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Abstract

We describe the first algorithm and software, RNAenn, to compute the partition function and minimum
free energy secondary structure for RNA with respect to an extended nearest neighbor energy model. Our
next-nearest-neighbor triplet energy model appears to lead to somewhat more cooperative folding than
does the nearest neighbor energy model, as judged by melting curves computed with RNAenn and with
two popular software implementations for the nearest-neighbor energy model. A web server is available
at http://bioinformatics.bc.edu/clotelab/RNAenn/.

Introduction

Thermodynamics-based ab initio RNA secondary structure algorithms are used to detect microRNAs
[1], targets of microRNAs [2], non-coding RNA genes [3], temperature-dependent riboregulators [4],
selenoproteins [5], ribosomal frameshift locations [6], RNA-protein binding sites [7], etc. The importance
and ubiquity of RNA thermodynamics-based algorithms cannot be overemphasized – there are even
applications in RNA design for novel cancer therapies and in synthetic biology. Indeed, in [8] Vashishta
et al. used the RNA minimum free energy (MFE) structure prediction algorithm mfold [9] to design
seven anti-pCD ribozymes, four of which were cloned, stably transfected in the highly metastatic human
breast cancer cell line, MDA-MB-231, and shown to have a therapeutic potential by knocking down the
expression of pCD. (Procathepsin D (pCD) is correlated with highly invasive malignancies, such as breast
cancer. Ribozymes, first discovered by the Nobel laureats, T. Cech and S. Altman, are RNA enzymes
that can cleave a molecule or catalyze a reaction.)

Following pioneering work of the Tinoco Lab and Freier et al. [10], a number of increasingly sophis-
ticated nearest neighbor models have been defined: INN [11, 12], INN-HB, also called Turner99 [13],
Turner2004 [14, 15], as well as models that incorporate knowledge-based parameters [16, 17]. These free
energy parameters of the nearest neighbor (NN) model form the foundation for essentially all current
thermodynamics-based RNA algorithms: minimum free energy (MFE) secondary structure [9,18], Boltz-
mann partition function [19], maximum expected accuracy secondary structure [20], MFE secondary
structure with pseudoknots [21], sampling suboptimal structures [22], RNA sequence-structure align-
ments [23], etc.

Benchmarking studies have shown that, on average, the minimum free energy structure includes 73%
of base pairs in X-ray structures when domains of fewer than 700 nucleotides (nt) are folded [24]; i.e.
prediction sensitivity of the MFE structure is 73%, although accuracy drops as sequence length increases.
There is increasing evidence that by improving the free energy parameters, structure prediction accuracy
can be improved. Andronescu et al. [16] used combinatorial optimization to determine optimal weights
α, β for which energy parameters are determined by α-weighted contribution from Turner’s free energies
together with β-weighted contribution from knowledge-based potentials, the latter obtained from the
negative logarithm of frequencies in existent structure databases. Free energy parameters in the Turner
model are determined by a least-squares fit of UV absorption data based on the assumption that change
in heat capacity, ∆CP , is zero. This assumption is erroneous, as pointed out by Mikulecky and Feig [25],
who observed that the hammerhead ribozyme does not fold in 2-state transition, but rather has 3 states:
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cold denatured, folded and hot denatured. In [17] M. Bon improved MFE structure prediction by defining
new parameters for the nearest neighbor model that account for linear dependence of change ∆CP of
heat capacity on sequence length and by incorporating knowledge-based potentials from a hand-curated
selection of Sprinzl’s transfer RNA database [26].

Subsection 1.1: Motivation from protein helix-coil transition

Consider a coarse-grain classification of amino acids, where a polypeptide chain is given by an n-mer, or
length n sequence a1, . . . , an of amino acids, where each residue ai is either in an H (α-helix) or C (coil)
conformation. Assume that the energy of an α-helical residue is E(H) = ǫ0 < 0, while that of a coil
residue is E(C) = 0. A protein with many residues in an α-helical conformation at room temperature,
such as hemoglobin, will unfold into a random coil at a higher temperature, where all previous H residues
have been transformed into C residues. In particular, if a1, . . . , an is an α-helix, then at low temperature,
all residues are H, while at high temperature all residues are C. The partition function Z of a1, . . . , an

is defined by Z =
∑

s
exp(−E(s)/RT ), where the sum is taken over all 2n many sequences s of H’s and

C’s. Using the (temperature-dependent) partition function, we can compute the expected number 〈H〉
of α-helical residues for the n-mer a1, . . . , an at absolute temperature T , defined by

〈H〉 =
∂ lnZ

∂ ln s
(1)

where s = exp(−ǫ0/RT ) – see [27]. Subsequently, it is possible to plot the expected helical fraction 〈H〉
n as

a function of temperature. Non-cooperative energy models show an approximately linear relation, where
the expected helical fraction slowly decreases as temperature increases. In contrast, the plot of expected
helical fraction versus temperature for cooperative energy models displays a sigmoidal shape, where there
is an abrupt helix-coil transition from high to low values for the helical fraction that occurs at a critical
temperature TM .

Polymer theory provides several mathematical models to explain the temperature-dependent helix-
coil transition for proteins. The simplest polymer model for the helix-coil transition of an α-helix is the
non-cooperative model, where the probability that the each residue is H is independent of the conforma-
tion of every other residue. The cooperative, nearest-neighbor model for helix-coil transition, introduced
by Zimm and Bragg [28], includes nucleation free energy δ > 0 that is applied for each α-helical seg-
ment of contiguous H residues. Finally, the Ising model was introduced by E. Ising in 1925 [29] to explain
ferromagnetism, but has subsequently been used to model protein temperature-dependent helix-coil tran-
sitions – see, for instance [30]. Progressing from the independent model to the Zimm-Bragg model to the
Ising model, each model is increasingly cooperative, thus providing a better fit to the experimental data.
See Dill and Bromberg [27] for a more detailed discussion.

