, Mi = Mg

i

3 if (M2 = B) then Mg
0 = M1

4 M3 = Mg
0 % in Pi, M3 = least i [ Mg

i = B ] = |x|

5 *Mg
1 = B % erase global memory

6 M4 = 1

7 M4 = M1 + 1

8 M4 = M3
.−M4

9 M5 = MSP(M3,M4)

10 M6 = MSP(M5,1)

11 M6 = M6 + M6

12 M4 = M5
.−M6

13 *Mg
1 = M4 % output placed in global memory

14 HALT

Processor bound: P (|x|) = |x|.

Strictly speaking, line 3 is not syntactically allowed, but can easily be implemented
with a few extra lines of code, and will not affect the time or processor bound.
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Lines 6–12 ensure that M4 = BIT(M3,M3
.− (M1 + 1)), so that in processor Pi,

M4 = BIT(|x|, |x| .− (i+ 1)).
To further illustrate the cram model, Algorithm 2.15 computes max(x1, . . . , xn)

of n integers in constant time with O(n2) processors.

Algorithm 2.15 Constant time algorithm for maximum.

(1) for all
(
n
2

)
pairs 1 ≤ i < j ≤ n in parallel do

ai,j =

{
1 if xi < xj

0 else

(2) for i := 1 to n in parallel do
mi := 0

(3) for 1 ≤ i < j ≤ n in parallel do
if ai,j = 1 then mi := 1

(4) for i := 1 to n in parallel do
if mi = 0 then m := i

(5) max := xm

Time = O(1), Processors = O(n2)

2.3 Circuit families

A directed graph G is given by a set V = {1, . . . ,m} of vertices (or nodes) and a
set E ⊆ V × V of edges. The in-degree or fan-in [resp. out-degree or fan-out] of
node x is the size of {i ∈ V : (i, x) ∈ E} [resp. {i ∈ V : (x, i) ∈ E}]. A circuit
Cn is a labeled, directed acyclic graph whose nodes of in-degree 0 are called input
nodes and are labeled by one of 0, 1, x1, . . . , xn, and whose nodes v of in-degree
k > 0 are called gates and are labeled by a k-place function from a basis set of
boolean functions. A circuit has a unique output node of out-degree 0.7 A family
C = {Cn : n ∈ N} of circuits has bounded fan-in if there exists k, for which all gates
of all Cn have in-degree at most k; otherwise C has unbounded or arbitrary fan-in.

Boolean circuits have basis ∧, ∨, ¬, where ∧, ∨ may have fan-in larger than 2 (as
described below, the ack [resp. nck] model concerns unbounded fan-in [resp. fan-in
2] boolean circuits). A threshold gate thk,n outputs 1 if at least k of its n inputs is
1. A modular counting gate modk,n outputs 1 if the sum of its n inputs is evenly
divisible by k. A parity gate ⊕ outputs 1 if the number of input bits equal to 1 is
even, where as for ∧, ∨ the fan-in may be restricted to 2, or arbitrary, depending
on context.

An input node v labeled by xi computes the boolean function fv(x1, . . . , xn)
= xi. A node v having in-edges from v1, . . . , vm, and labeled by the m-place
function g from the basis set, computes the boolean function fv(x1, . . . , xn) =
g(fv1(x1, . . . , xn), . . . , fvm(x1, . . . , xn)). A circuit Cn accepts the word x1 · · ·xn ∈
{0, 1}n if fv(x1, . . . , xn) = 1, where fv is the function computed by the unique out-
put node v of Cn. A family (Cn : n ∈ N) of circuits accepts a language L ⊆ {0, 1}∗
if for each n, Ln = L ∩ {0, 1}n consists of the words accepted by Cn.

The depth of a circuit is the length of the longest path from an input to an
output node, while the size is the number of gates. A language L ⊆ {0, 1}∗ belongs
to SizeDepth(S(n), D(n)) over basis B if L consists of those words accepted by
a family (Cn : n ∈ N) of circuits over basis B, where size(Cn) = O(S(n)) and
depth(Cn) = O(D(n)).

7The usual convention is that a circuit may have any number of output nodes, and hence
compute a function f : {0, 1}n → {0, 1}m. In this paper, we adopt the convention that a circuit
computes a boolean function f : {0, 1}n → {0, 1}. An m-output circuit C computing function
g : {0, 1}n → {0, 1}m can then be simulated by a circuit computing the boolean function f :
{0, 1}n+m → {0, 1} where f(x1, . . . , xn, 0m−i1i) = 1 iff the i-th bit of g(x1, . . . , xn) is 1.
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Figure 1: Exclusive-or

A boolean circuit which computes the function f(x1, x2) = x1 ⊕ x2 is as in
Figure 1.

Example 2.16 The function max(a0, . . . , an−1) of n integers, each of size at most
m, can be computed by a boolean circuit as follows. Assume the integers ai are
distinct (a small modification is required for non-distinct integers). Then the k-th
bit of max(a0, . . . , an−1) is 1 exactly when

(∃i < n)(∀j < n)(j 6= i→ aj ≤ ai ∧ bit(k, ai) = 1).

This bounded quantifier formula is translated into a boolean circuit by∨
i<n

∧
j<n,j 6=i

∨
`<n

∧
`<p<m

(bit(p, aj) = bit(p, ai) ∧ bit(`, aj) = 0 ∧ bit(`, ai) = 1.

Note that by Algorithm 2.15, max(a0, . . . , an−1) is computed by a cram in constant
time with a polynomial number of processors and by Example 2.16 max(a0, . . . , an−1)
is computed by a constant depth polynomial size family of boolean circuits. As this
suggests, there is a relation between time/processors for a cram and depth/size
for a boolean circuit family. The exact relation between the two models is given in
Theorem 2.18.

Without a uniformity condition, circuit families of depth 2 and size 1 can accept
non-recursive languages (e.g. all inputs are accepted [resp. rejected] if the n-th
circuit is of the form x1 ∨¬x1 [resp. x1 ∧¬x1]). Various notions of uniformity have
been suggested (ptime-uniformity [8], logspace-uniformity [17], UE∗ -uniformity
[119], etc.), but the most robust (and strictest) appears to be that of logtime-
uniformity [18, 6], which is adopted in this paper.

Definition 2.17 (W. Ruzzo [119], also [6]) The direct connection language (dcl)
of a circuit family (Cn : n ∈ N) is the set of (a, b, `, 0n), where a is the parent
of b in the circuit Cn, and the label of gate a is `. A circuit family is logtime-
uniform if its associated dcl belongs to dlogtime. For k ≥ 0, ack [resp. nck ] is
the class of languages accepted by logtime-uniform SizeDepth(nO(1), O(logk n))
over the boolean basis, where ∧,∨ have arbitrary fan-in [resp. fan-in 2], and nc =
∪kack = ∪knck. acc(k) is the class of languages accepted by logtime-uniform
SizeDepth(nO(1), O(1)) over the basis ∧, ∨, ¬, modk,n, where ∧,∨ have unbounded
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fan-in, and acc = ∪k≥2acc(k). tc0 is the class of languages in logtime-uniform
SizeDepth(nO(1), O(1)) over the basis thk,n.8

In [133], L. Stockmeyer and U. Vishkin related pram time and processors to boolean
circuit depth and size. The logtime-uniform version of that result was proved by
N. Immerman [74] and follows.

Theorem 2.18 For k ≥ 0, ack equals TimeProc(O(logk n), nO(1)) on a cram.

The following containments are known:

nck ⊆ ack ⊆ nck+1

and
nc1 = alogtime ⊆ logspace ⊆ nlogspace ⊆ ac1.

None of the inclusions are known to be strict or not. For more information on
circuits, see the excellent survey article by R. Boppana and M. Sipser [16].

From this point on, we will assume that all language and function complexity
classes are over the alphabet {0, 1}.

3 Some recursion schemes

Kleene’s normal form theorem [82] states that for each recursive (partial) function f
there is an index e for which f(~x) = U(µy[T (e, ~x, y) = 0]), where T,U are primitive
recursive. The proof relies on arithmetizing computations via Gödel numbers, a
technique introduced in [53] by Gödel, and with which Turing computable functions
can be shown equivalent to µ-recursive functions. Since then, there have been a
number of arithmetizations of machine models [82, 83, 13, 40, 114, 135, 141, 39, 37],
etc. Key to all of these results is the availability in a function algebra F of a
conditional function, a pairing function, and some string manipulating functions, in
order to show that the function nextM (x, c) = d belongs to F . Here, c, d encode
configurations of machine M on input x and d is the configuration obtained in one
step from configuration c.

Definition 3.1 An operator (here also called operation) is a mapping from func-
tions to functions. If X is a set of functions and op is a collection of operators,
then [X ;op] denotes the smallest set of functions containing X and closed under the
operations of op. The set [X ;op] is called a function algebra. In a straightforward
inductive manner, define representations or names for functions in [X ;op]. The
characteristic function cP (~x) of a predicate P satisfies

cp(~x) =

{
1 if P (~x)

0 else,
(1)

where P is often written in place of cP . If F is a class of functions, then F∗ is the
class of predicates whose characteristic function belongs to F .9

8In this paper, circuit classes such as ack, nck, nc and tc0 sometimes denote both language
classes, though more often function classes, where the intended meaning is clear from context.
That is, we write nc in place of Fnc, etc. NC is an acronym for “Nick’s Class”, as this class
was first studied by N. Pippenger. ACk was studied by W.L. Ruzzo, using the alternating Turing
machine model.

9In [58], Grzegorczyk defined F∗ as the collection of predicates P for which there is a function
f ∈ F satisfying P (~x) ⇐⇒ f(~x) = 0. For the function classes here considered, these are
equivalent definitions.

16



Definition 3.2 Let F = [f1, f2, . . . ;O1, O2, . . .] be a function algebra. Let O de-
note operator Oi0 , and fix a representation R of f ∈ F . The rank rkO,R(f) of appli-
cations ofO in the representation R of f ∈ F is defined by induction. If f is an initial
function f1, f2, . . . then rkO,R(f) = 0. Suppose that f is defined by application of
operator Oi to functions g1, . . . , gm where rkO,R(gj) = rj for 1 ≤ j ≤ m. If i = i0
then rkO,R(f) = 1 + max{r1, . . . , rm}; otherwise rkO,R(f) = max{r1, . . . , rm}. The
O-rank rkO(f) of a function f ∈ F is the minimum of rkO,R(f) over all represen-
tations R of f in F .

Operations which have been studied in the literature include composition, prim-
itive recursion, minimization, and their variants including bounded composition,
bounded recursion, bounded recursion on notation, bounded minimization, simul-
taneous recursion, multiple recursion, course-of-values recursion, divide and conquer
recursion, safe and tiered recursion, etc.10 Good surveys of function algebras in-
clude the monographs by H. Rose [117] and K. Wagner and G. Wechsung [142]
(chapters 2, 10).

Since newer results concerning smaller complexity classes yield older results
concerning larger classes as corollaries, we begin with a function algebra introduced
by the author for the class Flh of functions in the logtime hierarchy. By [6], this
class is equal to the class ac0 of functions computable on a concurrent random
access machine in constant parallel time with a polynomial number of processors.

3.1 An algebra for the logtime hierarchy lh

Definition 3.3 The successor function satisfies s(x) = x+ 1; the binary successor
functions s0, s1 satisfy s0(x) = 2·x, s1(x) = 2·x+1; the n-place projection functions
Ink (x1, . . . , xn) = xk; I denotes the collection of all projection functions.

Definition 3.4 The function f is defined by composition (comp) from the func-
tions h, g1, . . . , gm if

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

The function f is defined by primitive recursion (pr) from functions g, h if

f(0, ~y) = g(~y),

f(x+ 1, ~y) = h(x, ~y, f(x, ~y)).

The collection PR of primitive recursive functions is [0, I, s;comp,pr]. The func-
tion f is defined by iteration (iter) from functions g if

f(0) = 0

f(x+ 1) = g(f(x)).

Theorem 3.5 (R.M. Robinson [116]) Define the operation add by add(f, g)(x) =
f(x) + g(x), and let q(x) = x− b

√
xc2. Let PR1 denote the collection of one-place

primitive recursive functions. Then PR1 equals [0, s, q;comp, iter,add].

In [4] G. Asser presented a version of the previous theorem for primitive recursive
word functions of one variable.

Primitive recursion defines f(x+1) in terms of f(x), so that the computation of
f(x) requires approximately 2|x| many steps, an exponential number in the length
of x. To define smaller complexity classes of functions, Bennett [13] introduced the
scheme of recursion on notation, which Cobham [40] later used to characterize the
polynomial time computable functions.

10In this paper, for uniformity of notation, a number of operations are introduced as bounded
instead of limited operations. For example, Grzegorczyk’s schemes of limited recursion and limited
minimization are here called bounded recursion and bounded minimization.
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Definition 3.6 Assume that h0(x, ~y), h1(x, ~y) ≤ 1. The function f is defined by
concatenation recursion on notation (crn) from g, h0, h1 if

f(0, ~y) = g(~y)

f(s0(x), ~y) = sh0(x,~y)(f(x, ~y)), if x 6= 0

f(s1(x), ~y) = sh1(x,~y)(f(x, ~y)).

This scheme can be written in the abbreviated form

f(0, ~y) = g(~y)

f(si(x), ~y) = shi(x,~y)(f(x, ~y)).

The scheme crn was introduced by the author in [39], though motivated by a
similar scheme due to J. Lind [94]. If concatenation of the empty string is allowed,
or if the condition hi(x, ~y) ≤ 1 is dropped (i.e. if concatenation of f(x, ~y) with an
arbitrary string hi(x, ~y) is allowed as in Lind’s scheme), then the resulting scheme is
provably stronger (i.e. parity ⊕ni=1xi is easily defined using Lind’s version, although
parity is known not to belong to lh).

Definition 3.7 The length of x in binary satisfies |x| = dlog(x+1)e; ||x|| is defined
as |(|x|)|, etc.; mod2(x) = x − 2 · bx2 c; the function bit(i, x) = mod2(b x2i c) yields
the coefficient of 2i in the binary representation of x; the smash function satisfies
x#y = 2|x|·|y|. The algebra A0 is defined to be

[0, I, s0, s1,bit, |x|,#;comp,crn].

Arbitrary constants belong to A0. For instance the integer 6 has binary repre-
sentation 110 and is represented by s0(s1(s1(0))). The auxiliary reverse function
rev0(x, y) gives the |y| many least significant bits of x written in reverse. Let

rev0(x, 0) = 0

rev0(x, si(y)) = sbit(|y|,x)(rev0(x, y)).
(2)

The reverse of the binary notation for x is given by rev(x) = rev0(x, x). For
instance the integer 10 has binary notation 1010 whose reverse is 101, corresponding
to the integer 5, so rev(10) = 5. The following computation may be helpful, where
w temporarily denotes the integer having binary representation w.

rev(10) = rev(1010)

= rev0(1010, 1010)

= sbit(|101|,1010)(rev0(1010, 101))

= s1(sbit(|10|,1010)(rev0(1010, 10)))

= s1s0(sbit(|1|,1010)(rev0(1010, 1)))

= s1s0s1(sbit(0,1010)(rev0(1010, 0)))

= s1s0s1s0(0)

= 5

Let
ones(0) = 0

ones(si(x)) = s1(ones(x))
(3)

so that ones(x) = 2|x|− 1 whose binary representation consists of |x| many 1’s. Let

pad(x, 0) = x

pad(x, si(y)) = s0(pad(x, y))
(4)
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so that pad(x, y) = 2|y| · x whose binary representation is that of x with |y| many
0’s appended to the right. Kleene’s signum functions sg, sg, which satisfy sg(x) =
min(x, 1) and sg(x) = 1− sg(x), are defined by

sg(x) = bit(0, ones(x))

sg(x) = bit(0, pad(1, x)).
(5)

The conditional function, easily defined using stronger recursion schemes,

cond(x, y, z) =

{
y if x = 0

z else
(6)

is here defined using the auxiliary functions cond0, cond1, cond2. Define

cond0(0, y) = 0

cond0(si(x), y) = sbit(0,y)(cond0(x, y))
(7)

cond1(x, y) = sg(cond0(x, y))(8)

cond2(x, 0) = 0

cond2(x, si(y)) = scond1(x,si(y))(cond2(x, y))
(9)

so that

cond0(x, y) =

{
0 if bit(0, y) = 0

2|x| − 1 else
(10)

cond1(x, y) =

{
0 if x = 0

bit(0, y) else
(11)

cond2(x, y) =

{
0 if x = 0

y else.
(12)

The concatenation function x ∗ y = 2|y| · x+ y is defined by

x ∗ 0 = x

x ∗ si(y) = si(x ∗ y).
(13)

Then the conditional function cond is defined by

cond(x, y, z) = cond2(sg(x), y) ∗ cond2(x, z).

With cond one can form (characteristic functions of) predicates by applying boolean
operations and, or, not to other predicates. Additionally, using cond, one can
introduce functions using definition by cases

f(~x) =


g1(~x) if P1(~x)

g2(~x) if P2(~x)
...

gn(~x) if Pn(~x)

(14)

where predicates P1, . . . , Pn are disjoint and exhaustive. A sharply bounded quanti-
fier is of the form (∃x ≤ |y|) or (∀x ≤ |y|).

Lemma 3.8 (A0)∗ is closed under sharply bounded quantifiers.
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Proof. Suppose that the predicate R(x, ~z) belongs to A0 and that P (y, ~z) is defined
by (∃x ≤ |y|)R(x, ~z). Define

f(0, ~z) = 0

f(si(x), ~z) = sR(|x|,~z)(f(x, ~z)).

Then P (y, ~z) = sg(f(s1(y), ~z)) belongs to A0. Bounded universal quantification can
be derived from bounded existential quantification using sg.

Definition 3.9 The function f is defined by sharply bounded minimization (sbmin)
from the function g, denoted by f(x, ~y) = µi ≤ |x|[g(i, ~y) = 0], if

f(x, ~y) =

{
min{i ≤ |x| : g(i, ~y) = 0} if such exists

0 else.

Sharply bounded maximization (sbmax) is analogously defined.

