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Abstract A network is scale-free if its connectivity density function is proportional
to a power-law distribution. It has been suggested that scale-free networks may
provide an explanation for the robustness observed in certain physical and biologi-
cal phenomena, since the presence of a few highly connected hub nodes and a large
number of small-degree nodes may provide alternate paths between any two nodes
on average – such robustness has been suggested in studies of metabolic networks,
gene interaction networks and protein folding. A theoretical justification for why
many networks appear to be scale-free has been provided by Barabási and Albert,
who argue that expanding networks, in which new nodes are preferentially attached
to highly connected nodes, tend to be scale-free. In this paper, we provide the first
efficient algorithm to compute the connectivity density function for the ensemble of
all homopolymer secondary structures of a user-specified length – a highly nontriv-
ial result, since the exponential size of such networks precludes their enumeration.
Since existent power-law fitting software, such as powerlaw, cannot be used to de-
termine a power-law fit for our exponentially large RNA connectivity data, we
also implement efficient code to compute the maximum likelihood estimate for the
power-law scaling factor and associated Kolmogorov-Smirnov p-value. Hypothesis
tests strongly indicate that homopolymer RNA secondary structure networks are
not scale-free; moreover, this appears to be the case for real (non-homopolymer)
RNA networks.

Keywords RNA secondary structure · scale-free network · small-world network ·
dynamic programming
Mathematical Subject Classification: 62G32 62G07 68W99 05C82 68R05

1 Introduction

The connectivity (or degree) of a node v in a network (or undirected graph) is the
number of nodes (or neighbors) of s, connected to v by an edge. A network is said to
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be scale-free if its connectivity function N(k), which represents the number of nodes
having degree k, satisfies the property that N(a·k) = b·N(x), the unique solution of
which is a power-law distribution, which by definition satisfies N(k) ∝ k−α for some
scaling factor α > 1 [28]. Scale-free networks contain a few nodes of high degree
and a large number of nodes of small degree, hence may provide a reasonable
model to explain the robustness1 often manifested in biological networks – such
robustness or resilience must, of course, be present for life to exist.

Barabási and Albert [4] analyzed the emergence of scaling in random networks,
and showed that two properties, previously not considered in graph theory, were
responsible for the power-law scaling observed in real networks: (1) networks are
not static, but grow over time, (2) during network growth, a highly connected node
tends to acquire even more connections – the latter concept is known as preferential

attachment. In [4], it was argued that preferential attachment of new nodes implies
that the degree N(k) with which a node in the network interacts with k other
nodes decays as a power-law, following N(k) ∝ k−α, for α > 1. This argument
provides a plausible explanation for why diverse biological and physical networks
appear to be scale-free. Indeed, various publications have suggested that the the
following biological networks are scale-free: protein-protein interaction networks
[18,32], metabolic networks [24], gene interaction networks [34], yeast co-expression
networks [35], and protein folding networks [6].

How scale-free are biological networks?

The validity of a power-law fit for previously studied biological networks was first
called into question in [21], where 10 published data sets of biological interaction
networks were shown not to be fit by a power-law distribution, despite published
claims to the contrary. Estimating an optimal power-law scaling factor by maxi-
mum likelihood and using χ2 goodness-of-fit tests, it was shown in [21] that not
a single one of the 10 interaction networks had a nonzero probability of being
drawn from a power-law distribution; nevertheless, some of the interaction net-
works could be fit by a truncated power-law distribution. The data analyzed by
the authors included data from protein-protein interaction networks [18,32], gene
interaction networks determined by synthetic lethal interactions [34], metabolic
interaction networks [24], etc.

In [10], 24 real-world data sets were analyzed from a variety of disciplines, each
of which had been conjectured to follow a power-law distribution. Estimating an
optimal power-law scaling factor by maximum likelihood and using goodness-of-
fit tests based on likelihood ratios and on the Kolmogorov-Smirnov statistic for
non-normal data, it was shown in [10] that some of the conjectured power-law
distributions were consistent with claims in the literature, while others were not.
For instance, Clauset et al. [10] found sufficient statistical evidence to reject claims
of scale-free behavior for earthquake intensity and metabolic degree networks,

1 A network is said to be robust, or resilient, if its connectivity is (relatively) unaltered in the
event that random nodes have been removed; i.e. alternate pathways exist to connect nodes,
even if a (random) node has been removed. Since functionality remains in the case of random
node failure, network robustness is of obvious importance in massively parallel computers, in
the World Wide Web, in metabolic pathways, signaling pathways, etc. This topic is discussed
in detail in Chapter 16, “Percolation and Network Resilience”, in [29].
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while there was insufficient evidence to reject such claims for networks of protein
interaction, Internet, and species per genus.

It is possible to come to opposite conclusions, depending on whether χ2 or
Kolmogorov-Smirnov (KS) statistics are used to test the hypothesis whether a
network is scale-free, i.e. follows a (possibly truncated) power-law distribution.
Indeed, Khanin and Wit [21] obtained a p-value of < 10−4 for χ2 goodness-of-
fit for a truncated power-law distribution for the protein-protein interaction data
from [18], while Clauset et al. [10] obtained a p-value of 0.31 for KS goodness-of-fit
for a truncated power-law for the same data.

In this paper, we introduce the first efficient algorithm to compute the exact
number of homopolymer RNA secondary structures having k neighboring struc-
tures, for each value of k, that can be reached by adding or deleting one base pair.
Since there are exponentially many secondary structures, our O(n5) time and
O(n3) space algorithm uses dynamic programming. By applying the Kolmogorov-
Smirnov test, we then show that homopolymer RNA secondary structure networks
are not scale-free. We also provide evidence that the same is true for real RNA
networks. Prior to this paper, only fragmentary results were possible by exhaus-
tively enumerating all secondary structures having free energy within a certain
range obove the minimum free energy [36].

Our work investigates properties of the ensemble of RNA secondary structures,
considered as a network, and so extends results of [11], which described a cubic
time dynamic programming algorithm to compute the expected network degree.
The RNA connectivity algorithm described in Section 2.3 is completely unrelated
to that of [11], and allows one to compute all finite moments, including mean,
variance, skew, etc.

The plan of the remaining paper is as follows. Section 2 presents a brief sum-
mary of basic definitions, followed by a description of an efficient dynamic program-
ming algorithm to determine the absolute [resp. relative] frequencies N(k) [resp.
p(k)] for secondary structure connectivity of a given homopolymer, which allows
non-canonical base pairs. Section 3 presents the statistical methods used to both fit
RNA connnectivity data to a power-law distribution and to perform a goodness-of-
fit test using Kolmogorov-Smirnov distance. Section 4 shows that RNA networks
are not scale-free, by performing (computationally efficient) Kolmogorov-Smirnov
bootstrapping tests. Section 5 presents concluding remarks, while the Appendix
presents data that suggests that RNA networks satisfy a type of preferential at-
tachment. The rigorous proof that RNA networks satisfy modified form of prefer-
ential attachment is suppressed for reasons of space, but is available in the preprint
[12].

2 Computing degree frequency

Section 2.1 presents basic definitions and notation used; Section 2.2 presents an
algorithm to compute the frequency of each degree less than K in the ensemble
of all secondary structures with run time O(K2n4) and memory requirements
O(Kn3). Section 2.3 presents a more efficient algorithm, with run time O(K2n3)
and memory requirements O(Kn2), for the special case of a homopolymer, in
which all possible non-canonical base pairs are permitted. We implemented both
algorithms in Python, cross-checked for identical results, and call the resulting code
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RNAdensity. Since this paper is a theoretical contribution on network properties, we
focus only on homopolymers and do not present the details necessary to extend the
algorithm of Section 2.2 to non-homopolymer RNA, where base pairs are required
to be Watson-Crick or GU wobble pairs – such an algorithm is possible to develop,
using ideas of Section 2.2; however, since the resulting complexity is formidible,
with O(n9) time and O(n7) space requirements, and since there are no obvious
applications, we do not pursue such an extension.

2.1 Preliminaries

A secondary structure for a length n homopolymer is a set s of base pairs (i, j),
such that (1) there exist at least θ unpaired bases in every hairpin, where θ is
usually taken to be 3, though sometimes 1 in the literature, (2) there are no basd
triples, so for (i, j), (k, `) ∈ s, if {i, j} ∩ {k, `} 6= ∅, then i = k and j = `, (3) there
do not exist base pairs (i, j), (k, `) ∈ s, such that i < k < j < `; i.e. a secondary
structure is a type of outerplanar graph, where each base pair (i, j) ∈ s satisfies
j − i > θ. The free energy of a homopolymer secondary structure s is defined to be
−1 times the number |s| of base pairs in s (Nussinov-Jacobson energy model [30]).
Since entropic effects are ignored, this is not a real free energy; however it allows
us to use the standard notation “MFE” for ‘minimum free energy’. Note that the
MFE structure for a length n homopolymer has bn−θ2 c many base pairs.

For a given RNA sequence, consider the exponentially large network of all its
secondary structures, where an undirected edge exists between any two structures
s and t, whose base-pair distance equals one – in other words, for which t is
obtained from s by either removing or adding one base pair. The connectivity
(or degree) of a node, or structure, s is defined to be the number of secondary
structures obtained by deleting or adding one base pair to s – this corresponds
to the so-called MS1 move set [16]. At the end of the paper, we briefly consider
the MS2 move set, where the degree of a structure s is defined to be the number
of secondary structures obtained by adding, deleting or shifting one base pair [5].
The MS1 [resp. MS2] connectivity of the MFE structure for a homopolymer of
length n is bn−θ2 c [resp. dn−θ2 e]. Connectivity N(k) is defined to be the absolute

frequency of degree k, i.e. the number of secondary structures having exactly k

neighbors, that can be obtained by either adding or removing a single base pair.
The degree density p(k) is defined to be the probability density function (PDF) or

relative frequency of k, i.e. the proportion p(k) = N(k)
Z of all secondary structures

having k neighbors, where Z denotes the total number of secondary structures for
a given homopolymer. A network is defined to be scale-free, provided its degree
frequency N(k) is proportional to a power-law, i.e. N(k) ∝ k−α where α > 1 is the
scaling factor.