In the Nussinov energy model [31] for RNA secondary structure, the free energy of a secondary
structure S is defined to be −1 times the number |S| of base pairs of S; i.e. in the Nussinov model,
each base pair contributes an energy of −1, and there is no energy term for entropic considerations.
The Turner energy model [13, 32] for RNA secondary structure contains negative free energies for base
stacks, which depend on the nucleotides involved, such as the base stacking free energy of −2.24 kcal/mol

at 370C for
5′-AC-3′

3′-UG-5′
and of −3.26 kcal/mol for

5′-CC-3′

3′-GG-5′.
. Additionally the Turner energy model

contains free energies for various loops (hairpin, bulge, internal loop, multiloop) that include entropic
considerations. Clearly, the Turner energy model for RNA secondary structure is analogous to the
cooperative, nearest-neighbor model for helix-coil transitions introduced by Zimm and Bragg. Figure 1
contrasts the temperature-dependent cooperativity of the Turner energy model with the temperature-
independent non-cooperativity of the Nussinov energy model. The motivation for this paper is to solve

the equation: ?
Turner =

Ising
Zimm-Bragg. Though we do not determine the analogue of the Ising model
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for RNA secondary structure formation, we do introduce an extended nearest-neighbor model, also called
triplet or next-nearest-neighbor model, which displays somewhat more cooperativity, as displayed in the
sharpness of the transition from folded to unfolded state in a figure shown later in the paper.

Subsection 1.2: Triplet model

As previously mentioned, the nearest-neighbor energy model [13,32] assigns free energies for base stacks

of the form
5′-AB-3′

3′-DC-5′
for the formation of a stacked base pair between 5′ − AB − 3′ with 5′ − CD − 3′.

In contrast, the extended-nearest-neighbor triplet model assigns free energies for triplexes of the form
5′-ABC-3′

3′-FED-5′
where a stacked triple (two contiguous base stacks) between 5′−ABC−3′ and 5′−DEF −3′.

In this case, we expect that the triplet free energy of
5′-ABC-3′

3′-FED-5′
can be approximated by the average of

the base stacking free energies for
5′-AB-3′

3′-FE-5′
and

5′-BC-3′

3′-ED-5′
; however, we expect the triplet energies to

more accurately model the formation of secondary RNA structure.
The extended-nearest-neighbor triplet model for hybridized DNA duplexes and DNA-RNA hybrids

was considered in experimental work of D.M. Gray, who in Table 1 of [12] determined the theoretical
number of independent hybridized sequences that must be considered in UV absorbance experiments,
in order to obtain triplet stacking free energies by least-squares fitting of data. In [33] Gray et al.
experimentally determined in vivo inhibition parameters for next-nearest-neighbor triplets in the case of
antisense DNA – RNA hybridization to inhibit protein expression. In [34], Najafabadi et al. applied a
neural network to predict the thermodynamic parameters for the next-nearest-neighbor triplet model,
using existent UV absorbance data from the thermodynamic database for nucleic acids, NTDB version
2.0 [35].

Though at present there are no experimentally determined free energies for triplet stacking, Binder
et al. [36] did show a strong correlation between microarray fluorescence intensities and DNA-RNA
base stacking free energies of Sugimoto et al. [37]. More precisely, Binder et al. showed that linear
combinations of triple-averaged probe sensitivities provide nearest-neighbor sensitivity terms, that rank
in similar order as the base stacking free energy parameters for DNA-RNA in solution [37]. It is our
hope that future improvements in RNAseq, microarray or other technologies will ultimately furnish
experimentally determined triplet and even k-tuple stacking free energies. New triplet free energies could
immediately be incorporated into our algorithms, and it is tedious, but clear how one can modify our
algorithms to handle k-tuple free energies.

Subsection 1.3: Plan of the paper

In this paper, we describe the first algorithms to compute the partition function and minimum free
energy structure for single-stranded RNA, with respect to the full next-nearest-neighbor triplet energy
model for RNA. In the Introduction, we gave the motivation for this work, coming from the Zimm-
Bragg and Ising models in biopolymer theory. The plan for the remainder of the paper is as follows. In
the Results section, Section 2.1 gives the notation and definitions needed for the sequel, while Section
2.2 presents the extended nearest neighbor model and method used to obtain energy parameters. In
the Discussion, we give secondary structure benchmarking results for the nearest neighbor (NN) and
extended nearest neighbor (ENN) energy models. Additionally, the cooperativity of folding is compared
with both energy models. In the Methods section, Section 3.1 [resp. Section 3.2] presents recursions for the
partition function [resp. minimum free energy structure] computation. In addition to the software RNAnn
and RNAenn developed for this paper, we use Vienna RNA Package RNAfold [18], RNAstructure [38],
and mfold [9]. As illustration for the cooperativity of folding, we compare melting curves for two small



4

nucleolar RNAs (snoRNA), with respect to the NN and ENN energy models; additional melting curves are
available on the web server http://bioinformatics.bc.edu/clotelab/RNAenn/. These results suggest
that the the extended nearest-neighbor energy model may lead to more cooperative folding than does the
nearest-neighbor model, which was our motivation to study the ENN energy model.

The goal of this paper is to describe the non-trivial RNAenn algorithms, which are implemented in
C/C++. Our work points toward a future potential improvement in RNA secondary structure prediction,
either by incorporating triplet knowledge-based potentials or experimentally inferred extended nearest-
neighbor free energy parameters.

Results: Extended nearest neighbor model algorithms

Assume that a1, . . . , an is a given RNA sequence. In this section, we describe pseudocode for the partition
function and minimum free energy computation for an extended nearest neighbor model. Although our
software, RNAenn, does depend on the exact values of the extended nearest-neighbor energy parameters,
the description of the algorithms does not.

Subsection 2.1: Notation and definitions

Let a = a1, . . . , an be an arbitrary RNA sequence, and let a[i, j] denote the subsequence ai, . . . , aj. A
secondary structure S for a given RNA sequence a = a1, . . . , an is a set of base pairs (i, j), 1 ≤ i < j ≤ n,
such that (1) ai, aj forms a Watson Crick AU, UA, GC, CG or wobble GU, UG pair; (2) each base is
paired to at most one other base, i.e. (i, j), (i, k) ∈ S implies that j = k, and (i, j), (k, j) ∈ S implies that
i = k; (3) there are no pseudoknots in S, where a pseudoknot consists of base pairs (i, j), (k, ℓ) where
i < k < j < ℓ; (4) each hairpin loop has at least θ unpaired bases; i.e. (i, j) ∈ S implies that j− i ≥ θ+1.