From Lemma 3.8, it follows that A0 is closed under sbmin and sbmax . Namely,
define

k(0, ~y) = 0

k(si(z), ~y) = sh(z,~y)(k(z, ~y))

where

h(z, ~y) =

{
0 if (∃x ≤ |z|)[g(x, ~y) = 0]

1 else.

Then f(x, ~y) = µi ≤ |x|[g(i, ~y) = 0] is defined by

f(x, ~y) =

{
0 if g(0, ~y) = 0 or ¬(∃i ≤ |x|)[g(i, ~y) = 0]

|rev(k(s1(x), ~y))| else.

The integer x is a beginning of y, denoted xBy, if the binary representation of x
is an initial segment (from left to right) of the binary representation of y; formally
xBy iff x = 0 or x, y > 0 and

(∀i ≤ |x|)[bit(i, rev(s1(x))) = bit(i, rev(s1(y)))].

Thus the predicate B ∈ A0. Similarly, predicates xPy (x is part of y, i.e. a convex
subword of y) and xEy (x is an end of y) can be shown to belong to A0.

To show the closure of A0 under part-of quantifiers (∃xBy), (∃xPy), (∃xEy),
etc. define the most significant part function msp by

msp(0, y) = 0

msp(si(x), y) = sbit(y,si(x))(msp(x, y))
(15)

and the least significant part function lsp by

lsp(x, y) = msp(rev(msp(rev(s1(x)), |msp(x, y)|)), 1).(16)

These functions satisfy msp(x, y) = b x2y c and lsp(x, y) = x mod 2y, where x mod 1
is defined to be 0. For later reference, define the unary analogues msp, lsp by

msp(x, y) = bx/2|y|c = msp(x, |y|)(17)

lsp(x, y) = x mod 2|y| = lsp(x, |y|),(18)

and note that lsp is definable from msp, rev as follows

lsp(x, y) = msp(rev(msp(rev(s1(x)),msp(x, y))), 1).(19)

Using msp, lsp together with ideas of the proof of the previous lemma, the following
is easily shown.
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Lemma 3.10 (A0)∗ is closed under part-of quantifiers.

Using part-of quantification, the inequality predicate x ≤ y can be defined by

|x| < |y|

or

|x| = |y|and(∃uBx)[uBy ∧ bit(|x| .− |u| .− 1, y) = 1 ∧ bit(|x| .− |u| .− 1, x) = 0]

where |x| < |y| has characteristic function sg(msp(y, |x|)). Note that |x| .− |u| .− 1

can be expressed by |msp(msp(x, u), 1)| = |bmsp(x,u)2 c|.
Addition x + y can be defined in A0 by applying crn to sum(x, y, z), whose

value is the |z|-th bit of x+ y. In adding x and y, the |z|-th bit of the sum depends
whether a carry is generated or propagated. Define the predicates gen, prop by
having gen(x, y, z) hold iff the |z|-th bit of both x and y is 1 and prop(x, y, z) hold
iff the |z|-th bit of either x or y is 1. Define carry(x, y, 0) = 0 and carry(x, y, si(z))
to be 1 iff

(∃uBz)[gen(x, y, u) ∧ (∀vBz)[|v| > |u| → prop(x, y, v)]].

Then sum(x, y, z) = x⊕y⊕ carry(x, y, z) where the exclusive-or x⊕y is defined
by cond(x, cond(y, 0, 1), cond(y, 1, 0)). Using the 2’s complement trick, modified
subtraction x .− y = max(x − y, 0) can be shown to belong to A0. In order to
arithmetize machine computations, pairing and sequence encoding functions are
needed. To that end, define the pairing function τ(x, y) by

τ(x, y) = (2max(|x|,|y|) + x) ∗ (2max(|x|,|y|) + y).(20)

Noting that 2max(|x|,|y|) = cond(msp(x, y), pad(1, y), pad(1, x)), this function is eas-
ily definable from msp, cond, pad, ∗, + hence belongs to A0. As an example,
to compute τ(4, 3), note that max(|4|, |3|) = 3 and so one concatenates 1100
with 1011, where the underlined portions represent 4 resp. 3 in binary. Define
the functions tr [resp. tl] which truncate the rightmost [resp. leftmost] bit:
tr(x) = msp(x, 1) = bx2 c and tl(x) = lsp(x, |tr(x)|) = tr(rev(tr(rev(s1(x))))),
where the latter definition is used later to show that tl belongs to a certain subclass
of A0. The left π1 and right π2 projections are defined by

π1(z) = tl(msp(z, b |z|
2
c))(21)

π2(z) = tl(lsp(z, b |z|
2
c))(22)

and satisfy τ(π1(z), π2(z)) = z, π1(τ(x, y)) = x and π2(τ(x, y)) = y. An n-tuple
(x1, . . . , xn) can be encoded by τn(x1, . . . , xn), where τ2 = τ and

τk+1(x1, . . . , xk+1) = τ(x1, τk(x2, . . . , xk+1)).

At this point, it should be mentioned that by using the functions so far defined,
Turing machine configurations (tm and ratm) are easily expressed in A0, and even
in subalgebras ofA0. A configuration of ratm is of the form (q, u1, . . . , uk+2, n1, . . . , nk+2)
where q ∈ Q, ui ∈ (Γ ∪ {B})∗ and ni ∈ N. The ui represent the contents of the k
work tapes and of the index query and the index answer tapes, and the ni represent
the head positions on the tapes (the input tape has no head). Since the input is
accessed through random access, the input does not form part of the configuration
of the ratm. Let `i [resp. ri] represent the contents of the left portion [resp. the
reverse of the right portion] of the i-th tape (i.e. tape cells of index ≤ ni [resp.
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> ni]). Assuming some simple binary encoding of Γ ∪ {B}, a ratm configuration
can be represented using the tupling function by

τ2k+5(q, `1, r1, . . . , `k+2, rk+2).

Let initialM (x) be the function mapping x to the initial configuration of ratm M
on input x. For configurations α, β in the computation of ratm M on x, let predi-
cate nextM (x, α, β) hold iff (x, α) `M (x, β).

If M is a tm with input x, then a configuration can be similarly represented
by τ2k+3(q, `0, r0, . . . , `k, rk) where initialM (x), nextM (x, α, β) are the counterparts
for Turing machine computations without random access.

Lemma 3.11 initialM , nextM belong to [0, I, s0, s1,bit, |x|;comp,crn]. More-
over, τ , π1, π2, initialM , nextM belong to [0, I, s0, s1,mod2,msp;comp,crn].

Proof. Using s0, s1, pad, ∗, bx/2c, cond, bit, msp, lsp, the pairing and tupling
functions, etc. it is routine to show that initialM , nextM are definable in A0

without use of the smash function. For instance, a move of the first tape head to
the right would mean that in the next configuration `′1 = 2 · `1 + mod2(r1) and
r′1 = br1/2c.

Temporarily, let F designate the algebra [0, I, s0, s1,mod2,msp;comp,crn].
Using mod2 and msp appropriately, functions from (2) through (14) can be intro-
duced in F . For instance, in (2)

rev0(x, si(y)) = smod2(msp(x,y))(rev0(x, y)).

Part-of quantifiers, the pairing function (20), its left, right projections (21) can be
defined in F , by using msp, lsp appropriately in place of msp, lsp. For instance,
to define the projections of the pairing function, define auxiliary functions g, h as
follows:

g(0, x) = 0

g(si(z), x) = sbit(z∗z,ones(x))(g(z, x))

h(x) = rev(g(x, x)).

Then |h(x)| = b |x|2 c and for x of even length (i.e. ones(h(x)) ∗ ones(h(x)) =
ones(x)), the left and right projections of the pairing function are defined by

π1(x) = msp(x, h(x))

π2(x) = lsp(x, h(x)).

From this, the function initialM and predicate nextM are now routine to define.

We can now describe how short sequences of small numbers are encoded in A0.
To illustrate the idea, what follows is a first approximation to the sequence encoding
technique. Generalizing the pairing function, to encode the sequence (3,9,0,4) first
compute max{|3|, |9|, |0|, |4|}. Temporarily let t denote the integer having binary
representation

10011110011000010100

where the underlined portions correspond to the binary representations of 3,9,0,4.
Now the length ` of sequence (3, 9, 0, 4) is 4, the block size bs is 5, and |t| = ` · bs.
Define, as a first approximation, the sequence number 〈3, 9, 0, 4〉 by τ(t, `).

Given the sequence number z = 〈3, 9, 0, 4〉, the Gödel β function decoding the
sequence is given by

β(0, z) = π2(z) = ` = 4.
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The blocksize bs = b|π1(z)|/π2(z)c = b20/4c = 5, and for i = 1, . . . , 4

β(i, z) = lsp(msp(π1(z), (`− i) · bs),bs− 1).

Thus β(1, z) = lsp(msp(π1(z), 3 · 5), 4) = 3, etc. All the above operations belong
to A0, with the exception of multiplication and division (which provably do not
belong to A0). However, multiplication and division by powers of 2 is possible in
A0, so the previously described sequence encoding technique is slightly modified.
The sequence (a1, . . . , an) is encoded by z = 〈a1, . . . , an〉 where

z = τ(t, n)

bs = max{2||ai|| : 1 ≤ i ≤ n}
t = h(N)

where
|N | = n · bs
h(0) = 0

h(si(x)) = sg(x)(h(x))

and

g(x) =

{
1 if |x| mod bs = 0

bit((bs .− 1) .− (|x| mod bs), ab|x|/bsc+1) else.

Finally define

`h(z) = β(0, z) =

{
π2(z) if z encodes a pair

0 else
(23)

and for 1 ≤ i ≤ β(0, z)

(24)

β(i, z) = lsp(msp(π1(z), (`h(z) .− i) · b |π1(z)|
`h(z)

c), b |π1(z)|
`h(z)

c .− 1).

Suppose that z = τ(t, n) codes a sequence of length n, where |t| = bs · n and the
block size bs = 2m for some m. The exponent m can be computed, since m = µx ≤
||a|| [msp(|t|, x) = n], andA0 is closed under sharply bounded minimization. Using
this observation, it is clear that the β function belongs to A0. Using the techniques
introduced, the following can be proved.

Theorem 3.12 (Clote [30]) If f ∈ A0 then there exists g ∈ A0 such that for all x,

g(x, ~y) = 〈f(0, ~y), . . . , f(|x| − 1, ~y)〉.

The following two lemmas, together with the sequence encoding machinery of A0,
will allow us soon to establish that A0 = Flh.

Lemma 3.13 For every k,m > 1,

DTimeSpace(logk(n), log1−1/m(n)) ⊆ A0.

23



Proof. Let M be a ratm running in time logk(n) and space log1−1/m(n). For each
i ≤ m · k, define a predicate nextM,i belonging to A0 such that

nextM,i(x, c, d) ⇐⇒ d follows c in at most logi/m(n) steps(25)

where c, d are encodings of configurations in the computation of M on input x, and
n = |x|. By Lemma 3.11, the predicate nextM,0 belongs to A0 and satisfies (25).
Assume that nextM,i ∈ A0 has been defined and satisfies (25). Define the formula
nextM,i+1(x, c, d) by

(∃s ≤ |x|3)(∀j < ||x||1/m − 1) [s = 〈s0, . . . , s||x||1/m−1〉∧
c = s0 ∧ d = s||x||1/m−1 ∧ nextM,i(sj , sj+1)].

(26)

Since for all j < ||x||1/m, |sj | ≤ ||x||1−1/m, |s| ≤ (||x||1−1/m + 1) · ||x||1/m ≤ 2 · ||x||.
This establishes the validity of the bound s ≤ |x|3 in the definition of nextM,i+1.
It follows that M accepts input x iff nextM,m·k(x, c, d) holds, where c and d re-
spectively are the initial configuration and the terminal accepting configuration in
the computation of M on x.

The following result for lh is similar.

Lemma 3.14 dspace(log log(n)) on a ratm is contained in lh.

Proof. Using the logtime computable pairing function from Fact 2.4, one can de-
fine a logtime predicate nextM,0 which identifies consecutive configurations in the

computation of the ratm M running in polylogarithmic time (logO(1)(n)) and si-
multaneous sublogarithmic space (log1−ε(n)). As in the preceding lemma, by using
atm existential and universal branching, the predicate nextM,i can be shown to

belong to lh. Thus DTimeSpace(logk(n), log1−1/m(n)) ⊆ lh. Since there are only
2c·log logn = logc(n) many possible configurations for some constant c, it follows
that dspace(O(log log(n))) on ratm is contained in

DTimeSpace(logk(n), log1−1/m(n))

on ratm, hence in lh.

Theorem 3.15 (P. Clote) A0 = Flh .

Proof. Consider the direction A0 ⊆ Flh. It follows from Fact 2.4 that 0, s0, s1,
|x| are computable in logtime. To compute bit(i, x), the machine M1 on input
BiBxB writes the bits of i onto a work tape, computes |i| and writes i + |i| + 1
onto its input query tape and reads the input answer tape. To compute the i-th bit
of Ink (x1, . . . , xn), the machine M2 on input BiBx1Bx2B · · ·BxnB uses existential
and universal states find the locations of the input separators B, computes m =
i + k +

∑
j<i |xj | and returns the m-th bit of the input. To compute the the i-th

bit of x#y = 2|x|·|y|, the machine M3 outputs 1 if i = |x| · |y|, else 0. Since the
product |x| · |y| can be computed in dspace(log log n) on a ratm, hence in lh by
Lemma 3.14, it follows that # ∈ Flh.

To see that Flh is closed under composition, suppose that f(x) equals g(h1(x), h2(x)),
where the bitgraphs of g, h1, h2 are computed by the atm Mg, Mh1 , Mh2 running
in logtime with constantly many alternations. The bitgraph of f is then computed
by the atm Mf obtained from Mg as follows. Recall that Mg expects input of the
form By1By2B, where y1, y2 ∈ {0, 1}∗. Whenever Mg requests the i-th bit of its
input, Mf computes |h1(x)|, |h2(x)|, and then executes the following code.
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if i = 0 then

return B

else if i ≤ |h1(x)| then
return Mh1(i− 1, x)

else if i = |h1(x)|+ 1 then

return B

else if i ≤ |h1(x)|+ 1 + |h2(x)| then
return Mh2(i− |h1(x)| − 2, x)

else

return B

Inequalities like i ≤ |h1(x)| can be decided by checking whether |i| < ||h1(x)|| or
|i| = ||h1(x)|| and i precedes |h1(x)| in lexicographic order (i.e. iB|h1(x)|). Values
Mh1

(i − 1, x) can be computed by simulating Mh1
, providing bits of input i − 1

when required, etc. It is similarly easy to see that Flh is closed under crn. It
follows that A0 ⊆ Flh.

Consider the direction that Flh ⊆ A0. A first attempt to arithmetize the com-
putation of the logtime bounded ratm M on input x might be to use Lemma 3.11
together with sequence numbers. However, this encoding of M ’s computation can-
not be done in A0 because there are O(log n) many configurations in M ’s compu-
tation, with each configuration of size O(log n), thus requiring sequence numbers of
size O(log2 n), and quantification over such values is not sharply bounded. How-
ever, the integer s, which encodes the sequence of instructions executed (rather than
configurations), is bounded by a polynomial in n and so can be expressed within
the scope of a sharply bounded quantifier. What then remains to be shown is the
existence of functions in A0 which recognize whether a sequence of instructions
corresponds to a correct computation.

Suppose that M = (Q,Σ,Γ,∆, q0, k+2, `), is a Σm-ratm, running in time c · |n|,
where n = |x|. For notational simplicity, assume c = 1 and that Σ = {0, 1}. An
instruction of M is of the form

(q, a1, . . . , ak+2, q
′, b1, . . . , bk+2, d1, . . . , dk+2)

belonging to the transition relation ∆, where q is the current state, a1, . . . , ak+2 ∈
(Γ∪ {B}) are the symbols currently read on the k work tapes and input query and
answer tapes, q′ is the next state, b1, . . . , bk+2 ∈ (Γ∪ {B}) are the symbols printed
on the work tapes and input query and answer tapes, and di ∈ {−1, 0, 1} is the
direction of head movement on tape 1 ≤ i ≤ k + 2.

Using the earlier sequence encoding, one can code the sequence of log n instruc-
tions by an integer bounded by |x|O(1). Thus the Σm machine M accepts input x
iff

(∃y1 ≤ |x|d)(∀y2 ≤ |x|d)(∃y3 ≤ |x|d) · · · (Qym ≤ |x|d)Θ(x, y1, . . . , ym),

where Q is ∀ (resp. ∃) if m is even (resp. odd) and Θ(x, ~y) says that

if

(i) for i = 1, 2, . . . ,m, each yi encodes a sequence of instruc-
tions from M ’s program, where the states occurring in yi are
existential (resp. universal) if i is odd (resp. even),

and

(ii) the sequence of instructions coded by y1, . . . , ym deter-
mines a correct computation of M ,

then
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(iii) this computation is accepting.

Using bit, msp, lsp, etc. it is not difficult to express (i) and (iii) in A0. It remains
to see how to formulate (ii) in A0. If y1, . . . , ym encodes a sequence s of m · log n
instructions from M ’s program, then s corresponds to a correct computation of M ,
provided that

• The state in the first instruction is q0, the state in the last instruction is qA,
and for all 0 ≤ r < m · log n − 1, the new state in the r-th instruction is the
old state in the r + 1-st instruction.

• For all tape cells, and all r < m · log n, if the r-th instruction is

(q, a1, . . . , ak+2, q
′, b1, . . . , bk+2, d1 . . . , dk+2)

then for 1 ≤ j ≤ k + 2, aj is the symbol written on the j-th work tape at the
last visit of the position pj , where pj is the current head position of the j-th
work tape, provided that this position has previously been visited, and aj = B
otherwise. Moreover, if q is the input query state qI , then bk+2 = bit(i, x),
where i is the content of the input query tape.

Note that the function sbbitsum (sharply bounded bitsum)

sbbitsum(x, y) =

{ ∑
i<|y| bit(i, y) if y ≤ |x|

|x|+ 1 else

is computable in log2 n time and log log space, hence by Lemma 3.13, belongs to
the algebra A0. Using sbbitsum, one can determine whether, given i0, i1, j, at
instruction i0 the head of tape j is in the same position as at instruction i1 in the
execution of M on input x. It follows that Flh ⊆ A0.