2.2 Computing the degree density

In this section, we describe a novel dynamic programming algorithm to compute
the MS1 degree density p(k) for the network of secondary structures for a homopoly-
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mer of length n. Note first that the empty structure s∅ of length n has

degree(s∅) =
(n− θ)(n− θ − 1)

2
(1)

many neighbors, each obtained by adding a base pair. Indeed,

degree(s∅) =
n−θ−1∑
i=1

n∑
j=i+θ+1

1 =
n−θ−1∑
i=1

[n− (i+ θ + 1) + 1]

=
n−θ−1∑
i=1

(n− i− θ) = (n− θ)(n− θ − 1)−
n−θ−1∑
i=1

i =
(n− θ)(n− θ − 1)

2

Using a simple induction argument, equation (1) implies that for all values of
n, the maximum possible degree, maxDegree(n), of a secondary structure for the

length n homopolymer is (n−θ)(n−θ−1)
2

Let N(i, j) denote the number of secondary structures on interval [i, j], com-
puted the following simple recurrence relation from [33]: for 1 ≤ i ≤ j ≤ i+ θ ≤ n,
set N(i, j) = 1, and for i+ θ + 1 ≤ j ≤ n set

N(i, j) = N(i, j − 1) +N(i+ 1, j − 1) +

j−θ−1∑
r=i+1

N(i, r − 1) ·N(r + 1, j − 1) (2)

or more simply

N(m) =


1 if 1 ≤ m ≤ θ + 1

N(m− 1) +N(m− 2) +
m−3∑
r=θ

N(m− r − 2) ·N(r) if θ + 2 ≤ m ≤ n

(3)

Although equation (2) requires O(n3) time and O(n2) space, it can trivially be
extended to compute the number of secondary structures for an arbitary RNA
sequence a1, . . . , an, where base pairs are either Watson-Crick or wobble pairs. If
no such extension is necessary, then the recurrence relation equation (3), first given
in [33], requires O(n2) time and O(n) space, hence is more efficient by a factor of n.
In a similar fashion, the recurrence relations (5-12) and pseudocode in Section 2.2
are given in a form that allows an extension (not given here) to the general case of
computing the degree density for the ensemble of secondary structures of a given
RNA sequence a1, . . . , an. The top-level pseudocode given in Algorithm 1 requires
O(n6) time and O(n4) storage; however, in the next section, we improve this by a
factor of n, both in time and space requirements.

Suppose that every hairpin loop is required to have at least θ ≥ 1 unpaired
positions; i.e. if (i, j) is a base pair, then i+ θ + 1 ≤ j. As described in the equa-
tions (5-12) for Base Cases A-D, let Z(i, j, k, h, v) denote the number of secondary
structures on the interval [i, j], for 1 ≤ i ≤ j ≤ n for the homopolymer model, that
have exactly k neighbors, and for which there are exactly h unpaired positions (or
holes) in [i, j− θ− 1], and for which there are exactly v ∈ [0, θ+ 1] visible positions
among j − θ, j − θ + 1, . . . , j. Concretely, this means that either (i) v = θ + 1 and
the rightmost θ + 1 positions in the interval [i, j] are all unpaired, or (ii) that



6 P. Clote

0 ≤ v < θ+ 1, and that position j− v is paired to some r ∈ [i, j− v− θ− 1]. In base
case D and inductive case D below, we will treat the two possible subcases of (i),
in which the rightmost θ + 1 positions are unpaired – namely, the subcase (i)a in
which j− θ is unpaired (hence the rightmost j− θ+ 1 positions are unpaired), and
the subcase (i)b in which position j − θ is paired with some r ∈ [i, j − v − θ − 1].

Let Z∗(i, j, k) denote the number of secondary structures on the interval [i, j]
that have exactly k neighbors with respect to the MS1 move set (i.e. have degree
k), so that

Z∗(i, j, k) =

j−θ−i∑
h=0

θ+1∑
v=0

Z(i, j, k, h, v) (4)

Recalling from equation (1) that maxDegree(n) = (n−θ)(n−θ−1)
2 , for any 1 ≤ i ≤

j ≤ n, we clearly have that

N(i, j) =

maxDegree(j-i+1)∑
k=1

Z∗(i, j, k)

=

maxDegree(j-i+1)∑
k=1

j−θ−i∑
h=0

θ+1∑
v=0

Z(i, j, k, h, v)

In the sequel, we describe Base Cases A-D, which initialize the arrays Z(i, j, k, h, v)
and Z∗(i, j, k), followed by Inductive Cases A-D, which treat the corresponding
updates within the for-loops of the following pseudocode. Since arrays Z,Z∗ are
initially set to zero, all updates to the arrays will be performed by adding a value
val to the current value held in the array, so we will write Z(i, j, k, h, v) += val

and Z∗(i, j, k) += val, which is a standard abbreviation for the assignments
Z(i, j, k, h, v) = Z(i, j, k, h, v) + val and Z∗(i, j, k) = Z∗(i, j, k) + val. Explatory
comments in the pseudocode are indicated by a double-slash. In Algorithm 1,
assume a positive integer input of n to indicate a length n homopolymer.

Algorithm 1 (Computing degree density)

1. Z = Z∗ = 0, then apply Base Cases A-D //initialize Z,Z∗

2. for d = θ + 2 to n //d is distance between i and j

3. for i = 1 to n

4. j = i+ d

5. if j ≤ n
6. for k = 0 to maxDegree(j − i+ 1) // degree k

7. for h = 0 to j − i− θ // h holes in [i, j − θ − 1]
8. for v = 0 to θ + 1 // v visible positions among [j − θ, j]
9. update Z(i, j, k, h, v) by Inductive Cases A-D

10. Z∗(i, j, k) =
∑
h

∑
v Z(i, j, k, h, v)

11. return Z,Z∗

In line 1, arrays Z,Z∗ are initialized to zero, then Base Cases A-D are applied;
lines 2-9 then treat the Inductive Cases A-D. In this dynamic programming (DP)
algorithm, the idea is to define Z,Z∗ for all intervals [i, j] where d = j − i, after
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having computed and stored the values for Z,Z∗ for all intervals [i, j] where j− i =
d−1. All secondary structures of the interval [i, j] can be partitioned into structures
having exactly degree k (i.e. k MS1 neighbors, in which k structures that can be
obtained by either adding or removing a single base pair). To support an inductive
argument, in proceeding from interval [i, j] to [i, j + 1], we need additionally to
determine the number of structures having degree k, which have a certain number
h of positions that are visible (external to every base pair), which can be paired
with the last position j+1. Note that the position j−θ can not be base-paired with
j in [i, j]; however, j − θ can be base-paired with j in [i, j + 1]. Thus in addition to
keeping track of the number h of holes (positions in i, . . . , j−θ−1 that are external
to all base pairs, hence can be paired with j), we introduce the variable v to keep
track of the number of visible positions in j − θ, . . . , j. This explains our need for
the function Z(i, j, k, h, v) as defined in the equations (5-12) for Base Cases A-D.
We now proceed to the details, where for ease of the reader, some definitions are
repeated.

Let θ = 3 denote the minimum number of unpaired positions required to be
present in a hairpin loop. For a length n homopolymer, let 1 ≤ i ≤ j ≤ n, 0 ≤ k ≤
(n−θ2 ), 0 ≤ h ≤ j− i−θ, 0 ≤ v ≤ θ+1. Recall that Z(i, j, k, h, v) denotes the number
of secondary structures on the interval [i, j], for 1 ≤ i ≤ j ≤ n for the homopolymer
model, that have exactly k neighbors, and for which there are exactly h unpaired
positions (or holes) in [i, j − θ − 1], and for which there are exactly v ∈ [0, θ + 1]
visible positions among j−θ, j−θ+1, . . . , j. For 0 ≤ v ≤ θ, this means that position
j− v is base-paired to some r ∈ [i, j− v− θ−1] while positions j− v, j− v+ 1, . . . , j
are not base-paired to any position in [i, j]. When v = θ + 1, this means simply
that the rightmost θ + 1 positions in the interval [i, j] are all unpaired.

Recall as well our definition that Z∗(i, j, k) =
∑
h

∑
v Z(i, j, k, h, v). We begin

by initializing Z(i, j, k, h, v) = 0 for all values in corresponding ranges. Letting
N(i, j) denote the number of secondary structures on [i, j] for the homopolymer
model, as computed by equation (2), the following recurrences describe an algo-
rithm that requires O(K·n3) storage and O(K2·n4) time to compute the probability

Prob[deg(s) = k] = Z∗(1,n,k)
N(1,n) that a (uniformly chosen) random secondary structure

has degree k for 0 ≤ k ≤ K, where K is a user-defined constant bounded above by
maxDegree(n) = (n−θ)(n−θ−1)

2 .

Base Case A considers all structures on [i, j], as depicted in Figure 1, that are
too small to have any base pairs, hence which have degree zero.
Base Case A: For j − i ≤ θ, define

Z(i, j, 0, 0, j − i+ 1) = 1 (5)

Fig. 1 Structures considered in base case A.