In software such as mfold [9], Unafold [39], RNAfold [40], and RNAstructure [38], the parameter θ,
denoting the minimum number of unpaired bases in a hairpin loop, is taken to be equal to 3, due to steric
constraints of RNA molecules.

The nearest-neighbor and extended nearest-neighbor triplet models are additive energy models that
entail free energy values for loops, as explained in [41]. A hairpin in a secondary structure S is defined
by the base pair (i, j), where i + 1, . . . , j − 1 are unpaired. A left bulge in S is defined by the two
base pairs (i, j), (k, j − 1) ∈ S, where i + 1 < k and i + 1, . . . , k − 1 are unpaired. A right bulge in
S is defined by the two base pairs (i, j), (i + 1, k) ∈ S, where k < j − 1 and k + 1, . . . , j − 1 are
unpaired. An internal loop in S is defined by the two base pairs (i, j), (k, ℓ) ∈ S, where i + 1 < k
and ℓ < j − 1 and i + 1, . . . , k − 1 and ℓ + 1, . . . , j − 1 are unpaired. Finally, a k-way junction, or
multiloop with k − 1 components, is defined by the closing base pair (i, j) and k − 1 inner base pairs
(x1, y1), . . . , (xk−1, yk−1), where i < x1 < y1 < x2 < y2 < · · · < xk−1 < yk−1 < j, and the nucleotides in
intervals [i+1, x1−1], [y1+1, x2−1], . . . , [yk−1 +1, j−1] are all unpaired. See Figure 2 for an illustration.

Given the RNA nucleotide sequence a1, . . . , an, we use the notation H to denote the free energy of
a hairpin, E(S) to denote the free energy of a stacked base pair, E(I) to denote the free energy of an
internal loop, E(B) to denote the free energy of a bulge, while the free energy E(M) for a multiloop
containing Nb base pairs and Nu unpaired bases is given by the affine approximation a+ bNb + cNu. The
free energy E(M1) of a multiloop having exactly one component is then given by a + b + cNu.

For RNA sequence a1, . . . , an, for all 1 ≤ i ≤ j ≤ n, the partition function Zi,j is defined by
∑

S e−E(S)/RT , where the sum is taken over all secondary structures S of a[i, j], E(S) is the free energy
of secondary structure S, R is the universal gas constant with value R = 0.001987 kcal/mol−1 K−1, and
T is absolute temperature. In the Zuker [9, 18, 38] and McCaskill [19] algorithms, E(S) is the Turner
nearest neighbor energy model; in contrast, when discussing the extended nearest-neighbor energy model,
we use E(S) to denote the triplet energy model.
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Given an RNA sequence a1, . . . , an, in order to compute the partition function Z1,n [resp. mini-
mum free energy E1,n] for a1, . . . , an, we need inductively to determine the partition function Zi,j [resp.
minimum free energy Ei,j ] for all smaller subsequences ai, . . . , aj . In so doing, we need to know which
structures involve a triple stack (i, j), (i + 1, j − 1), (i + 2, j − 2), which structures involve only a stacked
pair (i, j), (i + 1, j − 1), and which structures involve a base pair (i, j) which closes a loop region. This
is accomplished by terms ZBBi,j [resp. EBBi,j ]. Moreover, the Turner energy model stipulates that a
base pair (i, j), which closes a left bulge of size 1, as in (i, j), (i + 2, j − 1), or a right bulge of size 1, as
in (i, j), (i + 1, j − 2), is considered to stack on the subsequent base pair. This consideration requires the
introduction of special terms ZBBLi,j, ZBBRi,j [resp. EBBLi,j , EBBRi,j ]. With that, we have the
following definition.

Definition 1 (Energies and partition function for triplet loop model)� Ei,i+1;j−1,j denotes the base stacking free energy from the NN model, while Ei,i+1,i+2;j−2,j−1,j de-
notes the triplet stacking free energy from the ENN model.� Zi,j: partition function over all secondary structures of a[i, j].� ZBi,j: partition function over all secondary structures of a[i, j], which contain the base pair (i, j).� ZBBi,j: partition function over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 1, j − 1).� ZBBLi,j: partition function over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 2, j − 1).� ZBBRi,j: partition function over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 1, j − 2).� ZMi,j: partition function over all secondary structures of a[i, j], subject to the constraint that a[i, j]
is part of a multiloop and has at least one component.� ZM1i,j: partition function over all secondary structures of a[i, j], subject to the constraint that
a[i, j] is part of a multiloop and has at exactly one component. Moreover, it is required that i
base-pair in the interval [i, j]; i.e. (i, r) is a base pair, for some i < r ≤ j.� Ei,j: minimum free energy over all secondary structures of a[i, j].� EBi,j: minimum free energy over all secondary structures of a[i, j], which contain the base pair
(i, j).� EBBi,j: minimum free energy over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 1, j − 1).� EBBLi,j: minimum free energy over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 2, j − 1).� EBBRi,j: minimum free energy over all secondary structures of a[i, j], which contain the base pairs
(i, j), (i + 1, j − 2).� EMi,j: minimum free energy over all secondary structures of a[i, j], subject to the constraint that
a[i, j] is part of a multiloop and has at least one component.
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a[i, j] is part of a multiloop and has at exactly one component. Moreover, it is required that i
base-pair in the interval [i, j]; i.e. (i, r) is a base pair, for some i < r ≤ j.

Details for the recursions necessary to compute the ENN minimum free energy secondary structure
and ENN partition function are given in the Methods section.

Subsection 2.2: Extended nearest-neighbor energy model ENN-13

Here we describe details for the extended nearest-neighbor energy model parameters, which we denote
by ENN-13, since our code RNAenn was completed in 2013.