In Furst et al. [51], integer multiplication was shown to be ac0 reducible to
maj, where maj(x) is 1 if

∑
i<|x| bit(i, x) ≥ d|x|/2e, else 0. In Chandra et al. [25]

as refined by Barrington et al. [6], maj was shown to be ac0 reducible to integer
multiplication. The following characterization of polysize, constant depth threshold
circuits tc0 is proved by formalizing these reductions, using the previous techniques.

Theorem 3.16 (Clote-Takeuti [37])

tc0 = [0, I, s0, s1, |x|,bit,×,#;comp,crn].

Remark 3.17 Theorem 3.15 was first obtained by combining the author’s result
[39] that A0 equals fo definable functions, and the Barrington-Immerman-Straubing
result [6] that fo = lh, an analogue of Bennett’s Theorem 3.56.11 The current proof
is direct, influenced by A. Woods’ presentation in [144], and simplifies the argument
of [6] by using Lemma 3.13 and Lemma 3.14, both of which were generalized from
Lemma 3.55. Lemma 3.55 was first proved by Nepomnjascii [101] (a related result
proved by Bennett [13]), though R. Kannan [79] later rediscovered this result. The
idea of encoding a sequence of instructions rather than a sequence of configurations
has been repeatedly used by a number of persons.

11See [6] for definition of fo.
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3.2 Bounded recursion on notation

Cobham’s original characterization of Fptime was in terms of functions on words in
a finite alphabet, rather than integers. To our knowledge, the first published proof
of Cobham’s result, additionally formulated for functions on the integers, appeared
in [117].

Definition 3.18 The function f is defined by bounded recursion on notation (brn)
from g, h0, h1, k if

f(0, ~y) = g(~y),

f(s0(x), ~y) = h0(x, ~y, f(x, ~y)), if x 6= 0

f(s1(x), ~y) = h1(x, ~y, f(x, ~y))

provided that f(x, ~y) ≤ k(x, ~y) for all x, ~y.

Theorem 3.19 ( A. Cobham [40], see H. Rose [117])

Fptime = [0, I, s0, s1,#;comp,brn].

Proof. Temporarily denote the algebra [0, I, s0, s1,#;comp,brn] by F . Consider
first the inclusion from left to right. Let M be a tm with input x, running in
polynomial time p(|x|). Using brn the functions mod2,tr,msp can be defined in
F as follows: mod2(0) = 0, mod2(s0(x)) = 0, mod2(s1(x)) = 1; tr(0) = 0,
tr(si(x)) = x; msp(x, 0) = x, msp(x, si(y)) = tr(msp(x, y)), where mod2(x),
tr(x), msp(x, y) are bounded by x. It follows that

[0, I, s0, s1,mod2,msp;comp,crn] ⊆ F

so by Lemma 3.11, initialM , nextM belong to F . By suitably composing 0, s0, s1,#,
there is a function k ∈ F satisfying p(|x|) ≤ |k(x)| for all inputs x. Using brn, define

RunM (x, 0) = initialM (x)

RunM (x, si(y)) = nextM (x,RunM (x, y)).

Then the value computed by M on input x can be obtained from RunM (x, k(x))
by π1, π2.

The inclusion from right to left is proved by an easy induction on term formation
in the Cobham algebra.

Using the same techniques, one can characterize the class GTimeSpace(nO(1), O(n))
of polynomial time linear space computable functions of linear growth as follows.
The first assertion is due to D.B. Thompson [135] (recall that ∗ is concatenation),
and the other assertion follows by an alternate function in bounding the recursion
on notation.

Theorem 3.20

GTimeSpace(nO(1), O(n)) = [0, I, s0, s1, ∗;comp,brn]

= [0, I, s0, s1,×;comp,brn].
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Definition 3.21 The function f is defined from functions g, h0, h1, k by sharply
bounded recursion on notation 12 (sbrn) if

f(0, ~y) = g(~y)

f(s0(x), ~y) = h0(x, ~y, f(x, ~y)), if x 6= 0

f(s1(x), ~y) = h1(x, ~y, f(x, ~y)),

provided that f(x, ~y) ≤ |k(x, ~y)| for all x, ~y.

In [94], J. Lind characterized Flogspace functions on words w ∈ Σ∗ as the small-
est class of functions containing the initial functions c= (characteristic function of
equality), ∗ (string concatenation) and closed under the operations of explicit trans-
formation, log bounded recursion on notation, and a (provably stronger) version of
concatenation on notation. An arithmetic version of Lind’s characterization is the
following.

Theorem 3.22

Flogspace = [0, I, s0, s1, |x|,bit,#;comp,crn, sbrn]

= [0, I, s0, s1,mod2,msp,#;comp,crn, sbrn].

The first statement appeared in [38, 37] and the second can be proved using similar
techniques.

Recently, function algebras have been found for small parallel complexity classes.
Consider the following variants of recursion on notation.

Definition 3.23 The function f is defined by k-bounded recursion on notation
(k − brn) from g, h0, h1 if

f(0, ~y) = g(~y)

f(s0(x), ~y) = h0(x, ~y, f(x, ~y)), if x 6= 0

f(s1(x), ~y) = h1(x, ~y, f(x, ~y))

provided that f(x, ~y) ≤ k holds for all x, ~y, where k is a constant.

Definition 3.24 The function f is defined by weak bounded recursion on notation
(wbrn) from g, h0, h1, k if F (x, ~y) is defined from g, h0, h1, k by brn and f(x, ~y) =
F (|x|, ~y); i.e.

F (0, ~y) = g(~y)

F (s0(x), ~y) = h0(x, ~y, F (x, ~y)), if x 6= 0

F (s1(x), ~y) = h1(x, ~y, F (x, ~y))

f(x, ~y) = F (|x|, ~y)

provided that F (x, ~y) ≤ k(x, ~y) holds for all x, ~y.

The characterization of polynomial size, constant depth boolean circuits with
parity gates (resp. mod6 gates) uses sequence encoding techniques of A0 together
with logtime hierarchy analogues of work of Handley, Paris, Wilkie [63].

Theorem 3.25 (Clote-Takeuti [37])

acc(2) = [0, I, s0, s1, |x|,bit,#;comp,crn, 1− brn](27)

acc(6) = [0, I, s0, s1, |x|,bit,#;comp,crn, 2− brn](28)

acc(6) = [0, I, s0, s1, |x|,bit,#;comp,crn, 3− brn].(29)

12In [37], this scheme was denoted B2RN .
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The following characterization of Falogtime uses earlier techniques with a formal-
ization of Barrington’s trick [7] in Theorem 2.10 of expressing boolean connectives
and, or by permutation group word problems.

Theorem 3.26 (P. Clote [30])

Falogtime = [0, I, s0, s1, |x|,bit,#;comp,crn, 4− brn].

A natural question arising from work in vectorizing compilers is whether there is
a recursive procedure to effectively parallelize sequential code (i.e. from sequential
code, generate optimal code for a parallel machine). Though I am not aware of
details having been worked out, it seems clear that the non-existence of such a pro-
cedure must follow from the unsolvability of the halting problem. More importantly,
it is not known whether nc is properly contained in ptime, with modular power-
ing ab mod m being a candidate to separate the classes. Though effective optimal
parallelization of sequential code is hopeless, it may seem surprising that certain
well-known parallel complexity classes can be characterized in a sequential manner.
From the following theorem it follows that nc is characterized by a fragment of the
pascal language allowing only for-loops of the form

for i = 1 to |x| if P then y := 2*y else y := 2*y+1;

for i = 1 to ||x|| if <statement>;

Using repeated squaring (see proof of Theorem 3.53), modular powering is evidently
a polynomial time algorithm, yet cannot obviously be written using the above two
for-loops.

Theorem 3.27 (P. Clote [39])

nc = [0, I, s0, s1, |x|,bit,#;comp,crn,wbrn]

ack = {f ∈ nc : rkwbrn(f) ≤ k}.

It should be mentioned that independently and at about the same time, B. Allen [3]
characterized nc by a function algebra using a form of divide and conquer recursion,
and noticed without giving details that over a basis of appropriate initial functions,
nc could also be characterized by the scheme of wbrn.13 A precise statement of
Allen’s characterization is given later in Theorem 3.77.

Using such techniques, two characterizations of nck were given in [39, 37]. Levels
of a natural time-space hierarchy between Fptime and Fpspace were character-
ized in [29].

3.3 Bounded recursion

In 1953, A. Grzegorczyk [58] investigated a hierarchy of subclasses En of primitive
recursive functions, defined as the closure of certain initial functions under compo-
sition and bounded recursion.

Definition 3.28 The function f is defined by bounded recursion (br) from func-
tions g, h, k if

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(x, ~y, f(x, ~y))

provided that f(x, ~y) ≤ k(x, ~y) holds for all x, ~y.

13See remark at bottom of p. 13 of [3].
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Definition 3.29 Define the following principal functions

f0(x) = s(x) = x+ 1

f1(x, y) = x+ y

f2(x, y) = (x+ 1) · (y + 1)

f3(x) = 2x

fn+1(x) = f (x)n (1), for n ≥ 3

Let Ef denote [0, I, s, f ;comp,br] and En denote Efn.

Remark 3.30 For n ≥ 3, Grzegorczyk’s [58] original functions were defined by
fn+1(0, y) = fn(y + 1, y + 1), and fn+1(x + 1, y) = fn+1(x, fn+1(x, y)). The above
functions, for n ≥ 3, were taken from [12].

A number of characterizations of Grzegorczyk’s classes En En, for n ≥ 3, have
been given. A. Meyer and D. Ritchie [97] characterized En in terms of certain loop
programming languages, H. Schwichtenberg [123] investigated the number of nested
bounded recursions used in function definitions (the so-called Heinermann hierar-
chy), S.S. Muchnick [99] investigated vectorized Grzegorczyk classes (essentially re-
lated to simultaneous bounded recursion schemes), etc. The following theorem is
due to H. Schwichtenberg [123] for n ≥ 3 and to H. Müller [100] for n = 2.14

Theorem 3.31 (Schwichtenberg [123], Müller [100]) Let Hn be the set

{f : f primitive recursive, rkpr(f) ≤ n}.

Then for n ≥ 2, Hn = En+1.

In [58] Grzegorczyk proved that for all n ≥ 0, En is properly contained in En+1

by demonstrating that fn+1 6∈ En. Concerning the relational classes, he showed that
for n ≥ 2, En∗ is properly contained in En+1

∗ , and asked whether E0∗ ⊂ E1∗ ⊂ E2∗ . This
question remains open. In fact, lth ⊆ E0∗ and E2∗ = linspace,15 so Grzegorczyk’s
question is related to the yet open problem whether the linear time hierarchy is
properly contained in linear space. An interesting partial result concerning the
containment of the first two relational classes is the following.

Theorem 3.32 (A. Bel’tyukov [12]) For s ≥ 1, let βs(x) = max(1, x + dx1−1/se).
Then for s ≥ 1, E0∗ = (Eβs)∗. Additionally, E2∗ = E1∗ implies E2∗ = E0∗

To obtain this result, Bel’tyukov introduced the stack register machine, a machine
model capable of describing (Ef)∗. The stack register machine, a variant of the
successor register machine, has a finite number of input registers and stack registers
S0, . . . , Sk together with a work register W . Branching instructions

if p(x1, . . . , xm) = q(x1, . . . , xm) then Ii else Ij

allow to jump to different instructions Ii, Ij depending on the comparison of two
polynomials whose variables are current register values. Storage instructions

W = Si

allow a value to be saved from a stack register to the work register. Incremental
instructions

14It should be mentioned that [123] used slightly different functions fi; there fi is the i-th
Ackermann branch Ai.

15See Corollary 3.37.
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Si = Si + 1

perform the only computation, and have a side effect of setting to 0 all Sj for j < i.
A program is a finite list of instructions, where for each i there is at most one
incremental instruction for Si.

Apart from characterizing E2∗ or linspace, Bel’tyukov characterized the linear
time hierarchy lth. The papers of Paris, Wilkie [110] and Handley, Paris, Wilkie
[63] study counting classes between lth and linspace defined by stack register
machines. Recent work of the author [32] and of W. Handley [65, 64] further study
the effect of nondeterminism for this model.

Lemma 3.33 (Grzegorczyk [58]) The functions x .−y, sg(x), sg(x), sg(x)·y, sg(x)·
y belong to E0. If f ∈ E0 then

∑
i≤x sg(f(i)),

∑
i≤x sg(f(i)), Πi≤xsg(f(i)) and

Πi≤xsg(f(i)) belong to E0.

Definition 3.34 The function f is defined by bounded minimization (bmin) from
the function g, denoted by f(x, ~y) = µi ≤ x[g(i, ~y) = 0], if

f(x, ~y) =

{
min{i ≤ x : g(i, ~y) = 0} if such exists

0 else.

Corollary 3.35 (Grzegorczyk [58]) For n ≥ 0, En∗ is closed under boolean connec-
tives and bounded quantification, and En is closed under bounded minimization.

Proof. The predicate ¬P (~x) has characteristic function

sg(cP (~x)),

the predicate P (~x) ∨Q(~x) has characteristic function

sg(sg(cP (~x)) · sg(cQ(~x))),

while (∃i ≤ x)R(i, ~y) has characteristic function

sg(s(x) .−
∑
i≤x

sg(cR(i, ~y))),

and (∀i ≤ x)R(i, ~y) has characteristic function

sg(s(x) .−
∑
i≤x

cR(i, ~y)).

To define f(x, ~y) = µi ≤ x[g(i, ~y) = 0], define the auxiliary function h by

h(i, ~y) =
∑
j≤i

sg(g(j, ~y))

= cardinality of {j ≤ i : g(j, ~y) = 0}

so sg(h(i, ~y)) = 1 iff (∀j ≤ i)(g(j, ~y) 6= 0), and

∑
i≤x

sg(h(i, ~y)) =

{
µi ≤ x[g(i, ~y) = 0] if (∃i ≤ x)(g(i, ~y) = 0)

x+ 1 else.

Then
f(x, ~y) = sg((

∑
i≤x

sg(h(i, ~y))) .− x) ·
∑
i≤x

sg(h(i, ~y)).
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The following characterization of linspace in terms of the Grzegorczyk hierar-
chy was proved by R.W. Ritchie [114].

Theorem 3.36 Flinspace = E2.

Proof. Consider first the direction from right to left. The initial functions of E2 are
computable in linspace, and Flinspace is closed under composition and bounded
recursion.

Now consider the direction from left to right. We first claim that

[0, I, s0, s1,mod2,msp;comp,crn] ⊆ E2.

Clearly s0, s1, cond ∈ E2 and E2 is closed under bounded quantification. Now
sg(0) = 1, sg(s(x)) = 0, mod2(0) = 0, mod2(s(x)) = sg(mod2(x)), so that mod2 ∈
E2. Using br define the following functions in E2:

bx/2c = µy ≤ x[y + y = x ∨ y + y + 1 = x]

msp(x, 0) = x

msp(x, i+ 1) = bmsp(x, i)/2c
bit(i, x) = mod2(msp(x, i)).

Temporarily define the auxiliary function h by

h(x, 0) = 0

h(x, i+ 1) =

{
h(x, i) + 1 if bit(i, x) = 1

h(x, i) else.

Note that ones(x) = 2|x| − 1 is defined by

µy ≤ s0(x)[(∀i ≤ x)(bit(i, y) = 1↔ (∃j ≤ x)(i ≤ j ∧ bit(j, x) = 1))].

Then |x| = h(ones(x), x) and msp(x, y) = msp(x, |y|) belong to E2.
Suppose that f is defined from g, h0, h1 by crn, where g, h0, h1 ∈ E2. Then

f(x, ~y) is µz ≤ g(~y) · (2x+ 1) + 2x[(30) ∨ (31) ∨ (32) ∨ (33)] where

|z| = |g(~y)|+ |x|(30)

msp(z, |x|) = g(~y)(31)

(∀i, j < |x|)(j = |x| − i− 1 ∧ bit(j, x) = 0

→
bit(j, z) = h0(msp(x, j + 1), ~y))

(32)

(∀i, j < |x|)(j = |x| − i− 1 ∧ bit(j, x) = 1

→
bit(j, z) = h1(msp(x, j + 1), ~y)).

(33)

The above bound on f suffices, since f(x, ~y) ≤ g(~y) · 2|x|+ 2|x|− 1, and the latter is
at most g(~y) · (2x+ 1) + 2x. By Corollary 3.35, E2 is closed under bmin, so f ∈ E2.
It follows that

[0, I, s0, s1,mod2,msp;comp,crn] ⊆ E2.
Now let M be a linear space bounded multitape Turing machine computing a

function f . By Lemma 3.11, initialM and nextM belong to E2. Define the function
T by

T (x, 0) = initialM (x)

T (x, y + 1) = nextM (T (x, y)).
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From the linear space bound, there exists a constant c such that |T (x, y)| ≤ c · |x|,
and so T (x, y) ≤ (x + 1)c + 1. Thus T is definable using bounded recursion from
functions belonging to E2. It follows that Flinspace ⊆ E2.

Corollary 3.37 (R. Ritchie [114]) linspace = E2∗ .

The following well-known fact follows from Ritchie’s arithmetization techniques
together with the observations that a tm with space bound S(n) has time bound
2O(S(n)) and that 2x ∈ Ek for k ≥ 3.

Theorem 3.38 For k ≥ 3,

Ek = dtime(Ek) = dspace(Ek).

Similar techniques yield a characterization of pspace.

Theorem 3.39 (D.B. Thompson [135])

Fpspace = [0, I, s,max, x|x|;comp,br].

Definition 3.40 Let k be an integer. The function f is defined by k-bounded
recursion (k-br) from functions g, h, k if

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(x, ~y, f(x, ~y))

provided that f(x, ~y) ≤ k holds for all x, ~y, where k is a constant.

The following characterization results from the method of the proof of Barrington’s
Theorem 2.10, arithmetization techniques of this paper, and Theorem 2.12 implying
that atime(nO(1)) = pspace. In [23], J.-Y. Cai and M. Furst give a related
characterization of pspace using safe-storage Turing machines, a model related
to Bel’tyukov’s earlier stack register machines. The next result follows from a
characterization of pspace by a variant of the stack register machine model.