Base Case B considers all structures on [i, j], as depicted in Figure 2, that have
only base pair (i, j), since other potential base pairs would contain fewer than θ

unpaired bases. The degree of such structures is 1, since only one base pair can be



8 P. Clote

removed, and no base pairs can be added. Moreover, no position in [i, j] is external
to the base pair (i, j), so visibility parameters h = 0, v = 0. The arrow in Figure 2
indicates that the sole neighbor is the empty structure, obtained by removing the
base pair (i, j).
Base Case B: For j − i = θ + 1 and (i, j) is a base pair, define

Z(i, j, 1, 0, 0) = 1 (6)

Fig. 2 Structures considered in base case B.

Base Case C considers the converse situation, consisting of the empty structure
on [i, j] where j− i = θ+ 1, whose sole neighbor is the structure consisting of base
pair (i, j). The arrow is meant to indicate that the structure on the right is the
only neighbor of that on the left, as depicted in Figure 3. Since the size of the
empty structure on [i, j] is θ + 2 and every position in [i, j] is visible (external to
every base pair), h = 1 and v = θ + 1. the dotted rectangle in Figure 3 indicates
the θ + 1 unpaired positions at the right extremity as counted by v = θ + 1.
Base Case C: For j − i = θ + 1 and (i, j) not base-paired, define

Z(i, j, 1, 1, θ + 1) = 1 (7)

Fig. 3 Structures considered in base case C.

Base Case D considers the empty structure on [i, j] where j − i > θ + 1. The

empty structure is the only structure having degree maxDegree(i, j) = (j−i−θ+1)(j−i−θ)
2 ,

since maxDegree(i, j) many base pairs can be added to the empty structure. In
Figure 4, the dotted rectangle indicates the θ + 1 rightmost unpaired positions,
corresponding to visibility parameter v = θ + 1, while dotted circles indicate the
h = j− i− θ holes, i.e. unpaired positions that could be paired with the rightmost
position j.
Base Case D: For all (j − i + 1) > θ + 2, the empty structure, as indicated by
h + v = j − i + 1 (so h = j − i − θ and v = θ + 1), has degree maxDegree(i, j) as
defined by equation 1, where

Z(i, j,maxDegree(i, j), j − i− θ, θ + 1) = 1 (8)
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Fig. 4 Structures considered in base case D.

Inductive Case A considers the case where left and right extremities i, j form
the base pair (i, j), where j − i > θ + 1. No position in [i, j] is visible (external
to all base pairs), so visibility parameters h = 0 = v. Recalling the definition of
Z∗(i, j, k) from equation 4, we have the following.
Inductive Case A: For j − i > θ + 1 and (i, j) base-paired in [i, j],

Z(i, j, k, 0, 0) = Z(i, j, k, 0, 0) + Z∗(i+ 1, j − 1, k − 1) (9)

From this point on, we use the operator +=, so that the previous equation would
be written as Z(i, j, k, 0, 0) += Z∗(i+ 1, j − 1, k − 1).

Fig. 5 Structures considered in inductive case A.

Inductive Case B considers the case where last position j base-pairs with the r,
where i < r < j−θ. The value r = i has already been considered in Inductive Case
A, and values r = j − θ + 1, . . . , j − 1 cannot base-pair to j, since the correspond-
ing hairpin loop would constain less than θ unpaired positions. This situation is
depicted in Figure 6, where there are h holes (positions in [i, j − θ − 1] that are
external to all base pairs) and no visible positions in [j − θ, j].
Inductive Case B: For j − i > θ + 1 and (r, j) base-paired in [i, j] for some
i < r < j − θ,

Z(i, j, k, h, 0) +=

j−θ−1∑
r=i+1

∑
k1+k2=k−1

θ+1∑
w=0

Z(i, r − 1, k1, h− w,w) · Z∗(r + 1, j − 1, k2)

(10)

When implemented, this requires a check that h− w ≥ 0.

Fig. 6 Structures considered in inductive case B.

For each value v ∈ {1, . . . , θ+ 1}, inductive Case C(v) considers the case where
position r ∈ [i, j−v−θ−1] forms a base pair with position j−v. The value v = 0 is
not considered here, since it was already considered in Inductive Cases A,B. Note
that a structure s of the format has k neighbors, provided the restriction of s to
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[i, r− 1] has k1 neighbors, and the restriction of s to [r+ 1, j− 1] has k2 neighbors,
where k1 + k2 + vh + 1 = k. The term vh is due to the fact that since base pair
(r, j − v) ensures that all holes are located in [i, r− 1], hence located at more than
θ + 1 distance from all visible positions in [j − v + 1, j], a neighbor of s can be
obtained by adding a base pair from any hole to any visible suffix position – there
are vh many such possible base pairs that can be added. Finally, the last term +1 is
present, since one neighbor of s can obtained by removing base pair (r, j−v). This
explains the summation indices and summation terms in equation (11). Figure 7
depicts a typical structure considered in case C(v).
Inductive Case C(v), for v ∈ {1, 2, . . . , θ+1}: For j− i > θ+1 and (r, j−v) base-
paired in [i, j], for some i < r < j−v−θ, where j−v+1, . . . , j are unpaired in [i, j],

Z(i, j, k, h, v) += Z∗(2, j − 1− v, k − 1− vh) (11)

+

j−v−θ−1∑
r=i+1

∑
k1+k2=(k−1−vh)

θ+1∑
w=0

Z(i, r − 1, k1, h− w,w) · Z∗(r + 1, j − 1− v, k2)

The first term Z∗(2, j − 1− v, k− 1− vh) handles the subcase where r = 1, so that
(1, j − v) is a base pair, while the second term handles the subcase where r > 1.
Note that when implemented, this requires a test that h− w ≥ 0.

Fig. 7 Structures considered in inductive case C(v).

Case D considers the case where there are h holes, and positions j−θ−1, . . . , j
are unpaired, so that v = θ + 1. Note that v = θ + 1 implies only that j − θ, . . . , j
are unpaired, so Case D includes the addition requirement that position j−θ−1 is
unpaired. Structures s satisfying Case D can be partitioned into subcases where the
restriction of s to [i, j−θ−1] has h−w holes in [i, (j−θ−1)−(θ+1)] = [i, j−2θ−2],
and 1 ≤ w ≤ θ+1 visible positions in [j−2θ−1, j−θ−1]. Note that (h−w)+w = h,
accounting for the h holes in structure s in [i, j − θ − 1], and that it is essential
that w ≥ 1, since the case w = 0 was considered in Case C(θ + 1).

The term w(w+1)
2 is due to the fact that the rightmost position j− θ− 1 in the

restriction of s to [i, j−θ−1] can base-pair with position j, but not with j−1, etc.
since this would violate the requirement of at least θ unpaired bases in a hairpin
loop. Similarly, the second rightmost position j − θ − 2 in the restriction of s to
[i, j − θ − 1] can base-pair with positions j and j − 1, but not with j − 2, etc.; as
well, the third rightmost position j − θ − 3 can base-pair with positions j, j − 1
and j − 2, but not with j − 3, etc. The number of neighbors of s produced in this
fashion is thus

∑w
i=1 i = w(w+1)

2 . Finally, the term (θ+ 1)(h−w) is due to the fact
that each of the h−w holes in the restriction of s to [i, j − θ − 1] can base-pair to
each of the (θ + 1) positions in [j − θ, j].

The argument just given shows the following. Let s be a structure that satisfies
conditions of Case D with h holes and v = θ + 1 visible positions, and suppose
that the restriction of s to [i, j − θ − 1] has h − w holes and w visible positions.
Then s has k neighbors provided that the restriction of s to [i, j − θ − 1] has
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k − w(w+1)
2 − (θ + 1)(h− w) neighbors on interval [i, j − θ − 1]. The equation (12)

now follows.
Inductive Case D: For j − i > θ + 1 and j − θ − 1, j − θ, . . . , j unpaired in [i, j],
and 1 ≤ h < j − θ − i,

Z(i, j, k, h, θ + 1) +=
θ+1∑
w=1

Z(i, j − θ − 1, k − w(w + 1)

2
− (θ + 1) · (h− w), h− w,w)

(12)

Fig. 8 Structures considered in inductive case D.

As in Case C(v), when implemented, this requires a test that h− w ≥ 0.
Our implementation of equations (5-12) has been cross-checked with exhaustive

enumeration; moreover, we always have that
∑
k Z
∗(i, j, k) = N(i, j), so the degree

density is correctly computed.

2.3 Faster algorithm in the homopolymer case

The algorithm described in Section 2.2 requires O(K2n4) time and O(Kn3) space,

where K is a user-specified degree bound K ≤ (n−θ)(n−θ−1)
2 . By minor changes,

that algorithm can be modified to compute the degree density function p(k) =
Z∗(1,n,k)
N(1,n) for any given RNA sequence a1, . . . , an. In the case of a homopolymer,

any two positions are allowed to base-pair (regardless of whether the base pair
is a Watson-Crick or wobble pair), provided only that every hairpin loop con-
tains at least θ unpaired positions. For homopolymers, we have a faster algorithm
that requires O(K2n3) time and O(Kn2) space. Since nucleotide identity is unim-
portant, instead of Z(i, j, k, h, v), we describe the function Ẑ(m, k, h, v), where m
corresponds to the length j − i+ 1 of interval [i, j].