Though some related experimental work has been done, especially by D.M. Gray and co-workers
[11,12,33], there are no available experimentally determined parameters for triplet stacking. Rather than
using the triplet stacking free energy parameters INN-48 [34], which are incomplete since GU-wobble
pairs were not included, we instead infer RNA triplet stacking free energies by a novel use of Brown’s
algorithm [42], which computes the maximum entropy joint probability distribution that is consistent
with given user-specified marginal probabilities. Though Brown’s algorithm has been used by C. Burge
to predict intron-exon splice sites in the human gene finder, GenScan [43], this appears to be the first
use of Brown’s algorithm to infer free energy parameters.

Brown’s algorithm for maximum entropy joint distribution

In [42], D.T. Brown described an efficient algorithm to compute the maximum entropy joint probability
distribution given certain marginal probabilities, where we recall that the entropy of a joint probability
distribution p : Ωn → [0, 1] is defined by H(p) = −

∑

x1,...,xn∈Ω p(x1, . . . , xn) · ln p(x1, . . . , xn). Although
the algorithm was correct, there was an error in Brown’s proof of correctness, which was subsequently
repaired by Ireland and Kullback [44], who additionally showed that the maximum entropy distribution
is not the maximum likelihood distribution.

Suppose that p(x1, . . . , xn) is a given joint probability distribution on Ωn, where Ω is the alphabet
{A, C, G, U} of RNA nucleotides. Recall that a marginal probability distribution pai1

,...,aim
: Ωn−m →

[0, 1] is defined by the projection

∑

(x1,...,xn)∈Ωn,xi1
=ai1

,...,xim
=aim

p(x1, . . . , xn)

Given an integer n ≥ 2, a value ǫ > 0, and a set of arbitrary marginal probabilities pai1
,...,aim

the idea is
to initialize p to the uniform distribution, then repeatedly update p so that it has the correct currently
considered marginal.

Algorithm 1 (Brown’s algorithm [42])
Input: Finite sample space Ω, integer n ≥ 2, ǫ > 0, set of arbitrary (target) marginal probabilities
pai1

,...,aim
.

Ouput: Maximum entropy joint probability distribution p : Ωn → [0, 1] having given marginals (i.e.
within ǫ of target marginals).

Idea:

initialize p to the uniform distribution

repeat

for each target marginal M ′

compute current marginal M of p



7

p = p ·

M′

M

until p has all the desired marginals

See Figure 3 for more detailed pseudocode of Brown’s algorithm.

Conversion between free energies and probabilities

To compute triplet stacking free energies, base stacking free energies from Turner 1999 [or alternatively
Turner 2004] energy model are converted to marginal probabilities in the following manner. Given a
triplet stack

5′-X1X2X3-3
′

3′-Y1Y2Y3-5
′

where the outermost base pair occurs at (i, j), let α denote the outermost base pair (i, j) with nucleotides
X1, Y1, let β denote the middle base pair (i + 1, j − 1) with nucleotides X2, Y2, and let γ denote the
innermost base pair (i + 2, j − 2) with nucleotides X3, Y3. It is a well-known principle, first proved
by Jaynes [45] and subsequently exploited in protein threading algorithms [46, 47], that a representative
database of biomolecular sequences and structures has the property that motif occurrences are Boltzmann

distributed – i.e. motif frequencies are of the form exp(−E(motif)/RT )
Q , where the partition function Q is

the sum of Boltzmann factors of all motifs. For this reason, we define the left, middle and right marginal
probabilities of stacked base pairs by:

leftMargProb(β, γ) =

∑

δ stack(δ, β) + stack(β, γ)

Q

midMargProb(α, γ) =

∑

δ stack(α, δ) + stack(δ, γ)

Q

rightMargProb(α, β) =

∑

δ stack(α, β) + stack(β, δ)

Q
.

where δ ranges over the six base pairs GC, CG, AU, UA, GU, UG, stack(α, β) denotes base stacking free
energies from the Turner 1999 model [or alternatively Turner 2004 model], and the partition function

Q =
∑

α,β,γ

stack(α, β) + stack(β, γ).

In words, the left/middle/right marginal probability is defined by the quotient of the sum over all six base
pairs in the left/middle/right position, while fixing the remaining two base pairs, divided by the partition
function. We then apply Brown’s algorithm to compute the joint probability distribution P (α, β, δ) for
all base pairs α, β, δ, and thus obtain triplet stacking free energies

E(α, β, γ) = −RT ln(Q · P (α, β, γ)). (2)

An additional potential advantage of the extended nearest neighbor energy model is that the MFE
structure is perhaps less likely to have isolated base pairs, than when using base stacking free energies. In
particular, Bompfunewerer et al. [48] described an O(n3) algorithm to compute the MFE structure and
partition function over all canonical secondary structures; i.e. those having no isolated base pairs, where
an isolated base pair (i, j) has no adjacent base pair (i + 1, j − 1) or (i − 1, j + 1). Bompfunewerer et
al. stated that preliminary studies indicated that canonical MFE structure prediction is both faster and
more accurate. In [49] we provided theoretical reasons for the computational speed-up, by using complex
analysis to prove that the asymptotic number of canonical secondary structures is 2.1614·n−3/2 ·1.96798n,
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compared to the much larger number 1.104366 · n−3/2 · 2.618034n of all secondary structures, a result
obtained in [50] by a different method.

Apart from the triplet stacking energy, ENN-13 contains free energies for base stacks (used only at
stem ends), hairpins, bulges, internal loops and multiloops from the Turner NN model – here, the user
may choose between the Turner 1999 parameters and the Turner 2004 parameters, the former taken
from Vienna RNA Package 1.8.5 and the latter taken from the Nearest Neighbor Data Base (NNDB)
http://rna.urmc.rochester.edu/NNDB/ [15]. For readers interested in the exact nature of the NN
energy parameters, we recommend the excellent overview by Zuker et al. [41].