Theorem 3.41 (P. Clote [32]) For k ≥ 4,

pspace = [0, I, s0, s1, |x|,bit,#;comp,crn, k-br]∗.

In [141] K. Wagner extended Ritchie’s characterization to more general complexity
classes.

Theorem 3.42 (K. Wagner [141]) Let f be an increasing function such that for
some r > 1 and for all but finitely many x, it is the case that f(x) ≥ xr. Let
F temporarily denote the algebra [|f(2n)|;comp]. Then recalling that f2(x, y) =
(x+ 1) · (y + 1),

dspace(F) = [0, I, s,max, f ;comp,br]∗ = [0, I, s, f2, f ;comp,br]∗.

Let |x|0 = x, |x|k+1 = ||x|k|.

Corollary 3.43 (K. Wagner [141]) For k ≥ 1,

dspace(n · (log(k) n)O(1)) = [0, I, s,max, x|x|k+1 ;comp,br]∗.
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Definition 3.44 (K. Wagner [141]) The function f is defined by weak bounded
primitive recursion (wbpr) from g, h, k if f(x, ~y) = F (|x|, ~y), where F is defined by
bounded primitive recursion, i.e.

F (0, ~y) = g(~y)

F (x+ 1, ~y) = h(x, ~y, F (x, ~y))

f(x, ~y) = F (|x|, ~y)

provided that F (x, ~y) ≤ k(x, ~y) holds for all x, ~y.

Provided the proper initial functions are chosen, wbpr is equivalent with brn.
Using this observation, Wagner characterized certain general complexity classes as
follows.

Theorem 3.45 (K. Wagner [141]) Let f be an increasing function such that f(x) ≥
xr for some r > 1, and temporarily let F denote the algebra [|f(2n)|;comp] and G
denote {gk : g ∈ F , k ∈ N}. Then

DTimeSpace(G,F) = [0, I, s0, s1,max, f ;comp,brn]∗

= [0, I, s,max, 2 · x, f ;comp,brn]∗

= [0, I, s,+, f ;comp,brn]∗

= [0, I, s,max, 2 · x, bx/2c, .−, f ;comp,wbpr]∗

= [0, I, s, bx/2c,+, .−, f ;comp,wbpr]∗.

The class DTimeSpace(nO(1), O(n)) of simultaneous polynomial time and linear
space can be characterized from the previous theorem by taking f(x) = x2. As ref-
erenced in [142], S.V. Pakhomov [109] has characterized general complexity classes
DTimeSpace(T, S), dtime(T ), and dspace(S) for suitable classes S, T of unary
functions. The class ql = dtime(n · (log n)O(1)) of quasilinear time was studied
by C.P. Schnorr in [121]. In analogy, let quasilinear space be the class dspace(n ·
(log n)O(1)). Though Corollary 3.43 characterizes quasilinear space via a function
algebra, there appears to be no known function algebra for quasilinear time. In [61],
Y. Gurevich and S. Shelah studied the class nlt (nearly linear time) of functions
computable in time O(n · (log n)O(1)) on a random access Turing machine rtm,
which is allowed to change its input tape.

Definition 3.46 (Gurevich-Shelah [61]) A rtm is a Turing machine with one-way
infinite main tape, address tape and auxiliary tape, such that the head of the main
tape is at all times in the cell whose position is given by the contents of the address
tape. Instructions of a rtm are of the form

(q, a0, a1, a2)→ (q′, b0, b1, b2, d1, d2)

where q, q′ are states, ai, bi ∈ (Σ∪{B}), and di ∈ {−1,+1}. For such an instruction,
if the machine is in state q reading a0, a1, a2 on the main, address and auxiliary
tapes, then the machine goes to state q′, writes b0, b1, b2 on the respective tapes,
and the head of the address [resp. auxiliary] tape goes one square to the right if
d1 = 1 [resp. d2 = 1] otherwise one square to the left.

In [61], Gurevich and Shelah show the robustness of nlt by proving the equivalence
of this class with respect to different machine models, and give a function algebra
for nlt. Their algebra, defined over words from a finite alphabet, is the closure
under composition of certain initial functions and weak iterates f (|x|)(x) of certain
string manipulating initial functions.
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3.4 Bounded minimization

In [58], Grzegorczyk considered function classes defined by bounded minimization,
defined in Definition 3.34.

3.47. Definition ([68, 69]). For n = 0, 1, 2, define Mn = [0, I, s, fn;comp,bmin].
For n ≥ 3, define Mn = [0, I, s, xy, fn;comp,bmin].

Though implicitly asserted in [58], the details for the proof of the following result,
which follow those in the proof of Theorem 3.65, are given by K. Harrow [69].16 The
idea of the proof is simply to encode via sequence numbers a definition by bounded
primitive recursion and apply the bounded minimization operator.

Theorem 3.48 (Grzegorczyk [58], Harrow [69]) For n ≥ 3, En =Mn.

In the literature, the algebra rf of rudimentary functions is sometimes defined by

rf = [0, I, s,+,×;comp,bmin].

As noticed in [69], it follows from J. Robinson’s [115] bounded quantifier definition of
addition from successor and multiplication thatM2 = rf. As is well-known, there is
a close relationship between (bounded) minimization and (bounded) quantification.
This is formalized as follows.

Terms in the first order language of 0, s,+, ·,≤ of arithmetic are defined induc-
tively by: 0 is a term; x0, x1, . . . are terms; if t, t′ are terms, then s(t), t + t′ and
t · t′ are terms. Atomic formulas are of the form t = t′ and t ≤ t′, where t, t′ are
terms. The set ∆0 of bounded quantifier formulas is defined inductively by: if φ is
an atomic formula, then φ ∈ ∆0; if φ, θ ∈ ∆0 then ¬φ, φ ∧ θ, and φ ∨ θ belong to
∆0; if φ ∈ ∆0 and t is a term, then (∃x ≤ t)φ(x, t) and (∀x ≤ t)φ(x, t) belong to
∆0. A k-ary relation R ⊆ Nk belongs to ∆N

0 if there is a ∆0 formula φ for which
R = {(a1, . . . , an) : N |= φ(a1, . . . , an)}.

Definition 3.49 A predicate R ⊆ Nk belongs to ca (constructive arithmetic), a
notion due to R. Smullyan, if there is φ(~x) ∈ ∆0 such that R(a1, . . . , ak) holds iff
N |= φ(a1, . . . , ak). Following Definition 2.13, a function f(~x) ∈ Gca if the bitgraph
Bf ∈ ca and f is of linear growth.17

Definition 3.50 Presburger arithmetic (pres) is the collection of all predicates
R ⊆ Nk for which there exists a first order formula φ(~x) in the language 0, s,+ of
arithmetic such that R(a1, . . . , ak) holds iff N |= φ(a1, . . . , ak).

The following theorem is proved by using quantifier elimination for Presburger arith-
metic to show the equivalence between first order formulas and bounded formulas
in a richer language allowing congruences, and then exploiting the correspondence
between bounded quantification and bounded minimization.

Theorem 3.51 (Harrow [68])M1
∗ equals the collection of Presburger definable sets

.

From J. Robinson’s definition of addition from successor and multiplication, the
following easily follows.

Proposition 3.52 (Harrow [68]) M2
∗ = ca and M2 = Gca.

16The result is proved in [69] for [0, I, s, xy , fn;comp, bmin], but as, previously explained, the
exponential is unnecessary.

17In the literature, especially in [110], a function f is defined to be ∆N
0 if its graph Gf belongs

to ∆N
0 and f is of linear growth. It easily follows from Corollary 3.54 that f ∈ Gca ⇐⇒ f ∈ ∆N

0 .
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While it is obvious that rf∗ = ca, it is non-trivial and surprising that ca equals
the linear time hierarchy . In [13], J.H. Bennett showed that the collection of
constructive arithmetic sets (∆0 definable) is equal to rud, the class of rudimentary
sets in the sense of [132]. Later, C. Wrathall [145] proved that the rudimentary sets
are exactly those in the linear time hierarchy lth.

Theorem 3.53 (J. Bennett [13]) The ternary relation G(x, y, z) for the graph xy =
z of exponentiation is in constructive arithmetic.

Proof. Using the technique of repeated squaring to compute the exponential xy = z,
the idea is to encode the computation in a ∆0 manner where all quantifiers are
bounded by a polynomial in z. Suppose that x, y > 1 and that y =

∑
i<n yi · 2i

is the binary representation of y. The following algorithm computes z = xy by
repeatedly applying the fact that x2y = (xy)2 and x2y+1 = (xy)2 · x. Throughout
the rest of the proof, let n denote |y|.

z = 1

for i = 1 to n

if yn−i = 0 then z = z2 else z = z2· x

To encode the computation, for 0 ≤ i ≤ n, let ai = msp(y, |y| − i) and bi = xai .
The binary representation of ai consists of the i leftmost bits of y, while bi equals
the value of z at the end of the i-th pass through the above for-loop. Except for
trivial cases where x, y take values among 0, 1 it follows that xy = z if and only if
there exist sequences (a0, . . . , an) and (b0, . . . , bn) for which

a0 = 0, b0 = 1, an = y, bn = z, (∀i < n)(ai+1 ∈ {2ai, 2ai + 1})

and
(∀i < n)((ai+1 = 0→ bi+1 = b2i ) ∧ (ai+1 = 1→ bi+1 = b2i · x)).

Thus the graph of exponentiation is ∆0 provided that sequences (a0, . . . , an), (b0, . . . , bn)
can be encoded in a manner where all quantifiers are bounded by a polynomial in
z.

To do this, we will find relatively prime m0 < m1 < · · · < mn satisfying ai, bi <
mi and apply the Chinese remainder theorem to obtain M = Πi≤nmi and unique
A,B < M for which

A ≡ ai (mod mi)

B ≡ bi (mod mi)

for i ≤ n. By choosing the mi to be prime powers of distinct primes, and mi+1 to
be the smallest prime power divisor of M greater than mi, one can determine the
mi from M in a ∆0 manner. Formally, define the predicates prime(p), mpp(m,M),
i(m,M), n(m,m′,M), and f(m,M) as follows.

1. prime(p) means that p is prime:

2 ≤ p ∧ (∀q < p)(q|p→ q = 1).

2. mpp(m,M) means that m is a maximal prime power divisor of M :

m|M ∧ (∃p ≤ m)(prime(p) ∧ p|m ∧ (∀q < m)(q|m→ q ∈ {1, p}) ∧ p ·m 6 |M).

3. i(m,M) means that m = m0 is the initial (least) maximal prime power divisor
of M :

(m = 1 ∧M ∈ {0, 1}) ∨ (mpp(m,M) ∧ (∀m′ ≤M)(mpp(m′,M)→ m ≤ m′).
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4. n(m,m′,M) means that m′ = mi+1 is the next maximal prime power divisor
of M after m = mi:

mpp(m,M)∧mpp(m′,M)∧m < m′ ∧ (∀m′′ < m′)(mpp(m′′,M)→ m′′ ≤ m).

5. f(m,M) means that m = mn is the final (greatest) maximal prime power
divisor of M :

(m = 1 ∧M ∈ {0, 1}) ∨ (mpp(m,M) ∧ (∀m′ ≤M)(mpp(m′,M)→ m′ ≤ m).

Assume that neither x nor y take values among 0, 1. Then ai < 2i and bi ≤ x2
i

for
i ≤ n. Define m0, . . . ,mn to be an increasing sequence of prime powers of distinct
primes as follows. Let m0 = 2. Given m0, . . . ,mk−1 let mk = pα, where p is the

least prime not dividing Πi<kmi and α is the least integer for which pα > x2
k

. By

the prime number theorem, p = O(k · ln k) < k2 ≤ x2k , and by choice of α, it is the

case that pα−1 < x2
k

, and so

pα = p · pα−1 < x2
k

· x2
k

≤ x2
k+1

.

An inductive proof yields that Πi<kmi ≤ x2
k+1

for all k > 0, hence

M = Πi≤nmi ≤ x2
n+2

= (x2
n−1

)8 ≤ z8.

It now follows that the relation xy = z is ∆0 definable.

The main lines of this proof were influenced by Wilkie’s presentation in [143]. See
[62] for other proofs.

Corollary 3.54 The function algebra [0, I, s0, s1, |x|,bit;comp,crn] is contained
in M2.

Proof. Note that s0(x) = x+ x, s1(x) = x+ x+ 1,

|x| = µy ≤ x[(∃z ≤ 2 · x)(2y = z ∧ x < z ∧ bz/2c ≤ x)]

and that

bit(i, x) = µy ≤ 1[(∃u, v ≤ x)(|u| = i+ 1 ∧ v = 2i+1 ∧ v|(x− u))]

so that s0, s1, |x|,bit belong toM2. Using these functions and bounded minimiza-
tion, it is easy to show that M2 is closed under crn.

The following is proved in a manner similar to that of Lemma 3.13 and Lemma 3.14.

Lemma 3.55 (Nepomnjascii [101]) For every k,m > 1, NTimeSpace(nk, n1−1/m)
on a tm is contained in ca. Moreover, nspace(O(log(n))) ⊆ lth.

Theorem 3.56 lth = ca.

Proof. Consider first the direction from left to right. It follows from Lemmas 3.54
and 3.11 that initialM and nextM are ca. Now proceed in a similar fashion as in
the proof of Theorem 3.15.

The direction from right to left is proved by induction on the length of ∆0

formulas. Addition, inequality ≤, and multiplication are computable in logspace,
and Flogspace is closed under composition. By Lemma 3.55 it follows that
atomic ∆0 formulas define relations in lth. Bounded quantifiers can be handled by
existential and universal branching of an alternating Turing machine.
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Corollary 3.57 M2
∗ = lth, and M2 = Flth.

Though the linear time hierarchy equals the bounded arithmetic hierarchy, there
is no known exact level-by-level result. The sharpest result we know is due to
A. Woods [144].

If Γ is a class of first order formulas, then ΓN denotes the collection of predicates
definable by a formula in Γ. Let Σ0,m denote the collection of bounded quantifier
formulas of the form (∃~x1 ≤ y)(∀~x2 ≤ y) . . . (Q~xm ≤ y)φ where φ is a quantifier
free formula in the first order language 0, 1,+, ·,≤. Thus Σ0,0 is the collection of
quantifier free formulas. In the following theorem, recall the definition of Σn −
time(T (n)) from Definition 2.8.

Theorem 3.58 (A. Woods [144]) For m ≥ 1, ΣN0,m ⊆ Σm+2 − time(n).

Sketch of Proof. The inclusion ΣN0,0 ⊆ Σ2 − time(O(n)) is shown as follows.
Given an atomic formula φ(n), suppose that all terms appearing in φ(n) are bounded
by a polynomial in n. By the prime number theorem, there exists a constant c such
that the product of the first c · ln(n) primes is larger than the values of all terms
occurring in φ(n). Using non-determinism guess all terms and subterms appearing
in the given quantifier free formula, guess the first c · ln(n) many prime numbers
p and the residues modulo p of the products of subterms occurring in a term, and
branching universally, verify that the computations are correct. Now, by the Chi-
nese remainder theorem, the computations are correct iff they are correct modulo
the primes.

Since the negation of a quantifier free formula is quantifier free, it follows that

ΣN0,0 ⊆ Σ2 − time(O(n)) ∩Π2 − time(O(n)).

Now induct on the number of quantifier blocks.

By Corollary 3.57 and Theorem 3.36, M2
∗ = lth ⊆ linspace = E2∗ . While

linspace is clearly closed under counting, this may not be the case for lth. A
typical open question is whether π(x) ∈ M2, where π(x) is the number of primes
less than x. In [110, 63], J. Paris, A. Wilkie and later W. Handley studied the effect
of adding k-bounded recursion to lth. Using the techniques of Barrington, Paris,
Wilkie and Handley, together with those of this paper, the following result can be
proved.

Theorem 3.59 (P. Clote [32])
For any k ≥ 4, alintime = [0, I, s,+, .−,×;comp,bmin, k-br]∗.

As in Corollary 3.57, Fph can similarly be characterized.

Theorem 3.60 (Folklore)

Fph = [0, I, s,+, .−,×,#;comp,bmin]

= [0, I, s,+, .−,×,#;comp,brn,bmin]

= [0, I, s0, s1,#;comp,brn,bmin].

The last assertion of this theorem was sharpened by S. Bellantoni as follows. Fol-
lowing S. Buss [18] let 2Pi denote the class of functions computed in polynomial
time on a Turing machine with oracle A, for some set A ∈ ΣPi . With this notation,
Fph = ∪i2Pi .

Definition 3.61 (S. Bellantoni [10]) Let µFPi denote the algebra

{f ∈ [0, I, s0, s1,#;comp,brn,bmin] : rkbmin(f) ≤ i}.

Theorem 3.62 (S. Bellantoni [10]) For i ≥ 0, 2Pi = µFPi.
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3.5 Divide and conquer, course-of-values and miscellaneous

Definition 3.63 (Grzegorczyk [58], Constable [41])
The function f is defined by bounded summation (bsum) [resp. bounded product
(bprod)] from g, k if f(x, ~y) equals

Σxi=0g(i, ~y) [resp. Πx
i=0g(i, ~y)]

provided that f(x, ~y) ≤ k(x, ~y) for all x, ~y.
The function f is defined by sharply bounded summation (sbsum) [resp. sharply

bounded product (sbprod)] from g, k if f(x, ~y) equals

Σ
|x|
i=0g(i, ~y) [resp. Π

|x|
i=0g(i, ~y)]

provided that f(x, ~y) ≤ k(x, ~y) for all x, ~y.18

The elementary functions were first introduced by Kalmár [78] and Csillag [46].

Definition 3.64 The class E of elementary functions is the algebra

[0, I, s,+, .−;comp,bsum,bprod].

The elementary functions have many alternate characterizations, among them that
E = E3.

Theorem 3.65 (Grzegorczyk [58])

E = [0, I, s, f3;comp,br]

= [0, I, s, .−, xy;comp,bmin]

= [0, I, s, .−,×, xy;comp,bsum].