Ẑ∗(m, k) =
m−θ−1∑
h=0

θ+1∑
v=0

Ẑ(m, k, h, v)

N(m) =

(m−θ)(m−θ−1)
2∑

k=1

Ẑ∗(m, k)

We begin by initializing Ẑ(m, k, h, v) = 0 for all 1 ≤ m ≤ n, 0 ≤ k ≤ (m−θ)(m−θ−1)
2 ,

0 ≤ h ≤ m− 2, and 0 ≤ v ≤ θ + 1. If h < 0, we assume that Ẑ(m, k, h, v) = 0.

Base Case A: For 1 ≤ m ≤ θ + 1, define

Ẑ(m, 0, 0,m) = 1 (13)
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Base Case B: For m = θ + 2, define

Ẑ(m, 1, 0, 0) = 1 (14)

Base Case C: For m = θ + 2, define

Ẑ(m, 1, 1, θ + 1) = 1 (15)

Base Case D: For all m > θ + 2, define

Ẑ(m,
(m− θ)(m− θ − 1)

2
,m− θ − 1, θ + 1) = 1 (16)

Inductive Case A: For m > θ + 2 and 1 ≤ k ≤ (m−θ)(m−θ−1)
2 , define

Ẑ(m, k, 0, 0) += Ẑ∗(m− 2, k − 1) (17)

Inductive Case B: For m > θ+ 2, 1 ≤ k < (m−θ)(m−θ−1)
2 , and 0 ≤ h ≤ m− θ− 1,

define

Ẑ(m, k, h, 0) +=
m−θ−1∑
r=2

∑
k1+k2=k−1

θ+1∑
w=0

Ẑ(r − 1, k1, h− w,w) · Ẑ∗(m− r − 1, k2)

(18)

When implemented, this requires a check that h− w ≥ 0.
Inductive Case C(v): For v ∈ {1, 2, . . . , θ + 1} and m > θ + 2, define

Ẑ(m, k, h, v) += Ẑ∗(m− v − 2, k − 1− vh) (19)

+
m−v−θ−1∑

r=2

∑
k1+k2=(k−1−vh)

θ+1∑
w=0

Ẑ(r − 1, k1, h− w,w) · Ẑ∗(m− v − r − 1, k2)

Inductive Case D: For m > θ+ 2, 1 ≤ k < (m−θ)(m−θ−1)
2 , and 1 ≤ h < m− θ−1,

Ẑ(m, k, h, θ + 1) +=
θ+1∑
w=1

Ẑ(m− θ − 1, k − w(w + 1)

2
− (θ + 1) · (h− w), h− w,w)

(20)

Note that h is strictly less than m− θ− 1, since the case h = m− θ− 1 occurs only
when additionally v = θ+1, which only arises in the empty structure. The general
case for the empty structure was handled in Base Case D. When implemented,
this requires a check that h− w ≥ 0.
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3 Statistical methods

Current software for probability distribution fitting of connectivity data, such as
MatlabTM, MathematicaTM, R and powerlaw [3], appear to require an input file con-
taining the connectivity of each node in the network. In the case of RNA secondary
structures, this is only possible for very small sequence length. To analyze connec-
tivity data computed by the algorithm of Section 2.3, we had to implement code
to compute the maximum likelihood estimation for scaling factor α in a power-law
fit, the optimal degree kmin beyond which connectivity data is fit by a power-law,
and the associated p-value for Kolmogorov-Smirnov goodness-of-fit, as described
in [10]. We call the resulting code RNApowerlaw. This section explains those details.

Recall the definition of the zeta function

ζ(α) =
∞∑

n=n0

n−α (21)

We use both the generalized zeta function (22), as well as the truncated generalized
zeta function (23), defined respectively by

ζ(α;n0) =
∞∑

n=n0

n−α (22)

ζ(α;n0, n1) =

n1∑
n=n0

n−α (23)

Given a data set D = {x1, . . . , xn} of positive integers in the range [k0, k1], the
likelihood L(D|α) that the data fits a truncated power-law with scaling factor α
and range [k0, k1] is defined by

L(D|α) = Πn
i=1

x−αi
ζ(α; k0, k1)

(24)

Rather than sampling individual RNA secondary structures to estimate the con-
nectivity of the secondary structure network for a given homopolymer, the al-
gorithms from Sections 2.2 and 2.3 directly compute the exact number N(k) of
secondary structures having degree k, for all k within a certain range. It follows
that the likelihood L(D|α) that secondary structure connectivity fits a power-law
with scaling factor α is given by

L(D|α, k0, k1) = Πk1
k=k0

(
k−α

ζ(α; k0, k1)

)N(k)

(25)

hence the log likelihood is is given by

L(D|α, k0, k1) = −

log(ζ(α; k0, k1))

k1∑
k=k0

N(k)

−
α k1∑

k=k0

N(k) log(k)

 (26)
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The parameter α̂ which maximizes the log likelihood is determined by applying
SciPy function minimize (with Nelder-Mead method) to the negative log likelihood,
starting from initial estimate α0, taken from equation (3.7) of [10]

α0 = 1 + n

(
n∑
i=1

ln
xi

xmin − 1/2

)−1

(27)

which in our notation yields

α0 = 1 +

 k1∑
k=k0

N(k)

 ·


k1∑
k=k0

N(k) · log

(
k

k0 − 1/2

)
−1

(28)

In results and tables of this paper, we often write the maximum likelihood estimate
(MLE) α̂ simply as α.

We compute the Kolmogorov-Smirnov (KS) p-value, following [10], as follows.
Given observed relative frequency distribution D and a power-law fit P with scaling
factor α, the KS distance is defined to be the maximum, taken over all k ∈ [k0, k1]
of the absolute difference between the cumulative distribution function (CDF) for
the data evaluated at k, and the CDF for the power-law, evaluated at k

KS(kmin, kmax) = max
kmin≤x≤kmax

|Ca(x)− Cf (x)| (29)

where Ca and Cf are the actual and fitted cumulative density functions, respec-
tively. The KS p-value for the fit of data D by power-law P with scaling factor α,
is determined by (1) sampling a large number (N = 1000) of synthetic data sets
Di from a true power-law distribution with scaling factor α, (2) computing the
KS distance between each synthetic data set Di and its power law fit with MLE
scaling factor αi, (3) reporting the proportion of KS distances that exceed the KS
distance between the original observed data set and its power-law fit with scaling
factor α.

Following [10], kmin is chosen to be that degree k0, such that the KS distance for
the optimal power-law fit is smallest. In contrast, kmax is always taken to be the
maximum degree in the input data. Our computation of p-value for goodness-of-fit
follows Section 4.1 of [10], with the exception that we not generate any synthetic
data for values k < kmax, since the MLE scaling factor α is determined for the
(normalized) distribution of data values in the interval [kmin, kmax], a convention
followed in [3]. We have implemented Python code to compute α0, α, kmin, KS
distance, p-value, etc. as described above. In Section 4, we compare results of
our code with that from powerlaw [3] for very small homopolymers. Though our
code does not do lognormal fits, this is performed by powerlaw, where the density
function for the lognormal distribution with parameters µ, σ is defined by

p(x) =
exp

(
− (log(x)−µ)2

2σ2

)
x ·
√

2πσ2
(30)

In computing the p-value for power-law goodness-of-fit using Kolmogorov-Smirnov
statistics, it is necessary to sample synthetic data from a (discrete) power-law
distribution with scaling factor α, a particular type of multinomial distribution.
Given an arbitrary multinomial distribution with probability pi for each 1 ≤ i ≤ m,
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it is straightforward to create M synthetic data sets, each containing N sampled
values, in time O(mNM); however, since M = 1000 and N is the (exponentially
large) number of all secondary structures having degrees in [kmin, kmax], the usual
sequential method would require prohibitive run time. Instead, we implemented
the much faster conditional method [25]. Our goal is to sample from a multinomial
distribution given by

Prob [X1 = x1, X2 = x2, . . . , Xm] =
N !
m∏
i=1

xi!

m∏
i=1

pxii (31)

where m = kmax − kmin + 1 is the number of degrees in the synthetic data, and
in the sample set of size N there are xi many occurrences of degree kmin + i. To
do this, we sample X1 from the binomial distribution of N coin tosses with heads
probability p1, then X2 from the binomial distribution of N − x1 coin tosses with
heads probability p2

1−p1 , then X3 from the binomial distribution of N−x1−x2 coin

tosses with heads probability p2
1−p1−p2 , etc. where each xi is determined with the

function binom from Python Scipy.stats.

4 Results

Below, we use the algorithms described in previous sections to compute RNA
secondary structure connectivity, determine optimal scaling factor α and minimum
degree kmin for a power-law fit, then perform Kolmogorov-Smirnov bootstrapping
to determine the goodness-of-fit for parameters α, kmin. In Appendix A, we show
that preferential attachment appears to hold for the network of RNA structures,
at least for our definition of preferential attachment.