Discussion

There are some deviations between the MFE structure computed for the ENN model, compared with
the nearest-neighbor (NN) model. In particular, Figure 4 shows the secondary structure for the XPT
riboswitch from Bacillus subtilis, obtained by experimental in-line probing (left panel), minimum free
energy structure computation for the NN model (middle panel) and minimum free energy structure
computation for the ENN model (right panel). The MFE structure for the NN model was identical, using
four different software packages: mfold [9], RNAfold [40], RNAstructure [38] and our own program RNAnn
for the nearest-neighbor model. Our software RNAenn for the ENN model differs from the NN minimum
free energy structure, only by missing two GU-wobble base pairs at positions (116, 134), (117, 133).
Adjacent wobble pairs are energetically weak, so we do not view this as a failure of our software, but
rather the need for additional scrutiny of the ENN energy parameters. Specifically, in the future, we
intend to include a dependence on the heat capacity ∆CP as proposed by M. Bon [17], and knowledge-
based potentials [16,17]. By such energy re-parametrization, we expect to improve the sensitivity values
reported in Table 1.

Our next-nearest-neighbor triplet energy model appears to lead to somewhat more cooperative folding
than does the nearest neighbor energy model, as indicated by sharper sigmoidal transition in the melting
curves obtained by RNAenn, compared to melting curves obtained by RNAfold and RNAstructure –
see Figure 5. Here, melting curves were computed in the following manner. For each RNA sequence,
over a range of temperatures, temperature-dependent base pair probabilities were computed. At each
temperature T , for each algorithm, the expected number 〈BP 〉 of base pairs was computed by 〈BP 〉 =
∑

1≤i<j≤n pi,j . For each algorithm, the collection of all points with (x, y) coordinates given by (T, 〈BP 〉)
generates a melting profile.

Methods

The top level recursion in the computation of the partition function [resp. minimum free energy structure]
is identical to that of McCaskill’s algorithm [19] [resp. Zuker’s algorithm [51]]. The technical difficulty
lies in a kind of “2-look-ahead” strategy, to determine if a base pair (i, j) not only stacks onto the
adjacent base pair (i + 1, j − 1), but the latter also stacks onto the base pair (i + 2, j − 2). This leads to
technical issues, including a special treatment for bulges of size 1, since these are considered to stack on
the following base pair.

Subsection 3.1: Partition function algorithm

This section presents the recursions to compute the partition function in the extended nearest-neighbor
energy model. Figure 6 depicts the recursions as a Feynman diagram. (For simplicity, the Feynman
diagram in Figure 6 depicts ZBB, but not ZBBL, ZBBR, which correspond to a special treatment for
particular left/right bulges of size 1, that are treated similarly to stacked base pairs.) The unconstrained
partition function Zi,j for ai, . . . , aj is defined below. Note that the recursions for Zi,j(I) entail a maximum
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internal loop of size 30, which follows the Vienna convention to reduce run time of the algorithm to O(n3);
however, our implementation actually uses the more complicated treatment of Lyngsø et al. [52], which
ensures a cubic run time while not arbitrarily bounding the maximum size of internal loops. A similar
remark applies to the treatment of internal loops and bulges of size 1 in Section 3.2.

Zi,j =















1 if j − i ≤ θ

Zi,j−1 + ZBi,j +

j−θ−1
∑

k=i+1

Zi,k−1 · ZBk,j else

We now in turn describe the partition functions ZM1i,j for a multiloop having a single component, ZMi,j

for a multiloop having one or more components, ZBi,j where (i, j) pair together, and for ZBBi,j where
(i, j) and (i + 1, j − 1) pair together.

ZM1i,j =















0 if j − i ≤ θ
j

∑

k=i+θ+1

exp

(

−
c · (j − k)

RT

)

· ZBi,k else

ZMi,j =











0 if i ≤ j and j − i ≤ θ
j−θ−1
∑

k=i

exp(−
b + c · (k − i)

RT
)ZM1k,j +

j−θ−2
∑

k=i

exp

(

−
b

RT

)

· ZMi,k · ZM1k+1,j else

ZBi,j =

{

0 if j − i ≤ θ

Zi,j(S) + Zi,j(H) + Zi,j(B) + Zi,j(I) + Zi,j(M) else

where

Zi,j(S) = ZBBi,j

Zi,j(H) = exp

(

−
H(j − i − 1, T )

RT

)

Zi,j(LB) = exp

(

−
B(1, T )

RT

)

· ZBBLi,j +

j−θ−2
∑

k=i+3

exp

(

−
B(k − i − 1, T )

RT

)

· ZBk,j−1

Zi,j(RB) = exp

(

−
B(1, T )

RT

)

· ZBBRi,j +

j−3
∑

k=i+θ+2

exp

(

−
B(j − k − 1, T )

RT

)

· ZBi+1,k

Zi,j(I) =

j−θ−3
∑

ℓ−i−2≤2

j−2
∑

j−r−1+ℓ−i−2≤30

exp

(

−
I((ℓ − i − 1) + (j − r − 1))

RT

)

· ZBℓ,r

Zi,j(M) = exp

(

−
a + 2b + TMM(i, j, i + 1, j − 1)

RT

)

·

j−θ−2
∑

k=i+θ+3

ZMi+1,k−1 · ZM1k,j−1

ZBBi,j =

{

0 if j − i ≤ θ + 2

Qi,j(S) + Qi,j(H) + Qi,j(B) + Qi,j(I) + Qi,j(M) else

where



10

Qi,j(S) = exp

(

−
E(i, i + 1, i + 2; j − 2, j − 1, j)

RT

)

· ZBBi+1,j−1

Qi,j(H) = exp

(

−
E(i, i + 1; j − 1, j) + H(j − i − 3, T )

RT

)

Qi,j(LB) = exp

(

−
E(i, i + 1, i + 3; j − 2, j − 1, j) + B(1, T )

RT

)

· ZBBLi+1,j−1 +

j−θ−3
∑

k=i+4

exp

(

−
E(i, i + 1; j − 1, j) + B(k − i − 2, T )

RT

)

· ZBk,j−2

Qi,j(RB) = exp

(

−
E(i, i + 1, i + 2; j − 3, j − 1, j) + B(1, T )

RT

)

· ZBBRi+1,j−1 +

j−3
∑

k=i+θ+3

exp

(

−
E(i, i + 1; j − 1, j) + B(j − k − 2, T )

RT

)