Grzegorczyk asked whether E had a finite basis, i.e. a finite number of functions,
whose closure with I under composition equals E . As surveyed in [142], D. Rödding
first gave a positive answer, which was refined by C. Parsons. In [95], S.S. Marčenkov
gave a particularly elegant characterization of E as [0, I, s, bx/yc, xy, φ(x, y);comp],
where φ(x, y) is 0 for x ≤ 1, and otherwise is the least index i for which ai = 0 in
the radix x representation of y, i.e. y =

∑∞
i=0 ai · xi, where 0 ≤ ai < x for all i. In

the following theorem, the first statement is due to S.S. Marčenkov [95], while the
second statement to J.P. Jones and Y. Matijasevič [76].

Theorem 3.66

E3∗ = ([0, I, s, .−, bx/yc, xy;comp])∗

= ([0, I,+, .−, bx/yc, x!, 2x;comp])∗.

In [41], R. Constable defined the class K by

[0, I, s,+, .−,×, bx/yc;comp, sbsum, sbprod]

a polynomial analogue of the definition of Kalmár elementary functions. The class
K(f) is defined as above, but with f as an additional initial function. Let FP (f)
denote the collection of functions polynomial time computable in f (FP (f) can
equivalently be defined as the set of type 1 functions in BFF (f); see Definition 4.6).

On p. 118 of [41], the following claim is stated as a theorem without proof.

18Sharply bounded summation [resp. product] is called weak sum [resp. product in [142], and
bounded summation [resp. product] is called limited sum [resp. product in [58].
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Claim 3.67 For all non-decreasing f , K(f) = FP (f).

The statement Fptime = K was then claimed as a corollary in [41]. This statement
was again cited as a theorem (without proof) in [142].

It now appears that this assertion is doubtful, since K ⊆ NC and it is currently
conjectured that NC is properly contained in Fptime. Moreover, using an oracle
separation of NCA from PA, the author [31] provided a counterexample to the
previous claim.

Theorem 3.68 (P. Clote [31]) There exists a non-decreasing function f for which
K(f) 6= FP (f).

Nevertheless, Constable’s class K is very natural, suggesting the following question.

Question 3.69 What complexity class corresponds to

[0, I, s,+, .−,×, bx/yc;comp, sbsum, sbprod]?

H.-J. Burtschick (personal correspondence) suggested that polynomial size uniform
arithmetic circuits could be related to the class K.

Somewhat related is the recent work on counting classes. The class #P , intro-
duced by Valiant [138], is the set of functions f , for which there exists a nondeter-
ministic polynomial time bounded Turing machine M , such that f(x) is the number
of accepting paths in the computation tree of M on input x. Unless P = NP , it is
unlikely that #P is closed under composition. Using the arithmetization of boolean
formulas from A. Shamir (see [5]), H. Vollmer and K. Wagner gave the following
characterization of #P .19

Theorem 3.70 (H. Vollmer, K. Wagner [140])

#P = [[0, I, S,+, .−,×, bx/yc,#;comp, sbprod];bsum]

= [[0, I, S,+, .−,×,#;comp]; sbprod,bsum].

Definition 3.71 Let Rk be the smallest class of functions definable from the con-
stant functions 0, . . . , k, the projections I, the characteristic functions of the graphs
of +,×,=, and closed under composition and bounded recursion.

The following result was proved by the Paris-Wilkie modification of Bel’tyukov’s
stack register machines.

Theorem 3.72 (Paris, Wilkie [110]) (R2)∗ = (R3)∗ .

The next theorem follows from the author’s work in [32] and is based on Barrington’s
trick.

Theorem 3.73 (P. Clote [32]) For n ≥ 4,

(Rn)∗ = (Rn+1)∗ = alintime.

In [87], Kuty lowski considered oracle versions of the Paris-Wilkie work.

19In the notation of [140], the characterization reads #P =
[
[+, .−,×, :]Sub, WProd

]
Sum

, and

#P =
[
[+, .−,×]Sub

]
WProd,Sum

. This formulation is equivalent to that given in Theorem 3.70.
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Definition 3.74 (M. Kuty lowski [87]) f is a k-function20 if for all x1, . . . , xn

f(x1, · · · , xn) = f(min(x1, k), · · · ,min(xn, k)) ≤ k.

For a family F of functions, Wk(F) is the smallest class of functions containing
I, F , all k-functions and closed under composition and k-bounded recursion. The
function f is defined from g, h by m-counting if

f(0, ~x) = g(~x)

f(n+ 1, ~x) = (f(n, ~x) + h(n, ~x)) (mod m)

The class CWk(F) is the smallest class of functions containing I, F , all m-functions
for m ∈ N and closed under composition, k-bounded recursion and arbitrary count-
ing.

Theorem 3.75 (M. Kuty lowski [87]) For every class F of functions, W2(F)∗ =
W3(F)∗. For every k ≥ 3, there exists a family F of functions, such thatWk(F)∗ ⊂
Wk+1(F)∗. For every k ≥ 3, there is a family F of functions such that CWk(F)∗ ⊂
CWk+1(F∗).

Parallel algorithms often employ a divide and conquer strategy. B. Allen [3]
formalized this approach to characterize nc.

Definition 3.76 The front half fh(x) is defined by msp(x, b|x|/2c) and the back
half bh(x) by lsp(x, b|x|/2c). The function f is defined by polynomially bounded
branching recursion (pbbr) from functions g, h if there exists a polynomial p such
that

f(0, ~y) = g0(~y)

f(1, ~y) = g1(vecy)

f(x, ~y) = h(x, ~y, f(fh(x), ~y), f(bh(x), ~y)), if x > 1

provided that |f(x, ~y)| ≤ p(max(|x|, |yi|)) for all x, ~y. Let Seq(x) = 0 if x encodes a
sequence21 else 0. If x encodes a sequence (x1, . . . , xn) and f is a one-place function,
then the operation map is defined by map(f, x) = 〈f(x1), . . . , f(xn)〉. Define the
bounded shift left function by shl(x, i, y) = x · 2min(i,|y|).

Theorem 3.77 (B. Allen [3]) nc is characterized by the function algebra

[0, I, s,+, .−, |x|,bit, cond, c≤, Seq, β,msp, shl;comp,map,pbbr].

Allen explicitly did not attempt to find the smallest set of initial functions, but went
on to develop a proof theory for nc functions, similar in spirit to that of S. Buss
[18]. Independently and at the same time, an equivalent theory of arithmetic for nc
functions was given by the author [27], later appearing in joint work with G. Takeuti
[36].

In [112] F. Pitt considered a variant of B. Allen’s polynomial bounded branching
recursion, where the function value is bounded by a constant.

20What is here called a k-function is called a k + 1-function in [87]. As our definition of k-
bounded recursion corresponds to Kuty lowski’s definition of k + 1-bounded recursion, the indices
of Wk(F) and CWk(F) differ by 1 from [87].

21Here, we use the earlier defined sequence numbers, though Allen [3] uses a different sequence
encoding technique.
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Definition 3.78 (F. Pitt [112]) The function f is defined by k-bounded tree recur-
sion on notation (k-btrn) from functions g, h if

f(0, ~y) = g0(~y)

f(1, ~y) = g1(~y)

f(x, ~y) = h(x, ~y, f(fh(x), ~y), f(bh(x), ~y)), if x > 1

provided that f(x, ~y) ≤ k, for all x, ~y. When k is unspecified, the scheme k-btrn
is meant to allow all constants k ∈ N.

Theorem 3.79 (F. Pitt [112])

Falogtime = [0, I, s0, s1, |x|,#,msp, lsp;comp,crn, k − btrn].

The theorem is proved by showing that fh,bh can be defined from the initial
functions, and then by defining the function tree in the above function alge-
bra, where tree is a function evaluating a full binary tree with alternating lev-
els of and’s and or’s, and whose leaves are the bits of a given input x (see
[39, 28] for details of definition). In [39], the author characterized alogtime as
[0, I, s0, s1, |x|,bit,#, sc tree;comp,crn], so the proof sketch is complete.

It is often useful to define two or more functions simultaneously. Simultane-
ous versions of recursion, recursion on notation, k-bounded recursion on notation,
etc. are defined in the obvious manner. For example, simultaneous recursion and
simultaneous recursion on notation are defined as follows.

Definition 3.80 The functions f1, . . . , fn are defined from functions g1, . . . , gn,
h1, . . . , hn by simultaneous recursion if

fi(0, ~y) = gi(~y), for 1 ≤ i ≤ n
fi(x+ 1, ~y) = hi(x, ~y, f1(x, ~y), . . . , fn(x, ~y)), for 1 ≤ i ≤ n.

If additionally fi(x, ~y) ≤ ki(x, ~y) for 1 ≤ i ≤ n, then the fi are defined by simulta-

neous bounded recursion from ~g, ~h, ~k.
The functions f1, . . . , fn are defined from functions g1, . . . , gn, h01, . . . , h

0
n and

h11, . . . , h
1
n by simultaneous recursion on notation if for 1 ≤ i ≤ n

fi(0, ~y) = gi(~y)

fi(s0(x), ~y) = h0i (x, ~y, f1(x, ~y), . . . , fn(x, ~y)),provided x 6= 0

fi(s1(x), ~y) = h1i (x, ~y, f1(x, ~y), . . . , fn(x, ~y)).

If additionally fi(x, ~y) ≤ ki(x, ~y) for 1 ≤ i ≤ n, then the fi are defined by simulta-

neous bounded recursion on notation from ~g, ~h0, ~h1, ~k.

A function algebra F , whose primary closure operation is a certain form of
recursion, can often be proved to be closed under the simultaneous version of that
form of recursion, by using the pairing function τ and its projections π1, π2. For
instance, the following is straightforward to establish.

Proposition 3.81 (Kapron-Cook [80])
The Cobham algebra [0, I, s0, s1,#;comp,brn] is closed under simultaneous bounded
recursion on notation.

Proof. For notational simplicity, suppose that n = 2. Define

f(0, ~y) = τ(g1(~y), g2(~y))

f(si(x), ~y) = τ(hi1(x, ~y, π1(f(x, ~y)), π2(f(x, ~y))), hi2(x, ~y, π1(f(x, ~y)), π2(f(x, ~y))))

where f(x, ~y) ≤ τ(k1(x, ~y), k2(x, ~y)). Then f1(x, ~y) is π1(f(x, ~y)) and f2(x, ~y) is
π2(f(x, ~y)).
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The Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . is defined by Fib(0) = Fib(1) = 1, and
Fib(n+2) = Fib(n)+Fib(n+1). This is a special case of course-of-values recursion.

Definition 3.82 The function f is defined from functions g, h by course-of-values
recursion (vr) if

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(x, ~y, 〈f(0, ~y), . . . , f(x, ~y)〉).

The class PR of primitive recursive functions is easily seen to be closed under
vr.

Definition 3.83 The function f is defined from functions g, h, r, k by bounded 2-
value recursion (bvr) if

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(x, ~y, f(x, ~y), f(r(x, ~y), ~y))

provided that f(x, ~y) ≤ k(x, ~y) and r(x, ~y) < x for all x, ~y.

Theorem 3.84 (Monien [98]) Let f2(x, y) = (x+ 1) · (y + 1). Then

{f ∈ etime : f has linear growth rate} = [0, I, s, f2;comp,bvr].

Proof. Our exposition follows [142]. Temporarily, let F denote {f ∈ etime :
f has linear growth rate} and G denote [0, I, s, f2;comp,bvr]. Consider first the
inclusion F ⊆ G. Suppose that M is a tm which computes the bitgraph Bf of f :

Nk → N in time 2c·n. For notational simplicity, suppose k = 1 and |f(x)| ≤ d · |x|.
Claim Bf ∈ G.
Since

∑
i<2c·n i ≤ 22c·n, without loss of generality, M ’s head movements before

halting may be assumed to be of the form

s ss s sss s s ssss s s s s
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For notational simplicity, assume that M has only one tape, and that the transition
function

δ : (Q− {qA, qR})× (Σ ∪ {B})→ Q× (Σ ∪ {B})× {−1, 0, 1}
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satisfies δ(q, σ) = (state(q, σ), symbol(q, σ), direction(q, σ) for suitable functions
state, symbol, direction. Let h(t) be M ’s head position at the beginning of step t;
let s(t, x) be the state of M at the completion of step t on input x; let a(t, x) be
the symbol written by M on cell h(t) during step t. Let

p0(t, t′) =

{
max{t′′ : t′′ ≤ t′ ∧ h(t′′) = h(t)} if such exists

t′ + 1 else

and p(t) = p0(t, t .− 1). Let sqrt(x) = b
√
xc. Note that

h(t) =

{
sqrt(x) + sqrt(x)2 .− x if x ≤ sqrt(x)2 + sqrt(x)

x .− sqrt(x) .− sqrt(x)2 else.

Using bmin, sqrt is definable by sqrt(x) = µy ≤ x[x < (y+1)2] and so p, h ∈M2 ⊆
G. Define the functions s(t, x) and a(t, x) by

s(0, x) = state(q0, B)

s(t+ 1, x) =


state(s(t, x), a(p(t+ 1), x)) if p(t+ 1) ≤ t
state(s(t, x),bit(|x| .− h(t+ 1), x)) else and 1 ≤ h(t+ 1) ≤ |x|
state(s(t, x), B) else

a(0, x) = symbol(q0, B)

a(t+ 1, x) =


symbol(s(t, x), a(p(t+ 1), x)) if p(t+ 1) ≤ t
symbol(s(t, x),bit(|x| .− h(t+ 1), x)) else and 1 ≤ h(t+ 1) ≤ |x|
symbol(s(t, x), B) else.

Instead of defining the functions s(t, x), a(t, x) by simultaneous bounded recursion,
define F (t, x) = τ(s(t, x), a(t, x)) by bounded 2-value recursion in the obvious man-
ner. Since τ, π1, π2 ∈M2 ⊆ G, it is now routine to complete the proof of the claim
that Bf ∈ G.

Define

f(x) = µy ≤ (x+ 1)d+1 · 2d[(∀i ≤ d · |x|)((x, i) ∈ Bf ↔ bit(i, y) = 1)].

Since br is included in bvr, by the proof of Theorem 3.36, bit ∈ G. By Corol-
lary 3.35, G is closed under bounded quantification and bounded minimization, so
it follows that f ∈ G.

Consider now the inclusion G ⊆ F . By induction, all functions of G are of lin-
ear growth rate. The functions 0, Ink , s, f2 are computable in exponential time, and
because functions of F are of linear growth rate, F is closed under composition.
If f is defined by bvr from g, h, r, k, then when computing f(x + 1, ~y), an expo-
nential time bounded machine M has sufficient space to store the entire sequence
f(0, ~y), . . . , f(x, ~y) of previous values on a work tape. It follows that any function
of the algebra G is computable in exponential time.

A more powerful version of simultaneous recursion was introduced in [80].

Definition 3.85 The functions f1, . . . , fn are defined from functions g1, . . . , gn,
h01, . . . , h

0
n, h11, . . . , h

1
n and k1, . . . , kn by multiple bounded recursion on notation

if the fi are defined by simultaneous recursion on notation from ~gi,
~h0i ,

~h1i and
moreover

f1(x, ~y) ≤ k1(x, ~y)

fi(x, ~y) ≤ ki(x, ~y, f1(x, ~y), . . . , fi−1(x, ~y)), for 2 ≤ i ≤ n.
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The following non-trivial closure property has an important application in the
Kapron-Cook characterization of type 2 polynomial time computations described
in the next section.

Theorem 3.86 (Kapron-Cook [80]) The Cobham algebra [0, I, s0, s1,#;comp,brn]
is closed under multiple bounded recursion on notation.

3.6 Safe recursion

All the function algebras from the previous subsection are defined from specific
initial functions, using some version of bounded recursion. Without any bound,
even schemes such as wbrn can generate all the primitive recursive functions. Re-
cently, certain unbounded recursion schemes have been introduced which distinguish
between variables as to their position in a function f(x1, . . . , xn; y1, . . . , ym). Vari-
ables xi occurring to the left of the semi-colon are called normal, while variables yj
to the right are called safe. By allowing only recursions of a certain form, which
distinguish between normal and safe variables, particular complexity classes can be
characterized. Normal values are considered as known in totality, while safe values
are those obtained by impredicative means (i.e. via recursion). Sometimes, to help
distinguish normal from safe positions, the letters u, v, w, x, y, z, . . . denote normal
variables, while a, b, c, . . . denote safe variables. This terminology, due to Bellantoni-
Cook [11], was chosen to indicate that a safe position is one where it is safe to
substitute an impredicative value. Related tiering notions, though technically dif-
ferent, have occurred in the literature, as in the author’s work with G. Takeuti
[35] (k sorted variables used in defining k-fold multiple exponential time), but most
especially in H. Simmons [130] (control variables, i.e. those used for recursion,
are distinguished from usual variables; by separating their function, one prevents
diagonalization as in the Ackermann function) and in D. Leivant [88, 89, 90, 91]
(stratified polymorphism, second order system L2(QF+) corresponding to polyno-
mial time computable functions, stratified functional programs, ramified recurrence
over 2 tiered word algebras corresponding to polynomial time). Of these, [130] and
[89] are the most related to the Bellantoni-Cook work described below.

If F and O are collections of initial functions and operations which distinguish
normal and safe variables, then normal∩ [F ;O] denotes the collection of all func-
tions f(~x; ) ∈ [F ;O] which have only normal variables. Similarly, (normal ∩
[F ;O])∗ denotes the collection of predicates whose characteristic function f(~x; ) has
only normal variables and belongs to [F ;O].

Define the following initial functions by

(0-ary constant) 0

(projections) In,mj (x1, . . . , xn; a1, . . . , am) =

{
xj if 1 ≤ j ≤ n
aj−n if n < j ≤ n+m

(successors) S0(; a) = 2 · a, S1(; a) = 2 · a+ 1

(binary predecessor) P (; a) = ba/2c

(conditional) C(; a, b, c) =

{
b if a mod 2 = 0

c else.

Definition 3.87 (Bellantoni-Cook [11]) The function f is defined by safe compo-
sition (scomp) from g, u1, . . . , un, v1, . . . , vm if

f(~x;~a) = g(u1(~x;), . . . , un(~x;); v1(~x;~a), . . . , vm(~x;~a)).
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If h(x; y) is defined, then scomp allows one to define

f(x, y; ) = h(I2,01 (x, y; ); I2,02 (x, y; )) = h(x; y).