4.1 Analysis of RNA networks using RNAdensity and RNApowerlaw

The algorithm RNAdensity described in Section 2.3 was used to compute abso-
lute and relative degree frequencies for the following cases: (1) homopolymers
of length n = 10, 12, . . . , 40 with θ = 3 for maximum possible degree upper
bound K = (n−θ)(n−θ−1)

2 , (2) homopolymers of length n = 30, 35, . . . , 150 with
θ = 3, where degree upper bound K = 2n for n ∈ [30, 100] and K = n + 30 for
n ∈ [105, 150], (3) homopolymers of length n = 30, 35, . . . , 150 with θ = 1, where
degree upper bound K = 2n for n ∈ [30, 100] and K = n + 30 for n ∈ [105, 150].
For small homopolymers of length at most 30, optima values for kmin, power-law
scaling factor α, Kolmogorov-Smirnov distance were determined using software
powerlaw powerlaw [3] as well as RNApowerlaw from Section 3. Table 1 summarizes
these results, which show the agreement between powerlaw and RNApowerlaw. More-
over, both both programs indicate that formal hypothesis testing rejects the null
hypothesis that a power-law distribution fits connectivity data; indeed, powerlaw
determines a negative log odds ratio R for the logarithm of power-law likelihood
over lognormal likelihood, indicating a better fit for the lognormal distribution,
and RNApowerlaw determines small p-values for Kolmogorov-Smirnov goodness-of-
fit of a power-law distribution. Figure 9a shows connectivity density function for



16 P. Clote

a 100-mer, with overlaid Poisson and lognormal distributions – since Erdös-Rényi
random graphs have a Poisson degree distribution [2], it follows that RNA sec-
ondary structure networks are strikingly different than random graphs. Figure 9b
shows a portion of the power-law fit for degrees in [kmin, kmax], where scaling fac-
tor α ≈ 7.876 and kmin = 83. Although maximum degree probability at kpeak is
less than 0.05 for the raw data, the connectivity density for [kmin, kmax] is nor-
malized, which explains why the degree probability for kmin is ≈ 0.08. Visual
inspection might suggest an excellent fit for the power-law distribution; however,
a Kolmogorov-Smirnov p-value of ≈ 0 indicates that the distribution is not power-
law. The seemingly good power-law fit for RNA connectivity data, suggested by
visual inspection, however motivated our initial investigation of preferential at-
tachment.

Since powerlaw requires input files of (individually observed) connectivity de-
grees, when creating Table 1, we could not run powerlaw for homopolymer length
greater than 28, for which latter the input file contained 50, 642, 017 values. A po-
tentially attractive alternative is to generate input files consisting of N ·p(k) many
occurrences of the value k, where N = 102, 103, . . . , 107 denotes the total number
of samples, and where relative frequency p(k) is the proportion of structures hav-
ing degree k. However, Table 2 shows that neither scaling factor α nor kmin are
correct with this alternative approach, even for small homopolymers of length 20,
30 and 40. This table justifies the need for our implementation of RNApowerlaw as
described in Section 3. Table 3 shows maximum likelihood scaling factors α and
Kolmogorov-Smirnov p-values for optimal power-law fis of connectivity data for
homopolymers of lengths from 30 to 150.

Figure 10a shows a scatter plot with regression line for the cut-off values xc,
defined to be the least value such that the probability that a secondary structure
for length n homopolymer has degree greater that xc is at most 0.01. From this
figure, we determined that for homopolymer length n > 100, it more than suffices
to take degree upper bound K = n+ 30. Figure 10b shows the connectivity degree
distribution for a homopolymer of length 20, where degree dg(s) is redefined to be
the number of structures t that can be obtained from s by adding, removing, or
shifting a base pair in s. The so-called MS2 move set, consisting of an addition,
removal or shift of a base pair is the default move set used in RNA kinetics software
kinfold [23]. Although a dynamic programming algorithm was described in [13]
to compute the average MS2 network degree, the methods of this paper do not
easily generalize to MS2 connectivity densities. Figure 11 shows a least-squares
regression line for the log-log density plot for MS2 connectivity (computed by
brute-force) for a homopolymer of length 20, together with an optimal power-law
fit computed by RNApowerlaw. Since there are only 106.633 secondary structures
for the 20-mer with θ = 3, we ran powerlaw on MS2 connectivity data, which
determined α = 6.84, kxmin = 36, and a log odds ratio R = −2.06 with p-value
of 0.248. Since RNApowerlaw determined α = 6.84, kxmin = 36, and a Kolmogorov-
Smirnov p-value of 0.219, we can not reject the null hypothesis that a power-law
distribution fits the tail of MS2 connectivity data for a 20-mer.
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5 Conclusion

Since the pioneering work of Zipf on the scale-free nature of natural languages [37],
various groups have found scale-free networks in diverse domains ranging from
communication patterns of dolphins [26], metabolic networks [19], protein-protein
interaction networks [18,32], protein folding networks [6], genetic interaction net-
works [34,35] to multifractal time series [8]. These discoveries have galvanized
efforts to understand biological networks from a mathematical and topological
standpoint. Using mathematical analysis, Barabási and Albert [4] established that
scale-free networks naturally emerge when networks are dynamic, whereby newly
accrued nodes are preferentially connected to nodes already having high degree.
On such grounds, one might argue that protein folding networks and protein-
protein interaction (PPI) networks should exhibit scale-free properties, since na-
ture is likely to reuse and amplify fast-folding domains – cf. Gilbert’s exon shuffling
hypothesis [17]. Indeed, Cancherini et al. [9] have established that in 4 metazoan
species analyzed (H. sapiens, M. musculus, D. , melanogaster, C. elegans) those genes,
which are enriched in exon shuffling events, displayed a higher connectivity de-
gree on average in protein-protein interaction (PPI) networks; i.e. such genes had
a larger number of interacting partners. On similar grounds that nature should
reuse and amplify successful metabolic networks, one might argue that metabolic
networks should exhibit scale-free properties. However, rigorous statistical analysis
has shown that metabolic networks fail a goodness-of-fit test for scale-free distri-
bution, while PPI satisfy a goodness-of-fit test for scale-free distributions over a
certain range of connectivity [21,10].

There appears to be a current polemic whether certain naturally occurring
networks are scale-free. Broido and Clauset [7] provide statistical arguments that
less than 45 of the 927 real-world network data sets (i.e. 4%) found in the Index

of Complex Networks exhibit the “strongest level of direct evidence for scale-free
structure”. In a response to a preprint of [7] dated March 6, 2018 and posted on the
Barabási Lab web site https://www.barabasilab.com/post/love-is-all-you-need,
A.L. Barabási argued against the conclusions of [7]. Here, it should be noted that
this is not the first time a polemic has arisen about the power-law distribution
– indeed, there was a heated exchange between Mandelbrot and Simon almost
60 years ago in the journal Information and Control. For details, references, and a
history of the power-law distribution, see [27].

Given the current interest in whether certain naturally occurring networks
are scale-free, we have introduced a novel algorithm to compute the connec-
tivity density function for a given RNA homopolymer. Our algorithm requires
O(K2n4) run time and O(Kn3) storage, where K is a user-specified degree bound

K ≤ (n−θ)(n−θ−1)
2 . Short of exhaustively listing secondary structures by brute-

force, no such algorithm existed prior to our work. Since existent software appears
unable to perform power-law fitting for exponentially large RNA connectivity data,
we have also implemented code to compute and statistically evaluate the maximum
likelihood power-law fit for an input histogram, using a very fast method to the
density function of a sampled power-law distribution with given scaling parameter.
Using the resulting code, called RNAdensity and RNApowerlaw, we have computed
the connectivity density function for RNA secondary structure networks for ho-
mopolymers of length up to 150. Statistical analysis categorically shows that there
is no statistically significant power-law fit for homopolymer RNA secondary struc-
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ture network connectivity, despite the seemingly good visual fit shown in Figure 9.
Figure 12 shows that secondary structure network connectivity is not scale-free for
the (real) 32 nt selenocysteine insertion sequence fruA. Figure 13 shows that the
MS1 and MS2 degree distributions for other naturally occurring RNAs are not
scale-free, in particular for the 65 nt RNA thermometer from Klebsiella pneumoniae

subsp. pneumoniae with EMBL accession code CP000647.1/1773227-1773291 and
the 76 nt alanine transfer RNA from Mycoplasma mycoides with accession code
tdbR00000006 from tRNAdb [20] (accession code RA1180 from the Sprinzl tRNA
database). While the density plot in Figure 12 was produced by exhaustively
enumerating all 971,299 secondary structures of the 32 nt fruA, Figure 13 was
produced by enumerating all secondary structures having free energy within 13
kcal/mol of the minimum free energy, as computed by RNAsubopt from the Vienna
RNA Package [23]; this procedure generated 1,079,102 secondary structures (out
of a total of ≈ 1.99546 × 1015 structures) for the 65 nt fourU RNA, and 408,414
secondary structures (out of a total of ≈ 8.77347 × 1017 structures) for the 76 nt
tRNA.

Since [15,22] have presented data that suggests that existent protein structures
can be explained using only a small number of protein folds, we presented data in
Table 4 that suggests that RNA secondary structures may satisfy a type of pref-
erential attachment – a rigorous combinatorial argument establishes this fact for
a modified notion of preferential attachment (data not shown, but available in the
Appendix of [12]). Finally, Python implementations of the algorithms from this pa-
per are publicly available at http://bioinformatics.bc.edu/clotelab/RNAnetworks.