· ZBi+2,k

Qi,j(I) =

j−θ−4
∑

ℓ=i+3

j−3
∑

r=ℓ+θ+1

exp

(

−
E(i, i + 1; j − 1, j) + I((ℓ − i − 2) + (j − r − 2))

RT

)

· ZBℓ,r

Qi,j(M) = exp

(

−
E(i, i + 1; j − 1, j) + a + 2b

RT

)

·

j−θ−3
∑

k=i+θ+4

ZMi+2,k−1 · ZM1k,j−2

ZBBLi,j =

{

0 if j − i ≤ θ + 3

QLi,j(S) + QLi,j(H) + QLi,j(B) + QLi,j(I) + QLi,j(M) else

where

QLi,j(S) = exp

(

−
E(i, i + 2, i + 3; j − 2, j − 1, j)

RT

)

· ZBBi+2,j−1

QLi,j(H) = exp

(

−
E(i, i + 2; j − 1, j) + H(j − i − 4, T )

RT

)

QLi,j(LB) = exp

(

−
E(i, i + 2, i + 4; j − 2, j − 1, j) + B(1, T )

RT

)

· ZBBLi+2,j−1 +

j−θ−3
∑

k=i+5

exp

(

−
E(i, i + 2; j − 1, j) + B(k − i − 3, T )

RT

)

· ZBk,j−2

QLi,j(RB) = exp

(

−
E(i, i + 2, i + 3; j − 3, j − 1, j) + B(1, T )

RT

)

· ZBBRi+2,j−1 +

j−4
∑

k=i+θ+4

exp

(

−
E(i, i + 2; j − 1, j) + B(j − k − 2, T )

RT

)

· ZBi+3,k

QLi,j(I) =

j−θ−4
∑

ℓ=i+4

j−3
∑

r=ℓ+θ+1

exp

(

−
E(i, i + 2; j − 1, j) + I((ℓ − i − 3) + (j − r − 2))

RT

)

· ZBℓ,r

QLi,j(M) = exp

(

−
E(i, i + 2; j − 1, j) + a + 2b

RT

)

·

j−θ−3
∑

k=i+θ+5

ZMi+3,k−1 · ZM1k,j−2
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ZBBRi,j =

{

0 if j − i ≤ θ + 3

QRi,j(S) + QRi,j(H) + QRi,j(B) + QRi,j(I) + QRi,j(M) else

where

QRi,j(S) = exp

(

−
E(i, i + 1, i + 2; j − 3, j − 2, j)

RT

)

· ZBBi+1,j−2

QRi,j(H) = exp

(

−
E(i, i + 1; j − 2, j) + H(j − i − 4, T )

RT

)

QRi,j(LB) = exp

(

−
E(i, i + 1, i + 3; j − 3, j − 2, j) + B(1, T )

RT

)

· ZBBLi+1,j−2 +

j−θ−4
∑

k=i+4

exp

(

−
E(i, i + 1; j − 2, j) + B(k − i − 2, T )

RT

)

· ZBk,j−3

QRi,j(RB) = exp

(

−
E(i, i + 1, i + 2; j − 4, j − 2, j) + B(1, T )

RT

)

· ZBBRi+1,j−2 +

j−5
∑

k=i+θ+3

exp

(

−
E(i, i + 1; j − 2, j) + B(j − k − 3, T )

RT

)

· ZBi+2,k

QRi,j(I) =

j−θ−5
∑

ℓ=i+3

j−4
∑

r=ℓ+θ+1

exp

(

−
E(i, i + 1; j − 2, j) + I((ℓ − i − 2) + (j − r − 3))

RT

)

· ZBℓ,r

QRi,j(M) = exp

(

−
E(i, i + 1; j − 2, j) + a + 2b

RT

)

·

j−θ−4
∑

k=i+θ+4

ZMi+2,k−1 · ZM1k,j−3

Subsection 3.2: Minimum free energy algorithm

Assume that a1, . . . , an is a given RNA sequence. Throughout this section, we let Ei,j denote the
minimum free energy of ai, . . . , aj , which is computed and stored in arrays by a dynamic programming
algorithm corresponding to the following recursions. Once E1,n is computed, then the minimum free
energy structure can be computed by tracebacks. The following recursions are obtained from those in the
previous section, by systematically replacing sum by minimum, product by sum and Boltzmann factor
by energy.

Ei,j =







0 if j − i ≤ θ

min

{

Ei,j−1, EBi,j ,
j−θ−1

min
k=i+1

Ei,k−1 + EBk,j

}

else

EM1i,j =







+∞ if j − i ≤ θ
j

min
k=i+θ+1

(c · (j − k)) + EBi,k else

EMi,j =







+∞ if i ≤ j and j − i ≤ θ

min

{

j−θ−1

min
k=i

EM1k,j + b + c · (k − i),
j−θ−2

min
k=i

b + EMi,k + EM1k+1,j

}

else

EBi,j =

{

+∞ if j − i ≤ θ

min {Ei,j(S), Ei,j(H), Ei,j(B), Ei,j(I), Ei,j(M)} else
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where

Ei,j(S) = EBBi,j

Ei,j(H) = H(j − i − 1, T )

Ei,j(LB) = min

{

j−θ−2

min
k=i+3

B(k − i − 1, T ) + EBk,j−1, B(1, T ) + EBBLi,j

}

Ei,j(RB) = min

{

j−3

min
k=i+θ+2

B(j − k − 1, T ) + EBi+1,k, B(1, T ) + EBBRi,j

}

Ei,j(I) =
j−θ−3

min
ℓ=i+2

j−2

min
r=ℓ+θ+1

I((ℓ − i − 1) + (j − r − 1)) + EBℓ,r

Ei,j(M) = a + 2b +
j−θ−2

min
k=i+3

(EMi+1,k−1 + EM1k,j−1)

EBBi,j =

{

+∞ if j − i ≤ θ + 2

min {Gi,j(S) + Gi,j(H) + Gi,j(B) + Gi,j(I) + Gi,j(M)} else

where

Gi,j(S) = E(i, i + 1, i + 2; j − 2, j − 1, j) + EBBi+1,j−1

Gi,j(H) = E(i, i + 1; j − 1, j) + H(j − i − 3, T )