However, one cannot similarly define g(;x, y) = h(x; y).

Definition 3.88 The function f is defined by safe recursion on notation22 (srn)
from the functions g, h0, h1 if

f(0, ~y;~a) = g(~y;~a)

f(s0(x), ~y;~a) = h0(x, ~y;~a, f(x, ~y;~a)), provided x 6= 0

f(s1(x), ~y;~a) = h1(x, ~y;~a, f(x, ~y;~a)).

The function algebra B is defined by

[0, I, S0, S1, P, C; scomp, srn].

Theorem 3.89 (Bellantoni-Cook [11]) The polynomial time computable functions
are exactly those functions of B having only normal arguments, i.e.

Fptime = normal ∩B.

The difficult direction of the proof is the inclusion from left to right. By Theo-
rem 3.19 of Cobham, ptime functions are those in the algebra

[0, I, s0, s1,#;comp,brn].

To see the difficulties involved, suppose that f is defined by brn from g, h0, h1
and that g(~y) = g′(~y; ), h0(x, ~y, z) = h′0(x, ~y, z; ) and h1(x, ~y, z) = h′1(x, ~y, z; ).
In trying to define f ′ by recursion on notation, one has f ′(0, ~y; ) = g′(~y; ) and
f ′(si(x), ~y; ) = h′i(x, ~y, f

′(x, ~y; ); ). However, this violates the requirement of srn
that the function value f ′(x, ~y; ) be in a safe position in h′i. For this reason a
different approach is necessary.

Lemma 3.90 If f ∈ Fptime then there exist f ′ ∈ B and a monotone increasing
polynomial pf such that f(~x) = f ′(w; ~x) for all |w| ≥ pf (|~x|).

Proof. Temporarily, let’s say that a function f is defined by polynomially bounded
recursion on notation (pbrn) from g, h0, h1 if f is defined by recursion on nota-
tion from these functions, and additionally there exists a polynomial p satisfying
|f(x, ~y)| ≤ p(|x|, |~y|) for all x, ~y. Since pad,# are easily defined by pbrn [for in-
stance, 0#y = 1, si(x)#y = pad(y, x#y) where |x#y| ≤ |x| · |y|+ 1] it follows from
Theorem 3.19 that Fptime = [0, I, s0, s1;comp,pbrn]. The lemma is now proved
by induction on the construction of f in the latter algebra.

If f is 0, Ink , s0, s1 then we may take f ′ to be the corresponding initial func-
tion of B and pf to be 0. Suppose that f(~x) = g(h1(~x), . . . , hn(~x)) is defined by
composition, where by the induction hypothesis

g(y1, . . . , yn) = g′(w; y1, . . . , yn) for |w| ≥ pg(|y1|, . . . , |yn|)(34)

hi(~x) = h′i(w; ~x) for |w| ≥ phi
(|~x|).(35)

Define

f ′(w; ~x) = g′(w;h′1(w; ~x), . . . , h′n(w; ~x))(36)

pf (|~x|) = pg(ph1
(|~x|), . . . , phn

(|~x|)) +

n∑
i=1

phi
(|~x|).(37)

22In [11] this scheme is called predicative notational recursion.
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It follows that f(~x) = f ′(w; ~x) for all |w| ≥ pf (|~x|).
Suppose that f is defined from g, h0, h1 by pbrn as follows

f(0, ~y) = g(~y)

f(si(x), ~y) = hi(x, ~y, f(x, ~y))

where |f(x, ~y)| ≤ q(|x|, |~y|) for some polynomial q. By the induction hypothesis
then there exist g′, h′0, h

′
1, pg, ph0

, ph satisfying

g(~y) = g′(w; ~y) for |w| ≥ pg(|~y|)
hi(x, ~y, z) = h′i(w;x, ~y, z) for |w| ≥ phi

(|x|, |~y|, |z|).

Let E(z, w;x) be the initial segment of x obtained by removing from x the |w| .− |z|
lowest order bits. By srn define F by

F (0, w;x, ~y) = 0

F (si(z), w;x, ~y) =


g′(w; ~y) if Case 1

h′0(w;E(z, w;x), ~y, F (z, w;x, ~y)) if Case 2

h′1(w;E(z, w;x), ~y, F (z, w;x, ~y)) if Case 3

F (z, w;x, ~y) otherwise

(38)

where

• Case 1 holds if |w| − |x| = |si(z)| ≤ |x|,

• Case 2 holds if |w| − |x| < |si(z)| ≤ |x| and the low order bit of E(si(z), w;x)
is 0,

• Case 3 holds if |w| − |x| < |si(z)| ≤ |x| and the low order bit of E(si(z), w;x)
is 1.

To see that F ∈ B, introduce the following functions. The low order bit M(; a) =
a mod 2 is defined by M(; a) = C(; a, 0, S1(0)). The truncation function T (x; a) =
ba/2|x|c is defined by

T (0; a) = a

T (si(x); a) = P (;T (x; a)).

Let T ′(x, y; ) = T (x, y; ) = by/2|x|c, and define the extraction operator

E(x,w; a) = T (T ′(x,w; ); a) = ba/2|w| .−|x|c

so that E(x,w; a) is the initial segment of a produced by removing from a the
|w| .− |x| lowest order bits. Define the bitwise or function by

∨(0; a) = M(; a)

∨(si(x); a) = C(;∨(x; a),M(;T (si(x); a)), 1).

Note that for |w| − |x| ≤ |y| ≤ |w| it follows that |w| − |x| = |y| if and only
if ∨(w;E(y, w;x)) = 0 and |w| − |x| < |y| iff ∨(w;E(y, w;x)) = 1. It is now
straightforward, to give a more formal definition of F placing it in B. Now set

f ′(w;x, ~y) = F (w,w;x, ~y)(39)

and
(40)

pf (|x|, |~y|) = ph0
(|x|, |~y|, q(|x|, |~y|)) + ph(|x|, |~y|, q(|x|, |~y|)) + pg(|~y|) + |x|+ 1.
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Claim 3.91 If u satisfies |w|−|x| ≤ |u| ≤ |w| and |w| ≥ pf (|x|, |~y|) then F (u,w;x, ~y) =
f(E(u,w;x), ~y).

Proof of claim. Fix w satisfying |w| ≥ pf (|x|, |~y|). Proceed by induction on |u|.
First suppose that |u| = |w| − |x|. Then E(u,w;x) = bx/2|w|−|u|c = bx/2|x|c = 0.
By (40), |w| ≥ |x|+ 1, so |u| ≥ 1 and Case 1 applies. It then follows that

F (u,w;x, ~y) = g′(w; ~y) = f(E(u,w;x), ~y).

Now suppose that |w| − |x| < |u| ≤ |w|, and that u = s0(z) or u = s1(z). In the
definition of F (si(z), w;x, ~y) only case 2 or case 3 can occur.
Case 1 The (|x| + |u| − |w|)-th bit of x from the left is 0, or equivalently the
(|w| − |z| − 1)-st bit of x from the right is 0. Then

F (si(z), w;x, ~y) = h′0(w;E(z, w;x), ~y, F (z, w;x, ~y))

= h′0(w;E(z, w;x), ~y, f(E(z, w;x), ~y)) induction hypothesis

= h0(E(z, w;x), ~y, f(E(z, w;x), ~y)) by justification below

= f(s0(E(z, w;x)), ~y) by definition of f , if E(z, w;x) 6= 0

= f(E(si(z), w;x), ~y)

The last line follows, because in case 1, the low order bit of E(si(z), w;x) is 0, so by
the definition of E, E(si(z), w;x) = s0(E(z, w;x)). The justification for the second
line in the above equations is given as follows.

|w| ≥ ph0
(|x|, |~y|, q(|x|, |~y|))

≥ ph0
(|E(z, w;x)|, |~y|, q(|E(z, w;x)|, |~y|)) as |E(z, w;x)| ≤ |x| and q is

monotonic

≥ ph0
(|E(z, w;x)|, |~y|, |f(E(z, w;x), ~y)|) as q bounds length of f

≥ ph0(|E(z, w;x)|, |~y|, |F (z, w;x, ~y)|) induction hypothesis of claim.

Case 2 The (|w| − |z| − 1)-st bit of x from the left is 1.
This case in handled similarly to that of case 1, and so the proof of the claim is
complete.

By definition of E, it is clear that for all |u| = |v| we have E(u,w;x) = E(v, w;x).
Using this, an easy induction on notation yields that for |u| ≥ |x| and |w| ≥
pf (|x|, |~y|)

F (u,w;x, ~y) = F (x,w;x, ~y).

For |w| ≥ pf (|x|, |~y|) then

f ′(w;x, ~y) = F (w,w;x, ~y) by definition

= F (x,w;x, ~y) as |w| ≥ |x|+ 1

= f(E(x,w;x), ~y) by Claim 3.91

= f(x, ~y) by definition of E.

This completes the proof of the lemma.

To show all functions of Fptime are functions of B containing only normal
arguments, appropriate bounding functions in B must be defined.

Theorem 3.92 If f ∈ Fptime then f(~x; ) ∈ B.
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Proof. Since f is polynomially bounded, let m, c be such that

|f(x1, . . . , xn)| ≤ (

n∑
i=1

|xi|)m + c.

Define

Pad2(0; y) = y

Pad2(si(x); y) = S1(;Pad2(x; y))

Padk+1(x1, . . . , xk;xk+1) = Pad2(x1;Padk(x2, . . . , xk;xk+1)).

Define
Smash(0, x; ) = 1

Smash(si(y), x; ) = Pad2(x;Smash(y, x; ))

Then Smash(y, x; ) = 2|x|·|y|. Let b0(x; ) be obtained by composing
Smash(x, x; ) with itself so as to satisfy |b0(x; )| ≥ |x|m + c and define

b(x1, . . . , xn; ) = b0(Padn+1(x1, . . . , xn; 1); ).

Then |f(x1, . . . , xn)| ≤ |b(x1, . . . , xn; )| and so for f ′ given by Lemma 3.90, define
F by F (~x; ) = f ′(b(~x; ); ~x). Then F ∈ B and f(~x) = F (~x; ).

For the reverse inclusion, the following bounding lemma is proved by induction on
the construction of f in B.

Lemma 3.93 Let f belong to B. There is a monotone increasing polynomial qf
such that |f(~x; ~y)| ≤ qf (|~x|) + maxi |yi| for all ~x, ~y.

Theorem 3.94 (Bellantoni-Cook [11]) If f(~x; ~y) ∈ B then there is f ′(~x, ~y) ∈
Fptime such that f(~x; ~y) = f ′(~x, ~y) for all ~x, ~y.

Proof. By induction on the construction of f in B. The case for initial functions
and composition is straightforward. For monotonic bounding polynomial qf given
by the preceding lemma, there is a function g ∈ [0, I, s0, s1,#;comp,brn] satisfying
qf (|~x|, |~y|) ≤ |g(~x, ~y)|. Thus srn may be simulated using brn.

Corollary 3.95

ptime = (normal ∩ [0, I, S0, S1, P, C; scomp, srn])∗.

This approach has led to other characterizations of familiar complexity classes
using safe variants of unbounded recursion schemes.

Theorem 3.96 (Bellantoni [9]) Let f(~x) be a function satisfying |f(~x)| = O(log |x|).
Then f(~x) is computable by a logspace Turing machine iff

f(~x; ) ∈ [0, I, S1, P, C; scomp, srn].

Note that the function S0 does not belong to the above algebra, so the intuition is
that for small functions (of logarithmic growth rate), logspace computations are
arithmetized by using unary numerals on the work tape along with the same closure
operators as for polynomial time. Bellantoni first proves his result for the operation
of simultaneous safe recursion on notation, and then simulates this simultaneous
scheme by srn, a non-trivial task since the usual pairing function uses S0. The
previous theorem yields a nice characterization of logspace, to be compared with
Corollary 3.95.
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Corollary 3.97

logspace = (normal ∩ [0, I, S1, P, C; scomp, srn])∗.

Definition 3.98 The function f is defined by safe minimization (smin) from the

function g, denoted f(~x;~b) = s1(µa[g(~x; a,~b) mod 2 = 0)]), if

f(~x;~b) =

{
s1(min{a : g(~x; a,~b) = 0}), if such exists,

0 else.

The algebra µB = [0, I, S0, S1, P, C; scomp, srn, smin]. Let µBi denote the set of
functions derivable in µB using at most i applications of safe minimization.

Theorem 3.99 (Bellantoni [10])

2Pi = {f(~x; ) : f ∈ µBi} .

Definition 3.100 (Bellantoni [9]) The function f is defined by safe recursion23

(sr) from the functions g, h if

f(0, ~y;~a) = g(~y;~a)

f(x+ 1, ~y;~a) = h(x, ~y;~a, f(x, ~y;~a)).

Define the following initial functions by

(successor) S(; a) = a+ 1(41)

(predecessor) Pr(; a) = a .− 1(42)

(conditional) K(; a, b, c) =

{
b if a = 0

c else.
(43)

Recall that E2, the second level of the Grzegorczyk hierarchy, is the collection of
linear space computable functions.

Theorem 3.101 (Bellantoni [9])

E2 = normal ∩ [0, I, S, Pr,K; scomp, sr].

W. Handley (unpublished) and D. Leivant (unpublished) both independently ob-
tained Theorem 3.101. Building on Bellantoni’s proof, in her work on linear space
reasoning, A.P. Nguyen [103] gave a slightly different characterization of this class.
In [33] the author gave a safe characterization of etime functions of linear growth,
by adapting the proof of Theorem 3.84.

In [91] D. Leivant gave an alternative formulation of the safe characterizations
of polynomial time and of linear space, by introducing a tiering notion to arbitrary
word algebras. The idea is that one admits various copies or tiers W0, W1, . . . of
the word algebra W (generated from 0 by s0, s1),24 and defines ramified recurrence
by

f(si(x), ~y) = hi(f(x, ~y), x, ~y)

23In [9] this scheme is called predicative primitive recursion.
24Leivant considers more general algebras defined from finitely many constructors.
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where the tier of the first argument si(x) is larger than the tier of the value f(x, ~y).
Comparing with the Bellantoni-Cook notation, tier 0 is safe, whereas tier 1 is nor-
mal. Leivant then shows that f is computable by a register machine over algebra
A in time polynomial in the length of the inputs iff f is definable by explicit defini-
tion (corresponding essentially to safe composition) and ramified recurrence over A.
This yields that f is polynomial time computable iff f is definable by explicit def-
inition and ramified recurrence over W0,W1, whereas f is linear space computable
(i.e. in E2) iff f is definable by explicit definition and ramified recurrence over N,
the unary algebra defined from 0, S.

These characterizations of complexity classes in terms of safe operations suggests
the following problem.

Problem 3.102 Characterize the classes Mn, for n = 0, 1, 2 and for each n ≥ 0,
the Grzegorczyk class En via appropriate initial functions, and safe operations. In
particular, can one characterize M2 by [0, I, S, Pr,K; scomp, smin]? (Note that
the conditional function cond ∈ E1 − E0.)

Turning to parallel computation, by building on Theorem 3.27, S. Bellantoni
[9] characterizes nc as those functions with normal variables in an algebra built
up from 0, I, S0, S1, the conditional C, the bit function bit, the length function
L(; a) = |a|, a variant #′ of the smash function, and closed under safe composition,
concatenation recursion on notation and a safe version of weak bounded recursion
on notation. Define the half function by H(x) = bx/(2d|x|/2e)c, and note that the
least number of times which H can be iterated on x before reaching 0 is ||x||.
The function f is defined by safe weak recursion on notation (swrn) 25 from the
functions g, h if

f(0, ~y;~a) = g(~y;~a)

f(x, ~y;~a) = h(x, ~y;~a, f(H(x), ~y;~a)),provided x 6= 0.

Theorem 3.103 (S. Bellantoni [9])

nc = [0, I, S0, S1, C, L,bit,#
′; scomp,crn, swrn].

Following [3], define bh(x) = x mod 2d|x|/2e and fh(x) = msp(x,bh(x)). The
back half bh(x) consists of the d|x|/2e rightmost bits of x, while the front half fh(x)
consists of the b|x|/2c leftmost bits of x. In [14] S. Bloch defines two distinct safe
versions of Allen’s divide and conquer recursion.

Definition 3.104 (S. Bloch [14]) The function f is defined by safe divide and
conquer recursion (sdcr) from the functions g, h if

f(x, y, ~z;~a) =

{
g(x, ~z;~a) if |x| ≤ max(|y|, 1)

h(x, y, ~z;~a, f(fh(;x), y, ~z;~a), f(bh(;x), y, ~z;~a)) else.

The function f is defined by very safe divide and conquer recursion (vsdcr) from
the functions g, h if

f(x, y, ~z;~a) =

{
g(x, ~z;~a) if |x| ≤ max(|y|, 1)

h(;x, ~z,~a, f(fh(;x), y, ~z;~a), f(bh(;x), y, ~z;~a)) else.

Note that in vsdcr the iteration function h has no normal parameters, and hence
cannot itself be defined by recursion.

25In [9] this scheme is called log recursion.
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Theorem 3.105 (S. Bloch [14]) There is a collection base of initial functions, for
which

alogtime = (normal ∩ [base; scomp,vsdcr])∗

polylogtime = (normal ∩ [base; scomp, sdcr])∗.

Sketch of Proof. The collection base of initial functions consists of nc0 com-
putable versions of msp, lsp, fh, bh, a conditional function, and some string ma-
nipulating functions (see [14] for details).

Only the proof of the first assertion will be sketched. Consider first the inclusion
[base; scomp,vsdcr]∗ ⊆ alogtime. Show that base ⊆ nc0 ⊆ alogtime. Since
the iterating function h(; z, ~x, ~y, u, v) has only safe parameters, h must be obtained
from base by safe composition, hence belongs to nc0. Very safe divide and conquer
recursion corresponds to the evaluation of a binary tree of logarithmic depth, whose
leaves correspond to g(x, ~z;~a) for |x| ≤ max(|y|, 1), and whose internal nodes cor-
respond to the nc0 function h. Since the resulting circuit is of logarithmic depth,
it follows that the function f defined by vsdcr belongs to alogtime.