As an afternote, our personal opinion is that it doesn’t much matter whether
a naturally occurring network arising from physical phenomena is precisely scale-
free or not. If network connectivity appears to follow a power-law distribution,
even approximately, then by results of [4], this suggests that preferential attach-
ment could play a role in how the network may have been constructed by nature.
Preferential attachment might well have been a factor in how protein and RNA
structures have been formed by evolutionary forces – even in the emergence of
stable folds in prebiotic times [1]. It is noteworthy that only a small number of
protein folds suffice to explain the diversity of all protein folds found in the Pro-
tein Data Bank (PDB) [22]: “The number of proteins required to cover a target
protein is very small, e.g. the top ten hit proteins can give 90% coverage below a
RMSD of 3.5 Å for proteins up to 320 residues long.” As well, the 30 most popu-
lated metafolds represent “about half of a nonredundant subset of the PDB” [15].
However, other evolutionary factors seem to be present in the evolution of protein
folds, such as kinetic accessibility [14], as well as the ability to switch between
alternate conformations [31].
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Table 1 Table comparing goodness-of-fit computations for software powerlaw [3] and
RNApowerlaw for homopolymer lengths less than 30 nt. Given homopolymer length n, the
connectivity density is computed over all secondary structures for (all possible) degrees

k = 1, . . . ,
(n−3)(n−4)

2
using the algorithm described in Section 2.3. Program powerlaw re-

quires an input file containing the degrees of all structures (i.e. containing Sn values, where Sn
is the exponentially large number of all secondary structures), while our program RNApowerlaw
requires as input a list of degrees and their (absolute) frequencies. Table headers as follows: n is
homopolymer length, Sn is the number of all secondary structures, α is the maximum likelihood
value for the scaling factor of the optimal power-law fit, as computed by powerlaw (PL) and
RNApowerlaw (RNAPL), KSdist is the Kolmogorov-Smirnov (KS) distance using equation (29),
〈KSdist〉 is the mean KS-distance obtained by replacing ‘max’ by ‘mean’ in equation (29), R
is the log-odds ratio with associated p-value as computed by powerlaw, and the p-value in the
last column is computed by RNApowerlaw as described in Section 3. Since powerlaw required
more than 24 hours for the computation when n = 28, we did not attempt a computation for
n = 30; in contrast, RNApowerlaw requires a few seconds computation time. Since the log-odds
ratio R is the logarithm of the power-law likelihood divided by lognormal likelihood, a nega-
tive value R < 0 indicates that the lognormal distribution is a better fit for the tail of RNA
secondary structure connectivity data. A small p-value computed by RNApowerlaw indicates
that RNA connectivity data is not well-approximated by a power-law distribution. While our
code RNApowerlaw computes the p-value for the power-law fit, Alstott’s code powerlaw only
computes the p-value for the log-odds ratio test.

n Sn kmin α (PL) α (RNAPL) KSdist (PL) KSdist (RNAPL) 〈KSdist〉 log odds ratio R (PL) p-val for R (PL) p-val (RNAPL)
10 65 3 3.13752 3.13753 0.05576 0.05576 0.02721 -0.15 0.765 0.813
12 274 4 3.23011 3.23011 0.03650 0.03650 0.01277 -0.81 0.482 0.746
14 1184 5 3.38933 3.38935 0.02021 0.02021 0.00669 -1.70 0.270 0.699
16 5223 6 3.51285 3.51289 0.02252 0.02253 0.00603 -6.78 0.029 0.051
18 23434 9 3.79069 3.79073 0.02333 0.02333 0.00624 -16.00 0.001 0.001
20 106633 10 3.87168 3.87165 0.02116 0.02116 0.00581 -82.12 0.000 0.000
22 490999 10 3.85806 3.85809 0.02304 0.02304 0.00523 -670.64 0.000 0.000
24 2283701 14 4.16480 4.16477 0.02242 0.02242 0.00484 -1452.24 0.000 0.000
26 10713941 15 4.24485 4.24486 0.02298 0.02298 0.00417 -7129.42 0.000 0.000
28 50642017 16 4.33086 4.33089 0.02167 0.02168 0.00347 -33020.89 0.000 0.000
30 240944076 — — 4.33681 — 0.02393 0.00298 — — 0.000
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Table 2 Table showing that approximate [resp. exact] scaling factor α0 [resp. α] and min-
imum degree kmin for optimal power-law fit of homopolymer connectivity data can not be
reliably computed by using software powerlaw [3] on data sampled from relative frequen-
cies. Approximate value α0 is computed from equation (27), while α is the maximum like-
lihood estimate (MLE) of the optimal power-law scaling factor. Given homopolymer length
n = 20, 30, 40, connectivity density is computed over all secondary structures for (all possible)

degrees k = 1, . . . ,
(n−3)(n−4)

2
using the algorithm described in Section 2.3. Since powerlaw

requires input files of (individually observed) connectivity degrees, rather than a histogram of
(absolute) frequencies F (k) of connectivity degrees, we generated a file consisting of N · p(k)
many occurrences of the value k, where N = 102, 103, . . . , 107 denotes the total number of

samples, and where relative frequency p(k) is defined by p(k) = F (k)/
∑(n−3)(n−4)/2
k=1 F (k). In

contrast to powerlaw, our program RNApowerlaw (RNAPL) computes exact values from con-
nectivity degree (absolute) frequencies. When using powerlaw, it is clearly necessary to create
input files of ever-increasing sizes N , in order to have more accurate values of α0, α and kmin.
Since the number Sn of RNA secondary structures is exponential in homopolymer length n,
it rapidly becomes impossible to use powerlaw for large RNAs – for instance, table values for
n = 40 required an overnight run of powerlaw, while our software returned the exact value
within a few seconds.

N 102 103 104 105 106 107 RNAPL Sn
α0, n = 20 6.58318 3.66505 3.93389 3.86017 3.84749 3.84657 3.84648 106633 ≈ 1.1 · 105

kmin 10 7 10 10 10 10 10 —
α0, n = 30 5.27581 4.42183 4.46307 4.35008 4.32651 4.32272 4.32213 240944076 ≈ 2.4 · 108

kmin 12 13 16 16 16 16 16 —
α0, n = 40 5.15978 5.09714 5.03719 5.24488 5.16985 5.70916 5.94561 633180247373 ≈ 6.3 · 1011

kmin 15 19 23 29 29 42 49 —

N 102 103 104 105 106 107 RNAPL Sn
α, n = 20 6.76575 3.70988 3.96139 3.88570 3.87271 3.87180 3.87165 106633 ≈ 1.1 · 105

kmin 10 7 10 10 10 10 10 —
α, n = 30 5.33162 4.44651 4.47963 4.36511 4.34122 4.33739 4.33681 240944076 ≈ 2.4 · 108

kmin 12 13 16 16 16 16 16 —
α, n = 40 5.19197 5.11604 5.049419 5.25365 5.17824 5.65206 5.95033 633180247373 ≈ 6.3 · 1011

kmin 15 19 23 29 29 41 49 —
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Table 3 Table showing maximum likelihood scaling factors α with associated p values for
optimal power-law fits of RNA secondary structure connectivity data for homopolymers of
length n = 30 to 150. Absolute and relative connectivity degree frequencies were computed
by RNAdensity from Section 2.3, while the optimal parameters α, kmin and p-values were
computed by RNApowerlaw from Section 3. Column headers are as follows: n is sequence length,
kmax is the degree upper bound K for RNAdensity, % of Sn indicates the proportion of all
secondary structures having degree bounded by K = kmax, kpeak is the location of the density

maximum, kmfe = bn−θ
2
c is the degree of the minimum free energy structure (having largest

number of base pairs), kmin is the optimal lower bound for a power-law fit, α(kmin, kmax) is
the maximum likelihood scaling factor for power-law fit, KS(kmin, kmax) is the Kolmogorov-
Smirnov (KS) distance between connectivity data and power-law fit, p-val is goodness-of-fit p
value for Kolmogorov-Smirnov statistics, and 〈KS〉 is the average KS distance, obtained by
replacing ‘max’ by ‘mean’ in equation (29).

n kmax % of Sn kpeak kmfe kmin α(kmin, kmax) KS(kmin, kmax) 〈KS〉 p-val
30 60 0.998861 10 13 16 4.223674 0.014393 0.004877 0.000000
35 70 0.999174 12 16 18 4.395936 0.015391 0.005284 0.000000
40 80 0.999404 14 18 23 4.736679 0.015298 0.004859 0.000000
45 90 0.999563 16 21 30 5.146670 0.012075 0.004291 0.000000
50 100 0.999681 18 23 32 5.310801 0.012421 0.004345 0.000000
55 110 0.999762 20 26 39 5.674231 0.011649 0.003979 0.000000
60 120 0.999823 22 28 41 5.829310 0.012328 0.003979 0.000000
65 130 0.999866 24 31 49 6.200720 0.010772 0.003572 0.000000
70 140 0.999899 26 33 52 6.386452 0.010836 0.003464 0.000000
75 150 0.999923 28 36 60 6.721588 0.009719 0.003151 0.000000
80 160 0.999941 31 38 63 6.897103 0.009818 0.003067 0.000000
85 170 0.999955 33 41 67 7.097544 0.009737 0.002940 0.000000
90 180 0.999965 35 43 74 7.373569 0.008916 0.002726 0.000000
95 190 0.999973 37 46 78 7.564208 0.008755 0.002615 0.000000

100 200 0.999979 40 48 83 7.775022 0.008444 0.002476 0.000000
105 135 0.999388 42 51 67 7.204937 0.010712 0.003853 0.000000
110 140 0.999432 44 53 70 7.360192 0.010810 0.003854 0.000000
115 145 0.999474 46 56 73 7.513728 0.010889 0.003852 0.000000
120 150 0.999512 49 58 77 7.706717 0.010405 0.003703 0.000000
125 155 0.999549 51 61 80 7.856962 0.010504 0.003696 0.000000
130 160 0.999582 53 63 84 8.045458 0.010102 0.003556 0.000000
135 165 0.999614 55 66 88 8.231267 0.009724 0.003425 0.000000
140 170 0.999643 58 70 91 8.377410 0.009809 0.003418 0.000000
145 175 0.999670 60 71 94 8.522170 0.009884 0.003413 0.000000
150 180 0.999695 62 75 98 8.703041 0.009515 0.003289 0.000000