Gi,j(LB) = min {
j−θ−3

min
k=i+4

E(i, i + 1; j − 1, j) + B(k − i − 2, T ) + EBk,j−2,

E(i, i + 1, i + 3; j − 2, j − 1, j) + B(1, T ) + EBBLi+1,j−1}

Gi,j(RB) = min{
j−4

min
k=i+θ+3

E(i, i + 1; j − 1, j) + B(j − k − 2, T ) + EBi+2,k,

E(i, i + 1, i + 2; j − 3, j − 1, j) + B(1, T ) + EBBRi+1,j−1}

Gi,j(I) =
j−θ−4

min
ℓ=i+3

j−3

min
r=ℓ+θ+1

E(i, i + 1; j − 1, j) + I((ℓ − i − 2) + (j − r − 2)) + EBℓ,r

Gi,j(M) = E(i, i + 1; j − 1, j) + a + 2b +
j−θ−3

min
k=i+4

(EMi+2,k−1 + EM1k,j−2)

EBBLi,j =

{

+∞ if j − i ≤ θ + 3

min {GLi,j(S) + GLi,j(H) + GLi,j(B) + GLi,j(I) + GLi,j(M)} else
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where

GLi,j(S) = E(i, i + 2, i + 3; j − 2, j − 1, j) + EBBi+2,j−1

GLi,j(H) = E(i, i + 2; j − 1, j) + H(j − i − 4, T )

GLi,j(LB) = min{
j−θ−3

min
k=i+5

E(i, i + 2; j − 1, j) + B(k − i − 3, T ) + EBk,j−2,

E(i, i + 2, i + 4; j − 2, j − 1, j) + B(1, T ) + EBBLi+2,j−1}

GLi,j(RB) = min{
j−4

min
k=i+θ+4

E(i, i + 2; j − 1, j) + B(j − k − 2, T ) + EBi+3,k,

E(i, i + 2, i + 3; j − 3, j − 1, j) + B(1, T ) + EBBRi+2,j−1}

GLi,j(I) =
j−θ−4

min
ℓ=i+4

j−3

min
r=ℓ+θ+1

E(i, i + 2; j − 1, j) + I((ℓ − i − 3) + (j − r − 2)) + EBℓ,r

GLi,j(M) = E(i, i + 2; j − 1, j) + a + 2b +
j−θ−3

min
k=i+5

(EMi+3,k−1 + EM1k,j−2)

EBBRi,j =

{

+∞ if j − i ≤ θ + 3

min {GRi,j(S) + GRi,j(H) + GRi,j(B) + GRi,j(I) + GRi,j(M)} else

where

GRi,j(S) = E(i, i + 1, i + 2; j − 3, j − 2, j) + EBBi+1,j−2

GRi,j(H) = E(i, i + 1; j − 2, j) + H(j − i − 4, T )

GRi,j(LB) = min{
j−θ−4

min
k=i+4

E(i, i + 1; j − 2, j) + B(k − i − 2, T ) + EBk,j−3,

E(i, i + 1, i + 3; j − 3, j − 2, j) + B(1, T ) + EBBLi+1,j−2}

GRi,j(RB) = min{
j−4

min
k=i+θ+3

E(i, i + 1; j − 2, j) + B(j − k − 3, T ) + EBi+2,k,

E(i, i + 1, i + 2; j − 4, j − 2, j) + B(1, T ) + EBBRi+1,j−2}

GRi,j(I) =
j−θ−5

min
ℓ=i+3

j−4

min
r=ℓ+θ+1

E(i, i + 1; j − 2, j) + I((ℓ − i − 2) + (j − r − 3)) + EBℓ,r

GRi,j(M) = E(i, i + 1; j − 2, j) + a + 2b +
j−θ−4

min
k=i+4

(EMi+2,k−1 + EM1k,j−3)

Conclusion

In this paper, we have introduced a new energy model ENN for RNA secondary structure prediction and
implemented it in a tool called RNAenn along with new energy parameters for triplet stacking inferred
using Brown’s algorithm. RNAenn is implemented in C/C++, without any function calls or dependence on
other programs, such as mfold [9], RNAfold [18], and RNAstructure [38]. Recursions from the partition
function have been cross-checked by setting free energy parameters to zero, in which case the program
returns the number of secondary structures, which can be determined by independent simpler methods.

It is known from experimental work of Silverman and Cech on Tetrahymena group I intron P4-P6
domain [53] that RNA folds cooperatively. The melting curves in Figure 5 demonstrate that our ENN
model leads to somewhat more cooperative folding than does the nearest neighbor energy model, in
the same manner that the melting curves of Figure 1 demonstrate that the nearest neighbor energy
model leads to more cooperative folding than the simple Nussinov energy model. For this reason, we
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feel that RNAenn supports a mathematical model that better reflects the experimental data concerning
cooperativity of RNA folding.

From the benchmarking comparison in Table 1, it is clear that triplet stacking free energy parameters
need further refinement to produce better agreement with RNA secondary structures, as determined
by comparative sequence alignment or X-ray structure. This situation is not unlike the situation with
nearest neighbor software mfold, RNAfold, which over the years underwent a series of refinements, with
the introduction of additional energy parameters (energy parameters for particular triloops, tetraloops,
bulges of size one, etc.). At the present time, software such as Unafold, RNAfold, RNAstructure remain
state-of-the-art for RNA secondary structure prediction. However, in future work, we plan to optimize
the triplet stacking energy parameters, by using knowledge-base potential as in the work [16, 17] for the
nearest neighbor model.
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One table and six figure captions follow