Now consider the inclusion alogtime ⊆ [base; scomp,vsdcr]∗. Without using
vsdcr, define certain string manipulating functions explicitly. Let M be a ratm.
The computation tree of M corresponds to a binary branching logdepth tree, all
nodes of which are encodings of the current work tape, index tapes, state and tape
head positions. Without loss of generality, one may assume that a bit of the input
can be queried, using the index tape, only at a leaf configuration. Depending on
the current contents (say i) of the index tape, a bit (say the i-th bit) of the input
is accessed. Depending on that query, evaluation of the leaves of the computation
tree is defined, and evaluation of the internal nodes involves the simple evaluation
of an and-or tree (minimax strategy). Describe the leaf nodes by a function in
[base; scomp,vsdcr]. Evaluation of the and-or tree is very simply described,
using an iterating function having only safe parameters.

It seems clear that linear time on multitape Turing machines or on random access
machines can be characterized using appropriate initial functions, closure under
safe composition and some form of simultaneous very safe recursion (simultaneous
recursion, since a pairing function apparently cannot be defined from the initial
functions using safe composition – such would be necessary for defining nextM ).
Details have been worked out by S. Bloch [15] and J. Otto [106, 107, 108], the latter
using category theory.

4 Type 2 functionals

Many programming languages allow functions to be passed as parameters to other
functions or procedures. For instance, in different limited manners pascal and c
allow function parameters, while c++ supports function templates and ada, ml
admit polymorphism.26 The oracle Turing machine is a reasonable construct to
model function parameter passing, though it has principally been used to study
reducibilities A ≤T B, A ≤PT B etc. between sets. Nevertheless, higher type
functional complexity theory is a new area with fundamental open problems. In
particular, though various classes have been proposed as candidates for the feasible
type 2 functionals, there is not yet general agreement about the right notion. For

26Polymorphism allows function and procedures to abstract over data types — e.g. a generic
sorting algorithm for any data type having a comparison function.
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reasons of space, only a few recent directions in higher type functional complexity
will be presented. For more information, see the survey [42] by S.A. Cook and the
volume edited by D. Leivant [92] (higher type complexity theory) and the articles
by D. Norman and H. Schwichtenberg in this volume (higher type recursion theory).

Definition 4.1 A type 2 functional F of rank (k, `) is a total mapping from (NN )k×
N` into N.

It is worth noting27 that at type 2, Gödel’s question about classification of re-
cursive functions is completely answered. Namely, a rank (1, 1) recursive functional
F has normal form

F (f, x) = U(µy[TF (x, f(y)) = 0])

where f(y) = 〈f(0), . . . , f(y − 1)〉 and TF is a well founded tree of height < ωck1 .
Thus type 2 total recursive functionals can be classified with respect to recursive
ordinals.

Definition 4.2 A function oracle Turing machine (otm) is a Turing machine M
which in addition to read-only input tape, distinguished output tape and finitely
many work tapes, has an oracle query tape and oracle answer tape, both one-way
infinite, for each function input. Additionally M has a special oracle query state
for each function input.

Note that the previous definition, unlike Definition 2.5, allows function (rather
than set) arguments. In order to query a function input f at x, the machine
M takes steps to write x in binary on the oracle query tape. When the oracle
query tape head is in its leftmost square, M enters a special query state. In the
next step, M erases both the oracle query and answer tapes, writes the function
value f(x) in binary on the oracle answer tape, and leaves the oracle query and
answer tape heads in their leftmost squares. Upon entering the oracle query state,
there seem to be two natural measures for the time to complete the function query
f(x). The unit cost, considered by Mehlhorn [96], charges unit time, while the
function length cost, considered by Constable [41] and later Kapron and Cook [80],
charges max{1, |f(x)|} time. The machine M computes the rank(n,m) functional
F (f1, . . . , fn, x1, . . . , xm) if M has n oracle query states, query and answer tapes
corresponding to f1, . . . , fn and if M outputs the integer F (f1, . . . , fn, x1, . . . , xm)
in binary on the output tape, when started in its initial state q0 with input tape
Bx1Bx2B · · ·BxmB.

Definition 4.3 For any otm M , for any inputs f1, . . . , fn, x1, . . . , xm and integer
t, the query answer set QAM (~f, ~x, t) is defined as

{(y, z) : M on input ~f, ~x queries some fi(y) = z within time S(t) steps}

where S(t) is the least number of steps s for which if M runs s steps then its time

complexity is at least t. The query setQM (~f, ~x, t) is {y : (∃z)[(y, z) ∈ QAM (~f, ~x, t)]}
and the answer set AM (~f, ~x, t) is {z : (∃y)[(y, z) ∈ QAM (~f, ~x, t)]}.

An otm M is a polynomial time oracle Turing machine (potm) if M computes
a total rank(n,m) functional F and there is a polynomial p such that for all input
f1, . . . , fn, x1, . . . , xm and times t

t ≤ p(|max({x1, . . . , xm} ∪AM (~f, ~x, t))|).

opt is the collection of type 2 functionals computable by an oracle polynomial time
oracle Turing machine.

27This well-known fact, pointed out to the author by S.S. Wainer, is proved in H. Schwichten-
berg’s article in this volume.
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Example 4.4

(1) F (f, x) = max{f(y) : y ≤ |x|} belongs to opt.

(2) G(f, x) = max{f(y) : |y| ≤ |x|} does not belong to opt.

(3) H(f, x) = f (|x|)(x) belongs to opt.

In [96] K. Mehlhorn extended Cobham’s function algebra to type 2 functionals.
A modern presentation of Mehlhorn’s definition uses the following schemes.

Definition 4.5 (Townsend [136]) F is defined from H,G1, . . . , Gm by functional

composition if for all ~f, ~x,

F (~f, ~x) = H(~f,G1(~f, ~x), . . . , Gm(~f, ~x), ~x).

F is defined from G by expansion if for all ~f,~g, ~x, ~y,

F (~f,~g, ~x, ~y) = G(~f, ~x).

F is defined from G,G1, . . . , Gm by functional substitution if for all ~f, ~x,

F (~f, ~x) = H(~f, λy.G1(~f, ~x, y), . . . , λy.Gm(~f, ~x, y), ~x).

F is defined from G,H,K by limited recursion on notation28 (lrn) if for all ~f, ~x, y,

F (~f, ~x, 0) = G(~f, ~x)

F (~f, ~x, y) = H(~f, ~x, y, F (~f, ~x, by
2
c)), if y 6= 0

provided that F (~f, ~x, y) < K(~f, ~x, y) holds for all ~f, ~x, y.

Definition 4.6 (Townsend [136], Kapron, Cook [44]) Let X be a class of type 2
functionals. The class of basic feasible functionals defined from X, denoted bff(X),
is the smallest class of functionals containing X, 0,s0,s1,I,# and the application
functional Ap, defined by Ap(f, x) = f(x), and which is closed under functional
composition, expansion, and lrn. If F ∈ bff(X), then F is basic feasible in X.
The class bff of basic feasible functionals29 is bff(∅).

In [96] Mehlhorn introduced the Turing machine model with function oracle,
charging unit cost for a function oracle call, independent of the length of the func-
tion value returned. Mehlhorn’s model has an oracle input tape and an oracle
output tape, thus avoiding the situation where m successive iterates of a function
f(f(. . . f(x) . . .)) might take m steps. Using the techniques of low-level arithmeti-
zation from the proof of Theorem 3.19, the following result is proved.

Theorem 4.7 (Mehlhorn [96]) For every functional F in bff, there is a unit cost

model otm M which computes F , i.e. M(~f, ~x) = F (~f, ~x), and where the runtime of

M on all input ~f, ~x is bounded by |G(~f, ~x)| for some G belonging to bff. Conversely,

if functional F is computed by otm M , which on input ~f, ~x has runtime at most
|G(~f, ~x)| for some G belonging to bff, then F ∈ bff.

28This scheme is clearly equivalent to that of bounded recursion on notation brn for functionals,
yet notationally easier to manipulate in the proofs which follow.

29Townsend [136] calls this class POLY. Cook and Kapron call this class basic feasible, leaving
open the possibility that with future research a more natural class of feasible functionals may be
investigated. The original definition of basic feasible functional required closure under functional
substitution, but this can be defined from the remaining schemes, as noted in [136].
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Definition 4.8 A class F of type 2 functionals has the Ritchie-Cobham property if

F = {F : there exist G ∈ F and otm M which on any

input ~f, ~x computes F (~f, ~x) within time |G(~f, ~x)|}.

With this definition, Theorem 4.7 can be rephrased by the statement that bff has
the Ritchie-Cobham property using unit cost otm.

It is clear that opt contains functionals which are not intuitively feasible. In
particular, substituting the polytime computable function λy.y2 for f in H, where

H(f, x) = f (|x|)(x), above yields H(λy.y2, x) = x2
|x|

which is not a polytime com-
putable type 1 function (example due to A. Seth [125]). The following example,
due to S. Cook, provides a functional which belongs to opt yet not to bff.

Let � quasi-order N×N by length first difference; i.e. (a, b) � (c, d) iff |a| < |c|
or (|a| = |c| and |b| ≤ |d|). Transfer this ordering to N by a standard polynomial
time pairing function. Define the rank(1, 0) functional L by L(f) = µi[(∃j <
i)(f(j) � f(i))]. Note that � defines a well quasi-ordering on N ×N, so L is well
defined.

Theorem 4.9 (S. Cook [42]) The functional L belongs to opt yet not to bff.

S. Cook [42] points out that the type-1 section of the closure of opt with L is just
the type-1 section of opt, i.e. the class of polynomial time computable functions,
and so L should be considered a feasible functional. This argument suggests that
bff should not be considered the class of all feasible type-2 functionals. Against this,
in [125] A. Seth proves that the type-1 section of the closure of type-2 exponential
time with L is not the class of exponential time computable functions, and hence
L should not be considered a feasible functional. It is worth noting that Bellantoni
(p. 85 in [9]) showed that if one adds the length function |x| to a modification of
class B from [9], and closes under lambda abstraction and application, then the
resulting higher type class does compute the functional L. S. Bellantoni (private
correspondence) has raised the question whether the class obtained by omitting |x|
is equivalent to bff.

In [80], Kapron and Cook lift Cobham’s characterization of polynomial time
computable functions to functionals of level 2. To state their result, the notion of
length of a function and that of second order polynomial must be introduced.

Definition 4.10 The length |f | of one-place function f is itself a one-place function
defined by

|f |(n) = max
|x|≤n

{|f(x)|}.

Let f1, . . . , fm be variables ranging over NN and x1, . . . , xn be variables ranging
over N. The collection C of second order polynomials P (f1, . . . , fm, x1, . . . , xn) is
defined inductively as follows.

(i) for any integer c, c ∈ C,
(ii) for every 1 ≤ i ≤ n, xi ∈ C,
(iii) if P,Q ∈ C then P +Q ∈ C and P ·Q ∈ C,
(iv) if P ∈ C then fi(P ) ∈ C for 1 ≤ i ≤ m.

The depth d(P ) of a second order polynomial P is defined inductively by d(c) =
0 = d(xi), d(P + Q) = d(P ·Q) = max(d(P ), d(Q)), d(fi(P )) = 1 + d(P ). For any
f and Q ⊆ N, let fQ be defined by

fQ(x) =

{
f(x) if x ∈ Q
0 else.

If Q = QM (f, x, t) then M on inputs fQ, x behaves identically to M on inputs f, x.
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Fact 4.11 Suppose that M is an otm and P a second order polynomial such that
the runtime of M on inputs f, x is bounded by P (|f |, |x|).

(i) Suppose that Q = QM (f, x, t) and t ≥ P (|fQ|, |x|). Then M halts
within t steps.

(ii) Suppose that Q = QM (f, x, t) and Q′ = QM (f, x, P (|fQ|, |x|)). Then
either M halts within P (|fQ|, |x|) steps or Q ⊂ Q′.

The preceding fact is clear, since in (i) M on inputs f, x makes identical moves as
M on fQ, x, and in (ii) if Q = Q′, then apply (i) with Q′ in place of Q.

Theorem 4.12 (B. Kapron and S. Cook [80]) bff is the collection of function-
als F (f1, . . . , fn, x1, . . . , xm) computable in time P (|f1|, . . . , |fn|, |x1|, . . . , |xm|) for
some second order polynomial P on an otm with function length cost.30

Proof. The inclusion from left to right is straightforward. Consider the inclusion
from right to left. Suppose that M computes a functional F of rank (1, 1) and the
runtime of M is bounded by the depth d second order polynomial P .

For 1 ≤ c ≤ d, let P c1 , . . . , P
c
kc

be an enumeration of depth c subpolynomials
of P of the form f(Q), where Q is of depth c − 1. If P ci = f(Q) then denote the
associated Q by Qci . Note that d(P ci ) = c and d(Qci ) = c− 1. For any Qci there is a
first order polynomial qci satisfying

qci (P
1
1 (~f, ~x), . . . , P 1

k1(~f, ~x), . . . , P c−11 (~f, ~x), . . . , P c−1kc−1
(~f, ~x), ~x) = Qci (

~f, ~x).

For any inputs f, x of M and time t, there exist queries q1, . . . , qd in Q = QM (f, x, t)
such that for 1 ≤ c ≤ d

|qc| ≤ max{Qc1(|fQ|, |x|), . . . , Qckc(|fQ|, |x|)}(44)

and
|f(qc)| ≥ max{P c1 (|fQ|, |x|), . . . , P ckc(|fQ|, |x|)}.(45)

For 1 ≤ c ≤ d there exist first order polynomials qc satisfying

Qci (|fQ|, |x|) ≤ qc(|f(q1)|, . . . , |f(qc−1)|, |x|).

As well there is a first order polynomial p such that

P (|fQ|, |x|) ≤ p(|f(q1)|, . . . , |f(qd)|, |x|).

For every first order polynomial q, there exists a function hq built up from 0, xi, s0, s1,#
using composition, such that

q(|x1|, . . . , |xn|) ≤ |hq(x1, . . . , xn)|.

For example, |x|2 · (|y|+ 3) is bounded by |(x#x)#(s1(s1(s1(y))))|. It follows that
there exist bff functionals Qc, 1 ≤ c ≤ d, and P such that

Qci (|fQ|, |x|) ≤ |Qc(f, q1, . . . , qc−1, x)|

and
P (|fQ|, |x|) ≤ |P (f, q1, . . . , qd, x)|.

For 1 ≤ c ≤ d define maxquerycM of rank (1,2) by

maxquerycM (f, x, r) = µqc ∈ Q(M,f, x, t)[qc satisfies (44) and (45)],

30As noted in [34], this result holds as well for unit cost.
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where t is the least time satisfying |Q(M,f, x, t)| ≥ r or M halts in t steps. Define
Almax to be the rank (1,1) functional satisfying

|f(Almax(f, x))| = max
y≤|x|
{|f(y)|}.

Note that Almax is bff, since it can be defined by lrn as follows

Almax(f, 0) = 0

Almax(f, x) =

{
Almax(f,

⌊
x
2

⌋
) if |f(|x|)| ≤ |f(Almax(

⌊
x
2

⌋
))|

|x| otherwise

and Almax(f, x) ≤ |x| for all f, x.
Assuming that for 1 ≤ c ≤ d,maxquerycM is bff, we can show that F is bff.

Let

r1 = Q1(f, x)

Tc = P (f,maxquery1
M(f,x,rc)

, . . . ,maxquerydM(f,x,rc)
, x) for 1 ≤ c ≤ d

lc = Almax(f, 2#Tc) for 1 ≤ c ≤ d
rc = Qc(f, l1, . . . , lc−1, x) for 2 ≤ c ≤ d.

Finally define G by

G(f, x) = max{P (f, l1, . . . , ld, x), max
1≤c≤d

Tc}.

Claim 4.13 M halts within |G(f, x)| steps on inputs f, x.

Proof of claim. Suppose that q1, . . . , qd are as in (44) and (45). Then |q1| ≤ |r1|
and

T1 = P (f,maxquery1
M(f,x,r1)

, . . . ,maxquerydM(f,x,r1)
, x).

If M halts in |T1| steps, then surely M halts in |G(f, x)| steps. If not, then M must
have made more than r1 queries to the oracle f . Thus

l1 = Almax(f, 2#T1)

so
|f(l1)| = f(Almax(f, 2#T1))

= maxy≤|2#T1| |f(y)|
= maxy≤2·|T1|+1 |f(y)|
≥ maxy≤2 r1+1 |f(y)|
≥ max|y|≤|r1| |f(y)|
= |f |(|r1|).

The only non-obvious step above relies on the observation that |T1| ≥ r1, since
when executing M for |T1| steps, either M halts or M asks more than r1 oracle
queries in that time. As M is assumed not to halt in |T1| steps, the r1 oracle
queries were posed in |T1| steps, so r1 ≤ |T1|. Since |q1| ≤ |r1|, it follows that
|f(q1)| ≤ |f |(|r1|) ≤ |f(l1)|. Now

r2 = Q2(f, l1, x)

and
T2 = P (f1,maxquery1

M (f, x, r2), . . . ,maxquerydM (f, x, r2), x).
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If M halts in |T2| steps, then M halts in |G(f, x)| steps. Otherwise,
l2 = Almax(f, 2#T2) and a similar argument as before yields

|f(l2)| ≥ |f |(|r2|).

As well,

|q2| ≤ max1≤i≤k2 Q
2
i (|f |, |x|)

≤ |Q2(f, q1, x)|
≤ |r2|.

Hence |f(q2)| ≤ |f |(|r2|) ≤ |f(l2)|. Proceeding inductively, if M does not halt in
|Ti| steps for some 1 ≤ i ≤ d, then it is the case that

|qi| ≤ |ri|, ri ≤ |Ti|, and |f(qi)| ≤ |f |(|ri|) ≤ |f(li)|

so that M halts in

P (|f |, |x|) ≤ p(|f(q1)|, . . . , |f(qd)|, |x|)
≤ |P (f, q1, . . . , qd, x)|

steps. Thus M halts in |G(f, x)| steps. This establishes the claim.