Table 4 Table showing secondary structure preferential attachment probabilities. The first
two columns contain homopolymer length n and n + 1, followed by the number of secondary
structures in Sn and Sn+1, then the total number of 4-tuples (s, t, s′, t′) that succeed in
demonstrating [resp. fail to demonstrate] preferential attachment, denoted by Succ [resp. Fail].
The next column contains the proportion Succ/(Succ+Fail) of 4-tuples that demonstrate
preferential attachment, defined by equation (33), while the last column contains the expected
preferential attachment 〈p(s′, t′|s)〉, defined by equation (35). This expectation is obtained
by computing the arithmetical average of the conditional probabilities p(s′, t′|s, t), defined by
p(s′, t′|s, t) = P (dg(s′) ≥ dg(t′)|dg(s) ≥ dg(t), s ≺ s′, t ≺ t′).

n n+1 Sn Sn+1 Succ Fail Succ/(Succ+Fail 〈p(s′, t′|s, t)〉
5 6 2 4 5 1 83.33% 0.8333± 0.1667
6 7 4 8 18 8 69.23% 0.7222± 0.4157
7 8 8 16 90 37 70.87% 0.7748± 0.3260
8 9 16 32 419 131 76.18% 0.8105± 0.2941
9 10 32 65 1,891 575 76.68% 0.8122± 0.2887

10 11 65 133 7,883 2,498 75.94% 0.8125± 0.2891
11 12 133 274 33,069 9,763 77.21% 0.8300± 0.2730
12 13 274 568 142,968 40,797 77.80% 0.8322± 0.2709
13 14 568 1,184 621,884 171,384 78.40% 0.8366± 0.2646
14 15 1,184 2,481 2,723,993 723,887 79.00% 0.8428± 0.2587
15 16 2,481 5,223 12,041,929 3,108,978 79.48% 0.8478± 0.2556
16 17 5,223 11,042 53,730,451 13,544,005 79.87% 0.8518± 0.2523
17 18 11,042 23,434 241,738,083 59,258,399 80.31% 0.8561± 0.2485
18 19 23,434 49,908 1,096,087,115 261,730,198 80.72% 0.8598± 0.2455
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Fig. 9 (a) Connectivity degree distribution for homopolymer of length 100 where θ =
3, computed with the algorithm described in Section 2.3 for all degrees bounded by
K = 200. There are 6.32 · 1032 secondary structures for the 100-mer (exact number
6.31986335936396855341222902079183), and 99.9978706904% of the structures have degree
bounded by K. Using the output degree densities, the degree mean [standard deviation] is
µ = 46.2543801196 [resp. σ = 12.2262985078]; note that the mean computed from the algo-
rithm in Section 2.3 is very close to the exact degree mean of µ = 46.2591895818, computed
over all structures using the different dynamic programming algorithm in [11]. The Poisson
distribution (blue curve) with same mean µ is shown, as well as the lognormal distribution
(red) with parameters µ0 = 3.80467214577 and σ0 = 0.235563374146; i.e. µ0 [resp. σ0] is the
mean [resp. standard deviation] for logarithms of the connectivity degree – see equation (30).
(b) Power-law fit of tail with scaling factor α = 7.8762287746 and kmin = 83, determined
by maximum likelihood. Kolmogorov-Smirnov (KS) distance for the fit is 0.01213 – see equa-
tion (29), while average KS distance for the alpha power-law fit 0.00400. Nevertheless, since
the p-value 0 (to 10 decimal places), hypothesis testing would reject the null hypothesis that
the power-law distribution is a good fit for the tail.
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Fig. 10 (a) Plot of the least cut-off value xc as a function of homopolymer length n, for
n = 30, 40, . . . , 100. Here xc is defined as the least value such that the probability that a
secondary structure for length n homopolymer has degree greater that xc is at most 0.01.
For the least-squares fit, the regression equation is y = 0.870714x + 38.1369, with p-value of
1.65112 · 10−15 for slope value, and p-value of 5.20963 · 10−13 for the y-intercept. (b) MS2

connectivity for the 106,633 secondary structures for a 20-nt homopolymer with θ = 3 (green
shaded curve), with Poisson distribution of the same mean. Connectivity values range from
4, . . . , 136 (with many intermediate gaps before the max degree). The distribution mean [resp.
standard deviation] is µ = 22.0531 [resp. σ = 7.333]; these values should be contrasted with
the corresponding values of µ′ = 8.3364 [resp. σ′ = 4.7690] for MS1 connectivity for the same
20-nt homopolymer (data not shown).

Fig. 11 (a) Plot of ln(density) as a function of ln(degree) for the degree distribution for MS2

connectivity of the 20-nt homopolymer with θ = 3, for degrees 4, . . . , 136. The distribution tail
appears to satisfy a power-law with exponent ≈ −5.6247, i.e. p(x) ∝ x−5.6247, where x is degree
and p(x) is the relative frequency of the number of nodes having degree x (regression equation
log-log plot is ln(p(x)) = 14.7589 − 5.6247 · x). (b) It is well-known that linear regression of
the log-log plot is less reliable than using maximum likelihood when establishing whether the
tail of empirical data is fit by a power-law distribution. For the MS2 connectivity data of a
20-nt homopolymer, the maximum likelihood estimation (MLE) of optimal power-law scaling
factor is α = 6.8257 with p-value is 0.219 when kmin = 36 and kmax = 136. Since the p-value
is not less than 0.05, we can not reject the null hypothesis that MS2 connectivity is well-fit
by a power-law distribution.
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Fig. 12 (a) MS1- and MS2-degree distribution for the 32 nt selenocystein insertion (SE-
CIS) element fruA with sequence CCUCGAGGGG AACCCGAAAG GGACCCGAGA GG,
obtained by brute-force computation from an enumeration of all secondary structures (exact
number 971299), ranging in degree from 4 to 123. Average MS1-degree 13.10; average MS2-
degree 33.25. Using notation from Table 9, the MLE power-law fit for MS1-degree data has
values of kmin = 35, α(35, 123) = 6.329, KS(35, 123) = 0.0221, 〈KS〉 = 0.0075, p-value of
0.0000. In contrast, the MLE power-law fit for MS2-degree data has values of kmin = 93,
α(93, 123) = 14.441, KS(93, 123) = 0.0219, 〈KS〉 = 0.0081, p-value of 0.729. Summarizing,
Kolmogorov-Smirnov statistics indicate that the MS1 data is not scale-free, while it cannot
be refuted that the MS2 data is scale-free. However, the range of degrees for which the MS2

data might be scale-free is from 93 to 123, which accounts for only 5.77 · 10−4 of the density.
As shown in (b), even log-log regression suggests that the MS2 data is not scale-free. (b) Log-
log plot of MS2-density of fruA with regression equation ln density = 24.37 + 7.56 · ln degree,
determined from the relative frequency of structures having MS2-degree in the range of 29 to
4123, corresponding to the portion of the MS2 density starting after the peak of 0.04987 in
previous panel at degree kpeak = 29.
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Fig. 13 (a) MS1- and MS2-degree distribution for the 65 nt fourU RNA from Klebsiella
pneumoniae subsp. pneumoniae with sequence GGACAAGCAA UGCUUGCCUU UAUGU-
UGAGC UUUUGAAUGA AUAUUCAGGA GGUUAAUUAU GGCAC and EMBL accession
code CP000647.1/1773227-1773291. FourU RNA is a class of thermometers found in bacteria
such as E. coli, Salmonella, V. cholerae, etc. that regulate protein expression by undergoing
a conformation change triggered by temperature – for instance, the conformational change of
the V. cholerae fourU thermometer at 37◦C permits the transcription of a virulence factor.
All 1,079,102 secondary structures having free energy within 13 kcal/mol of the minimum free
energy (MFE) of this RNA were generated using RNAsubopt from the Vienna RNA Package
[23]. The MS1 and MS2 degree of each secondary structure were determined in order to pro-
duce the degree relative frequency histogram. Although the collection of structures having free
energy within 13◦C of the MFE contains over one million structures (computation required 1-2
days), there are 1995457849526533 (≈ 1.99546× 1015) many secondary structures altogether.
The average MS1 degree is 38.0, while the average MS2 degree is 64.2.
FourU MS1 analysis: Using RNApowerlaw, xmin = 93, α = 6.02, and p-value is 0 (to 10
decimal places). Using powerlaw, xmin = 96, α = 6.02, and the log ratio of power-law fit to
log-normal fit is R = −23.6283 with corresponding p-value of 1.77 × 10−4 – in other words,
a log-normal distribution provides a significantly better fit than a power-law distribution for
the MS1 degree data of this fourU RNA.
FourU MS2 analysis: Using RNApowerlaw, xmin = 85, α = 6.159, and p-value is 0 (to 10
decimal places). Using powerlaw, xmin = 85, α = 6.159, and the log ratio of power-law fit to
log-normal fit is R = −122.1518 with corresponding p-value of 5.9389×10−20 – in other words,
a log-normal distribution provides a significantly better fit than a power-law distribution for
the MS2 degree data of this fourU RNA.
(b) MS1- and MS2-degree distribution for the 76 nt alanine transfer RNA from Mycoplasma
mycoides with accession code tdbR00000006 from tRNAdb [20] (accession code RA1180 from the
Sprinzl tRNA database) with sequence GGGCCCUUAG CUCAGCUGGG AGAGCACCUG
CCUUGCACGC AGGGGGUCGA CGGUUCGAUC CCGUUAGGGU CCACCA. All 408414
secondary structures having free energy within 13 kcal/mol of the minimum free energy of this
RNA were generated using RNAsubopt from the Vienna RNA Package [23]. The MS1 and MS2
degree of each secondary structure were determined in order to produce the degree relative
frequency histogram. Although the collection of secondary structures having free energy within
13◦C of the MFE contains about one-half million structures (computation required 1-2 days),
there are 877346780605139050 (≈ 8.77347× 1017) many secondary structures altogether. The
average MS1 degree is 38.1, while the average MS2 degree is 68.3.
tRNA MS1 analysis: Using RNApowerlaw, xmin = 36, α = 5.1419, and p-value is 0 (to 10
decimal places). Using powerlaw, xmin = 36, α = 5.1419, and the log ratio of power-law fit to
log-normal fit is R = −95.3556, with corresponding p-value of 1.6193×10−16 – in other words,
a log-normal distribution provides a significantly better fit than a power-law distribution for
the MS1 degree data of this fourU RNA.
tRNA MS2 analysis: Using RNApowerlaw, xmin = 114, α = 7.0845 and p-value is 0 (to 10
decimal places). Using powerlaw, xmin = 122, α = 7.1352, and the log ratio of power-law fit to
log-normal fit is R = −41.1935 with corresponding p-value of 5.0374× 10−6 – in other words,
a log-normal distribution provides a better fit than power-law for the MS22 degree data of
this tRNA.
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Appendix