RNAfold -d0 RNAenn (Turner99) RNAenn (Turner04)
RNA family sens ppv sens ppv sens ppv
16s 0.3940 0.3326 0.3779 0.3153 0.3099 0.2674
23sd 0.5974 0.5311 0.5527 0.4813 0.4409 0.4003
23s 0.4685 0.3972 0.4453 0.3738 0.3516 0.3061
5s 0.7575 0.6606 0.7319 0.6366 0.5713 0.5093
ec 0.5869 0.5314 0.6184 0.5519 0.5338 0.4982
grp1 0.6625 0.5832 0.5047 0.4650 0.4837 0.4589
grplii 0.6616 0.6409 0.6084 0.5976 0.4555 0.4334
rnap1 0.4051 0.3813 0.3514 0.3221 0.3154 0.3000
rnap2 0.4241 0.4046 0.4935 0.4648 0.3285 0.3187
short 0.4048 0.3400 0.3690 0.3298 0.3155 0.2760
srp 0.7228 0.5632 0.6286 0.4897 0.5677 0.4544
telomerase 0.4285 0.3074 0.3417 0.2404 0.3605 0.2662
tmRNA 0.2248 0.1958 0.1911 0.1622 0.1526 0.1326
trna2 0.4960 0.4697 0.5344 0.5005 0.3962 0.3828
avg 0.5213 0.4575 0.4866 0.4279 0.4020 0.3678

Table 1. Values of sensitivity and positive predictive value (ppv) for RNAfold and RNAenn with respect
to various RNA families. Sensitivity is the ratio of number of correctly predicted base pairs divided by
the number of base pairs in the native structure; positive predictive value is the ratio of the number of
correctly predicted base pairs divided by the number of base pairs in the predicted structure. Since
RNAenn currently does not include energy contributions for dangles (single stranded, stacked
nucleotides), RNAfold was used without dangles (version 1.8.5 with -d0 flag). To our knowledge, there
has not been a careful benchmarking of structure prediction accuracy between the Turner 1999 energy
model and the newer Turner 2004 energy model, though it is interesting to note that RNAenn has better
structure prediction when using Turner 1999 for base stacking. Overall, it is clear that RNAfold
outperforms RNAenn (Turner99), although a few cases, such as ec and rnap2 RNAenn have better
sensitivity. Nevertheless, we expect much better performance in the future when our triplet and base
stacking energy terms have been refined by using knowledge-base potentials. The database of RNA
structures in this benchmarking set comes from a data collection of D.H. Mathews (personal
communication), which derives from published databases [26, 54], etc. See [55] for a citation of original
data sources.
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Figure 1. Graph of the expected number of base pairs as a function of temperature for signal
recognition particle with Rfam [56] accession number X12643. Temperature in degrees Celsius is given
on the x-axis, while the expected number of base pairs 〈base pairs/n〉, normalized by sequence length n,
is given on the y-axis. Note the linear dependence on temperature for the non-cooperative Nussinov
energy model, in contrast to the sigmoidal dependence on temperature for the cooperative Turner
energy model. Data and figure taken from our paper [57].
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Figure 2. Depiction of elements of RNA secondary structure for which experimentally determined free energy
parameters are available. In this 61 nt RNA, the hairpin loop closed by base pair between nucleotides at
position 43 and 48 is known as a tetraloop, or hairpin loop of size 4. Similarly, the hairpin loop of size 7 is closed
by a base pair between nucleotides at positions 17 and 25. Free energy parameters for bulges and internal loops
(two-sided bulges, not shown in the figure) are available, while an affine approximation is used for the free
energy of a multiloop or junction.
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Figure 3. Pseudocode for Brown’s algorithm.

C)B)A)

Figure 4. Secondary structure of the XPT guanine riboswitch from Bacillus subtilis, with experimentally determined
148 nt sequence CACUCAUAUA AUCGCGUGGA UAUGGCACGC AAGUUUCUAC CGGGCACCGU AAAUGUCCGA
CUAUGGGUGA GCAAUGGAAC CGCACGUGUA CGGUUUUUUG UGAUAUCAGC AUUGCUUGCU
CUUUAUUUGA GCGGGCAAUG CUUUUUUU taken from Wakeman et al. [58]. (Left) Gene off structure, determined
by in-line probing – see [59] for X-ray structure of aptamer, which is consistent with the secondary structure. (Center)
Minimum free energy (MFE) structure, determined by RNAnn, our implementation of the nearest-neighbor energy model.
This structure is identical to the MFE structures computed by Vienna RNA Package RNAfold [18], RNAstructure [38], and
mfold [9]. (Right) Minimum free energy (MFE) structure, determined by RNAenn, our implementation of the extended
nearest-neighbor energy model. The only difference with the nearest-neighbor MFE structure lies in two missing GU base
pairs (116, 134), (117, 133) indicated by a circle.



23

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

RNAenn

RNAnn

RNAstructure

RNAfold

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

RNAenn

RNAnn

RNAstructure

RNAfold

A) B)

Figure 5. Melting curves for two small nucleolar RNAs (snoRNA) from family RF00158 from Rfam version 9.0 [56].
For each RNA sequence, over a range of temperatures, temperature-dependent base pair probabilities were computed
using four different software packages: RNAenn, RNAnn, version 1.8.5 of RNAfold [40] and RNAstructure [38]. The software
RNAenn (RNA extended nearest-neighbor) is our implementation of the algorithms described in this paper, while the
software RNAnn (RNA nearest-neighbor) is our implementation of the following algorithms: Zuker’s minimum free energy
structure algorithm [51], McCaskill’s partition function algorithm [19], and the Ding-Lawrence sampling algorithm [22].
Each algorithm was run without dangle or coaxial free energies. At each temperature T , for each algorithm, the expected
number 〈BP 〉 of base pairs was computed as 〈BP 〉 =

P

1≤i<j≤n pi,j ; for each algorithm, the collection of such (T, 〈BP 〉)

points generates a melting profile obtained by that algorithm. (Left) Melting curves for the 72 nt small nucleolar RNA
(snoRNA) from Ornithorhynchus anatinus (platypus) with GenBank accession code AAPN01359272.1/4977-5048 and
sequence given by AGCACAAAUG AUGAGCCUAA AGGGACUUAA UACUGAAACC UGAUGUAACU
AAAUAAUAUA UGCUGAUCGU GC (Right) Melting curves for the 69 nt small nucleolar RNA (snoRNA) from
Otolemur garnetti (small-eared galago) with GenBank accession code AQR01179445.1/1047-1115 and sequence given by
GGCACAAAUG AUGAAUGACA AGGGACUUAA UACUGAAACC UGAUGUUACA UUACAAUGUG
CUGAUGUGC.
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