Since a bff functional RunM (f, x, T ) can be defined which arithmetizes the
execution of otm M on inputs f, x for |T | steps, it follows that F (f, x) =
OutputM (RunM (f, x,G(f, x))), where OutputM is an easily defined bff functional.
To establish that F is bff, it only remains to prove that maxquerycM (f, x, r) is bff
for 1 ≤ c ≤ d. But this follows from the type 2 version of Theorem 3.86. This
completes the proof of Theorem 4.12.

The oracle concurrent random access machine (ocram), introduced by the au-
thor, A. Ignjatovic and B. Kapron in [34] has instructions for (i) local operations —
addition, cutoff subtraction, shift, (ii) global and local indirect reading and writing,
(iii) control instructions — goto, conditional goto and halt, (iv) oracle calls,
where in one step, all active processors simultaneously can retrieve

f(xi · · ·xj) = f(

j∑
k=i

xk · 2j−k)

where i, j are current values of local registers, and xi is the 0,1 value held in the i-th
oracle register. If M on argument f, x runs in time T (|f |, |x|) with P (|f |, |x|) pro-
cessors, then the formal details of the model ensure that |u| ≤ T (|f |, |x|) ·P (|f |, |x|)
for every oracle call f(u). If T, P are bounded by second order polynomials, then
it follows that there is a second order polynomial Q, such that |f(u)| ≤ Q(|f |, |x|)
for all oracle calls f(u) during the computation of M on input f, x.

The ocram is formally defined as follows. For each k-ary function argument
f , there are k infinite collections of oracle registers, the i-th collection labeled
Mo,i

0 ,Mo,i
1 ,Mo,i

2 , . . ., for 1 ≤ i ≤ k. As with global memory, in the event of a
write conflict the lowest numbered processor succeeds in writing to an oracle regis-
ter. Let res (result), op0 (operand 0) and op1 (operand 1) be non-negative integers,
as well as op2,op3,. . . ,op(2k).

In addition to the instructions for the cram, the ocram has instructions con-
cerning the oracle registers and oracle calls.

∗Mo
res := 0
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∗Mo
res := 1

Mo
res := 0

Mo
res := 1

Mres := ∗Mo
op1

Mres := f([Mop1 · · ·Mop2]1, [Mop3 · · ·Mop4]2, . . . , [Mop(2k−1) · · ·Mop(2k)]k)

The notation [Mop(2i−1) · · ·Mop(2i)]i denotes the integer whose binary notation is

given in oracle registers Mo,i
Mop(2i−1)

through Mo,i
Mop(2i)

. In other words,

[Mop(2i−1) · · ·Mop(2i)]i =

Mop(2i)∑
m=Mop(2i−1)

Mo,i
m · 2op(2i)−m.

The instruction ∗Mo
res := 0 sets the contents of the oracle register whose address

is given by the current contents of local memory Mres to 0. Similarly for the
instruction ∗Mo

res := 1. The instruction Mres := ∗Mo
op1 sets the contents of local

memory Mres to be the current contents of the oracle register whose address is given
by the current contents of local memory Mop1. With these instructions, it will be the
case that oracle registers hold a 0 or 1 but no larger integer. If any register occurring
on the right side of an instruction contains ‘B’ meaning undefined, then the register
on the left side of the instruction will be assigned the value ‘B’ (undefined). For
instance, if a unary oracle function f is called in the instruction

Mres := f([Mop1 · · ·Mop2])

and if some register Mi contains ‘B’, where op1 ≤ i ≤ op2, then Mres is assigned
the value ‘B’.

In characterizing ack in the non-oracle case, Stockmeyer and Vishkin [133] re-
quire a polynomial bound p(n) on the number of active processors on inputs of
length n. With the above definition of ocram one might hope to characterize the
class of type 2 functionals computable in constant parallel time with a second-order
polynomial number of processors as exactly the type 2 functionals in the algebra
A0. Using the definitions given so far, this is not true. To rectify this situation,
proceed as follows.

Definition 4.14 For every ocram M , functions f, g and integers x, t the query
set Q(M,f, x, t, g) is defined as

{y : M with inputs f, x queries f at y within t steps, where for each

i < t the active processors are those with index 0, . . . , g(i)− 1}.

Let M be an ocram, P a functional of rank (1,1), f a function and x, t integers.
If Q ⊆ N then define

fQ(u) =

{
f(u) if u ∈ Q
0 else.

Define M = 〈M,P 〉 to be a fully specified ocram if for all f, x, t the ocram M
on input f, x either is halted at step t or executes at step t with active processors
0, . . . , P (|fQt |, |x|)− 1 where

Qt = Q(M,f, x, t, P (|fQt−1 |, |x|))

is the collection of queries made by M before step t.
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If M = 〈M,P 〉 is a fully specified ocram with input f, x define

QM(f, x, t) = {y :M queries y at time i < t on input f, x}.

In place of stating that M = 〈M,P 〉 is fully specified, usually M is said to run

with processor bound P . If F (~f, ~x) abbreviates F (f1, ..., fm, x1, ..., xn) and P is a

second order polynomial, then P (|~f |, |~x|) abbreviates P (|f1|, ..., |fm|, |x1|, ..., |xn|).
The type 2 analogue of concatenation recursion on notation is given by the

following.

Definition 4.15 F is defined from G,H,K by concatenation recursion on notation
(crn) if for all ~f, ~x, y,

F (~f, ~x, 0) = G(~f, ~x)

F (~f, ~x, s0(y)) = F (~f, ~x, y) ∗ bit(H(~f, ~x, y), 0), provided that x 6= 0

F (~f, ~x, s1(y)) = F (~f, ~x, y) ∗ bit(K(~f, ~x, y), 0)

where ∗ denotes concatenation.

Definition 4.16 The type 2 functional H is defined by weak bounded recursion
on notation wbrn from G,H0, H1,K if

F (~f, ~x, 0) = G(~f, ~x)

F (~f, ~x, s0(y)) = H0(~f, ~x, y, F (~f, ~x, y)), if n 6= 0

F (~f, ~x, s1(y)) = H1(~f, ~x, y, F (~f, ~x, y))

H(~f, ~x, y) = F (~f, ~x, |y|)

provided that F (~f, ~x, y) ≤ K(~f, ~x, y) holds for all ~f, ~x, y.

Definition 4.17 The algebra A0 is the smallest class of functionals (of type 1
and 2) containing 0,s0,s1,I,bit,|x|,#, Ap and closed under functional composi-
tion, expansion, functional substitution and crn. The algebra A is the closure
of 0,s0,s1,I,bit,|x|,#, Ap under functional composition, expansion, functional sub-
stitution, crn and wbrn.

The following theorem is the type 2 analogue of the fact that ac0 (or equivalently
lh) is characterized by the function algebra A0.

Theorem 4.18 (Clote, Kapron, Ignjatovic [34]) A functional F (~f, ~x) belongs to
A0 if and only if it is computable on an ocram in constant time with at most
P (|~f |, |~x|) many processors, for some second-order polynomial P .

To provide some intuition for working with the ocram, consider the following
program for Ap(f, x) = f(x). Recall that Mres = BIT(Mop1,Mop2) is the easily
programmed instruction which, for i = Mop2, computes the coefficient of 2i in the
binary representation of the integer stored in Mop1, provided that i < |Mop1|, and
otherwise returns the value ‘B’. Define “reverse bit” RBIT, where RBIT(x, y) =
BIT(x, |x| .− (y + 1)) provided that y < |x|, and ‘B’ otherwise.
ocram program for Ap(f, x) = f(x).

1 M0 = 0

2 M1 = processor number

3 M2 = *Mg
1

4 if (M2 = B) then Mg
0 = M1
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5 M3 = Mg
0
.− 1 % M3 = |x| .− 1

6 *Mg
1 = B % erase global memory

7 *Mo
1 = M2 % in Pi, Mo

i = Xi

8 M4 = f([M0...M3])

9 M5 = BIT(M4, M1)

10 if (M5 = B) then Mg
0 = M1

11 M5 = Mg
0 % M5 = |f(x)|

12 M6 = M5
.− (M1 + 1)

13 M7 = BIT(M4, M6)

14 *Mo
1 = B

15 *Mg
1 = B

16 *Mg
1 = M7

17 if (M1 ≥M5) then Mg
1 = B

% erase trailing 0’s

18 HALT % Now Xi = RBIT(f(x), i)

The type 2 analogue of Theorem 3.27 was established by the author (in prepa-
ration), and strengthens the principal result of [34].

In his attempted proof of the continuum hypothesis, D. Hilbert [70] studied
classes of higher type functionals defined by the operations of composition and
primitive recursion. Hilbert’s general scheme ([70], p. 186) was of the form

F(G,H, 0) = H

F(G,H, n+ 1) = G(F(G,H, n), n)

where F , G,H are higher type functionals of appropriate types possibly having other
parameters not indicated. Illustrating the power of primitive recursion over higher
type objects, Hilbert gave a simple higher type primitive recursive definition of the
Ackermann function, known not to be primitive recursive. For example, define

F (g, 0) = 1

F (g, n+ 1) = g(F (g, n)).

Then for n ≥ 3, the principal functions fn from Definition 3.29 satisfy fn+1(x) =
F (fn, x).

Definition 4.19 The set Tρ of all finite types is defined inductively as follows:

• 0 ∈ Tρ
• if σ, τ ∈ Tρ then (σ → τ) ∈ Tρ.

By induction on τ , every type ρ = (σ → τ) can be written uniquely in the
normal form

ρ = ρ1 → ρ2 → · · · → ρk → 0

when association is to the right and parentheses are dropped. The level of a type
is defined as follows:

• level (0) = 0
• level (ρ1 → · · · → ρk → 0) = 1 + max1≤i≤k{level(ρi)}
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If F is of type ρ, where ρ = ρ1 → · · · → ρk → 0, then often F (X1, . . . , Xk) is
written in place of F (X1)(X2) · · · (Xk).

Higher type functional complexity theory is an emerging field. For reasons of
space, only references to a few recent papers will be given. In [84], Ker-I Ko sur-
veyed the theory of sequential complexity theory of real valued functions. In [72],
H.J. Hoover investigated parallel computable real valued functions. In [42], S. Cook
gave a survey of higher type computational approaches, and proved Theorem 4.9.
Cook further proposed that any class C of feasible type 2 functionals must satisfy
the following two conditions:

1. bff ⊆ C ⊆ opt,

2. C is closed under abstraction and application.

In [125] A. Seth defined a class C2 of type 2 functionals defined by counter Tur-
ing machines with polynomial bounds, which satisfies the previous conditions, and
proved that no recursively presentable class of functionals exists which contains
C2 and satisfies the previous conditions. In [126] Seth further investigated closure
conditions for feasible functionals. In [118], J. Royer studied a polynomial time
counterpart to the Kreisel-Lacombe-Shoenfield theorem [86].

Complexity theory for functionals of all finite types was initiated by S. Buss, who
in [19] introduced a polynomial time analogue of the hereditarily recursive operations
hro to define polynomial time functionals of all finite types decorated with runtime
bounds. A. Nerode, J. Remmel and A. Scedrov [102] studied a polynomially graded
type system. In [52], J.-Y. Girard, A. Scedrov and P. Scott introduced bounded
linear logic, and proved a normalization theorem which yielded a characterization
of a feasible class of type 2 functionals, whose type 1 section is the class of polytime
computable functions. In [45], S. Cook and A. Urquhart introduced an analogue
of Gödel’s system T by admitting a recursor for bounded recursion on notation
for type 1 objects. Their system PV ω provided a natural class of polynomial time
higher type functionals (called the basic feasible functionals of higher type), whose
type-2 section of PV ω is bff. In [67], V. Harnik extended Cook-Urquhart’s func-
tionals to levels of the polynomial time hierarchy. In [44] S. Cook and B. Kapron
characterized the higher type functionals in PV ω by certain kinds of programming
language constructs, typed while programs and bounded loop programs. This kind
of characterization was extended by P. Clote, B. Kapron and A. Ignjatovic in [34]
to the higher type functionals in ncω, relating bounded loop programs with higher
type parallel complexity classes. In [127] A. Seth extended his definition of counter
Turing machine to all finite types, thus characterizing PV ω by a machine model.
If one additionally allows dynamic computation of indices of subprograms within
this counter Turing machine model, then Seth has conjectured this class to properly
contain PV ω.

In finite model theory, many complexity classes C have been characterized via
word models over a logic as follows: L ∈ C iff there is a closed formula φ (in a
certain logic over a certain signature) for which

L = {w ∈ {0, 1}∗ : w |= φ}.

As mentioned in the introduction, though techniques are similar in spirit to those
surveyed in this paper, for reasons of space we do not present such results here.
Another direction of finite model theory is the investigation of function algebras, as
interpreted over finite structures, rather than over N. Here Y. Gurevich [59] showed
that logspace “global” functions can be characterized by primitive recursion over
finite structures. In [55] A. Goerdt generalized this to prove that type level k + 1
recursive definitions over finite structures characterize global functions in the class
Dtime(expk(nO(1)) where exp0(n) = n and expk+1(n) = 2expk(n).
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In [93] D. Leivant and J.-Y. Marion gave various characterizations of ptime
by typed λ-calculi with pairing over an algebra W of words over {0, 1}. Recently,
Leivant and Marion showed how a natural restriction of functional recurrence with
substitution generates exactly pspace. In a series of papers (see for instance [91])
D. Leivant investigated various tiering schemes of recursion (extensions of safe re-
cursion) and related complexity classes. Such investigations may have some applica-
bility to programming language design. In [104], building on work of H. Schwicht-
enberg [124], K.-H. Niggl investigated certain subrecursive hierarchies (analogues
of primitive recursive) of partial continuous functionals on Scott domains. As ev-
idenced by the articles in the conference proceedings [92], edited by D. Leivant,
higher type functional complexity is an exciting area with many interesting theo-
retical questions, and the possibility of contributing to new programming language
features.
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[85] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cam-
bridge University Press, 1995.

[86] G. Kreisel, D. Lacombe, and J.R. Shoenfield. Partial recursive functionals and effec-
tive operations. In A. Heyting, editor, Constructivity in Mathematics: Proceedings
of a colloquium held in Amsterdam, pages 195–207. North Holland, 1957.

[87] M. Kuty lowski. Finite automata, real time processes and counting problems in
bounded arithmetics. Journal of Symbolic Logic, 53(1):243–258, 1988.

67



[88] D. Leivant. Stratified polymorphism. In Proceedings of IEEE 4th Annual Symposium
on Logic in Computer Science, pages 39–47, 1989. Journal version: Finitely stratified
polymorphism, Information and Computation 93 (1991) 93–113.

[89] D. Leivant. A foundational delineation of computational feasibility. In Proceedings
of IEEE 6th Annual Symposium on Logic in Computer Science, 1991.

[90] D. Leivant. Stratified functional programs and computational complexity. In Con-
ference Record of the Twentieth Annual ACM Symposium on Principles of Program-
ming Languages, 1993.

[91] D. Leivant. Ramified recurrence and computational complexity I: word recurrence
and poly-time. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages
320–343. Birkhäuser, 1994.
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1994.

[128] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. Journal of Algorithms, 3:57–67, 1982.

[129] P. Shor. Algorithms for quantum computation: discrete log and factoring. In Pro-
ceedings of IEEE 35th Annual Symposium on Foundations of Computer Science,
1994.

[130] Harold Simmons. The realm of primitive recursion. Archive for Mathematical Logic,
27:177–188, 1988.

[131] Th. Skolem. Begründung der elementaren Arithmetik durch die rekurrierende
Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Aus-
dehnungsbereich. Skrifter utgit av Videnskapsselskapet, I. Mate. Klasse, 6, 1923.
Oslo.

[132] R. Smullyan. Theory of Formal Systems. Annals of Mathematical Studies, no. 47.
Princeton University Press, 1961.

69



[133] L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by
circuits. SIAM Journal on Computing, 13:409–422, 1984.

[134] G. Takeuti. Frege proof system and TNC0. In D. Leivant, editor, Logic and Compu-
tational Complexity, pages 221–252. Springer Verlag, 1995. Lecture Notes in Com-
puter Science 960.

[135] D.B. Thompson. Subrecursiveness: machine independent notions of computability
in restricted time and storage. Math. Systems Theory, 6:3–15, 1972.

[136] M. Townsend. Complexity for type-2 relations. Notre Dame Journal of Formal Logic,
31:241–262, 1990.

[137] A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc., Series 2, 42:230–265, 1936-37.

[138] L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

[139] P. van Emde Boas. Machine models and simulations. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, pages 1–66. Elsevier, MIT
Press, 1990. Elsevier (Amsterdam), MIT Press (Cambridge).

[140] H. Vollmer and K. Wagner. Recursion theoretic characterizations of complexity
classes of counting functions. Theoretical Computer Science 163 (1996) 245–258.

[141] K. Wagner. Bounded recursion and complexity classes. In Lecture Notes in Computer
Science, volume 74, pages 492–498. Springer-Verlag, 1979.

[142] K. Wagner and G. Wechsung. Computational Complexity. Reidel Publishing Co.,
1986.
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(normal ∩ [F ;O])∗, 45
(Ef)∗, 30
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Divide and conquer, 38
divide and conquer recursion, 29
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function algebra, 16
function length cost, 53, 55
functional complexity theory, 52
functional composition, 53
functional substitution, 54
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half function, 51
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hereditarily recursive operations, 62
higher type parallel complexity classes,

62

in-degree, 14
Incremental instructions, 30
index answer tape, 6
index query tape, 6
iteration, 17

least significant part function, 20
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limited recursion on notation, 54
linear growth, 11
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logarithmic growth, 11
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makeindex, 1
modular counting gate, 14
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oracle Turing machine, 7
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parallel random access machine, 11
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polynomial time hierarchy, 8
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Presburger arithmetic, 35
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primitive recursion, 17
principal, 29
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projection functions, 17

quantum Turing machine, 11
quasilinear space, 34
quasilinear time, 34
query set, 53

ramified recurrence, 50
random access, 6
rank, 16
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rudimentary functions, 34
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successor function, 17
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time T (n), 5, 8
time T (n), 6
transition function, 4, 7
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Turing machine, 4
Turing machines, 4
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