A Preferential attachment of RNA secondary structures

In this section, we provide preliminary data that suggest that preferential attachment holds
in the homopolymer RNA secondary structure model. A rigorous argument can be found in
the preprint [12] for all homopolymer RNA networks, albeit with respect to a slight relaxation
of our definitions. Before proceeding we recall basic definitions and notation. The notion of
homopolymer secondary structure was defined at the beginning of Section 2.1; throughout this
section, we denote the set of all secondary structures for a length n homopolymer by Sn. If
s ∈ Sn and s′ ∈ Sn+1, then we say that s′ extends s, and write s ≺ s′, if s′ is obtained
by either (1) appending unpaired nucleotide n + 1 to the right of s, so that the dot-bracket
notation of s′ is s•, or (2) adding a base pair (k, n + 1) to s, where k ∈ [1, n − θ] is external
to every base pair of s, i.e. it is not the case that i ≤ k ≤ j for any base pair (i, j) of s. Since
the seminal papers of [33,30], this notion of extension has been used as the basis of recursive
and/or dynamic programming algorithms to count/enumerate all secondary structures and to
compute minimal free energy structures.

A reasonable approach to establish preferential attachment in the context of RNA sec-
ondary structures is to show that if the degree of s is greater than or equal to the degree of
t in the network Sn, then for most extensions s′ of s, and t′ of t, the degree of s′ is greater
than or equal to the degree of t′ in the network Sn+1. We show that this is indeed the case for
homopolymers of modest length, using by brute-force, exhaustive computations in this section,
and we rigorously establish this result for a relaxation S∗n of the secondary structure model in
Appendix A.

For fixed homopolymer length n, define the set An of 4-tuples (s, t, s′, t′) by

An = {(s, t, s′, t′) : s, t ∈ Sn, s′, t′ ∈ Sn+1, s 6= t, s ≺ s′, t ≺ t′, dg(s) ≥ dg(t)} (32)

A 4-tuple (s, t, s′, t′) ∈ An succeeds in demonstrating preferential attachment if dg(s′) ≥ dg(t′);
otherwise the 4-tuple fails to demonstrate preferential attachment. Let Succn [resp. Failn]
denote the set of 4-tuples that succeed [resp. fail] to demonstrate preferential attachment, so
that An = Succn ∪ Failn (when n is clear, we drop the subscripts, and we ambiguously also
use Succ and Fail to denote the sizes of these sets). Our first quantification of preferential
attachment is given by the proportion Succ/(Succ+Fail):

P (Succn) =
|{(s, t, s′, t′) ∈ An : dg(s′) ≥ dg(t′)}|

|An|
(33)

Since secondary structures have possibly quite different degrees and numbers of extensions, a
more accurate measure (in our opinion) of preferential attachment is given by 〈p(s′, t′|s, t)〉,
defined as follows. For distinct, fixed structures s, t ∈ Sn, define

p(s′, t′|s, t) = P
(
dg(s′) ≥ dg(t′)|dg(s) ≥ dg(t), s ≺ s′, t ≺ t′|dg(s) ≥ dg(t)

)
(34)

=

{
0 if dg(s) < dg(t)
|{(s′,t′):s′,t′∈Sn+1,s

′ 6=t′,s≺s′,t≺t′,dg(s′)≥dg(t′)}|
|{(s′,t′):s′,t′∈Sn+1,s′ 6=t′,s≺s′,t≺t′}|

else

〈p(s′, t′|s, t)〉 =

∑
s,t∈Sn,s6=t p(s

′, t′|s, t)
|{(s, t) : s, t ∈ Sn, s 6= t, dg(s) ≥ dg(t)}|

(35)

To clarify these definitions, we consider a small example. If n = 5, then Sn consists of the
two structures • • • • •, and ( • • • ) , while Sn+1 consists of the four structures • • • • ••,
( • • • • ) , • ( • • • ) , ( • • • ) •. Fix s to be ( • • • ) , and t to be • • • • •. Since the only
neighbor of s is t, and vice-versa, it follows that dg(s) = 1 = dg(t). By definition, an extension
s′ of s is obtained either by adding an unpaired nucleotide to s at position n+ 1, or by adding
a base pair (k, n + 1) to s, where k is external to all base pairs of s. In the current case, the
only possible extension of s is produced by the former rule, thus obtaining s′ = ( • • • ) •.
Note that we do not consider the structure • ( • • • ) to be an extension of s. In contrast, the
structure t = ••••• has three extensions: t′1 = ••••••, t′2 = ( •••• ) , t′3 = • ( ••• ) , where
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by definition, t′4 = ( ••• ) • is not considered to be an extension of t. Clearly dg(s′) = dg(t′2),
dg(s′) = dg(t′3), but dg(s′) = 1 6≥ dg(t′1) = 3, so

2

3
=
|{(s′, t′) : dg(s′) ≥ dg(t′) ∧ s ≺ s′, t ≺ t′, s, t ∈ Sn+1}|

|{(s′, t′) : s ≺ s′, t ≺ t′, s, t ∈ Sn+1}|

so p(s′, t′|s, t) = 0.6667. If we now take s = • • • • •, and t = ( • • • ) , we find that

3

3
=
|{(s′, t′) : dg(s′) ≥ dg(t′), s ≺ s′, t ≺ t′, s, t ∈ Sn+1}|

|{(s′, t′) : s ≺ s′, t ≺ t′, s, t ∈ Sn+1}|

so p(s′, t′|s, t) = 1. The (arithmetical) average of 1 and 2/3 is 2+3
3

= 5/6 = 0.8333, which

is the value 〈p(s′, t′|s, t)〉 found in the first row and last column of Table 4. In contrast to
this value, averaged over all pairs s, t ∈ Sn for which dg(s) ≥ dg(t), the total number of
successes [resp. failures] is 5 [resp. 1], where a success [resp. failure] is defined as a 4-tuple
(s, t, s′, t′) for which s, t ∈ Sn, s′, t′ ∈ Sn+1, s ≺ s′, t ≺ t′, dg(s) ≥ dg(t) and dg(s′) ≥ dg(t′)
[resp. dg(s′) < dg(t′)]. Thus we find the value 5/6 = 0.8333 in the first row and 7th column;
however, it is not generally true that Succn/ (Succn+ Failn) agrees with 〈p(s′, t′|s, t)〉, since
s, t may have different degrees in Sn, and each may have a different number of extensions
s ≺ s′, t ≺ t′, and each s′, t′ may each have different degrees in Sn+1.

For homopolymers of length 5 to 18, Table 4 shows the proportion of successes, P (Succ),
defined in equation (33), as well as the average preferential attachment probabilities 〈p(s′, t′|s, t)〉,
defined in equation (35). Values in this table, produced by brute-force, exhaustive computa-
tion, were obtained for each homopolymer length n ∈ [5, 19], by first generating the collections
Sn, then computing the degrees dg(s) for s ∈ Sn by brute force, then considering all

(n
2

)
unordered pairs s, t of distinct structures in Sn. So far, the number of instances to consider
is large – for instance, when n = 18, there are

(n
2

)
= 274, 564, 461 unordered pairs of distinct

structures from Sn. For each pair of distinct structures s, t from Sn that satisfy dg(s) ≥ dg(t),
a list Ls [resp. Lt] of extensions s ≺ s′ [resp. t ≺ t′] were computed, where the size of each
list is one plus the number of positions in [1, n − θ] that are external to every base pair of s
[resp. t]. Subsequently, the proportion of extension pairs s′, t′ that satisfy dg(s′) ≥ dg(t′) is
determined, thus yielding p(s′, t′|s, t). Finally, the mean and standard deviation of the latter
yields 〈p(s′, t′|s, t)〉, shown in the last column of the table. For n = 18, more than one trillion
(1.36 · 109) 4-tuples (s, t, s′, t′) where considered for which dg(s) ≥ dg(t) – this value is used
in the denominator of equation (35)!

From the values in Table 4, it appears that the RNA homopolymer secondary structure
model does demonstrate preferential attachment. This, in our opinion, may provide theoretical
justification for the close approximation of the tail of degree distributions by a power-law
distribution, even though a rigorous statistical test by bootstrapping Kolmogorov-Smirnov
values solidly rejects this hypothesis.


