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Abstract It is a classical result of Stein and Waterman that the asymptotic number of RNA sec-
ondary structures is 1.104366 ·n−3/2 · 2.618034n. Motivated by the kinetics of RNA secondary struc-
ture formation, we are interested in determining the asymptotic number of secondary structures that
are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where
each base pair contributes −1 towards the energy of the structure, locally optimal structures are
exactly the saturated structures, for which we have previously shown that asymptotically, there are
1.07427 · n−3/2 · 2.35467n many saturated structures for a sequence of length n. In this paper, we
consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base
pair contributes −1 toward the energy of the structure. Locally optimal structures with respect to the
base stacking energy model are exactly those secondary structures, whose stems cannot be extended.
Such structures were first considered by Evers and Giegerich, who described a dynamic program-
ming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from
enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we
consider analogous combinatorial problems for secondary structures with annotated single-stranded,
stacking nucleotides (dangles).

1 Introduction

Historically, the development of combinatorics for RNA secondary structures [35,39] has been inti-
mately related to the development of algorithms for RNA minimum free energy (MFE) secondary
structure [45,43,15]. In particular, counting the number of secondary structures for sequence of
length n is essentially equivalent to computing the Boltzmann partition function, defined by Z =
P

S exp(−E(S)/RT ), where the sum is taken over all secondary structures S, the energy of S is
denoted by E(S), R ≈ 1.959 cal/mol is the universal gas constant, and T absolute temperature.1

Complex analysis is used to obtain the asymptotic enumeration results described in this article
and related articles mentioned in the introduction. In particular, given a complex generating function
f(z) =

P

anzn, it is well-known from introductory complex analysis that f converges in a circular
region about the point of expansion out to the dominant, or nearest, singularity r, and thus the
asymptotic order of magnitude of an is approximately r−n. Darboux’s theorem2 [29,14] states that
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1 If the energy E(S) = 0 or if the temperature T = +∞, then the partition function is exactly equal to the
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2 Éric Fusy1, Peter Clote2

if f(z) =
P∞

n=0(r − z)αL(z), where r > 0, α is not a positive integer, and L is analytic in a disk of

radius greater than r, then αn ∼ rα−nnα−1 L(r)
Γ (−α)

. This result was generalized by Bender [1], corrected

by Meir and Moon [27], and further extended by Flajolet and Odlyzko [10] and by Drmota, Lalley
and Woods (each of the latter worked independently) – see the exposition in [11] for discussion and
references.

In [35], Stein and Waterman proved that the asymptotic number of secondary structures is
1.104366 · n−3/2 · 2.618034n. Since that time, a number of additional results on the combinatorics of
RNA structures have been obtained. In [18], Hofacker et al. derived a number of asymptotic results
on the number of structures, expected number of base pairs, etc. for RNA secondary structures.
Observing a correspondence with involutions, Haslinger and Stadler [13] provided an upper bound
on the number of bi-secondary structures, i.e. structures having non-nested pseudoknots that can
be presented as a union S = S1 ∪ S2 of disjoint secondary structures, and Rodland [30] studied the
asymptotic number of a number of classes of pseudoknotted structures. Building on a remarkable and
pioneering paper of Harer and Zagier [12], Vernizzi et al. [37] classified pseudoknotted RNA structures
according to topological genus g, and then applied the work of Harer and Zagier to obtain recurrence
relations for the number of pseudoknotted structures of genus g. In [31], Saule et al. provided a
summary table of the asymptotic number of pseudoknotted structures structures, with respect to
various allowed pseudoknots, and established the asymptotic number of pseudoknotted structures,
with no restriction. In [20], Li and Reidys determined the asymptotic number of hybridizations of
two interacting RNA structures. Moving away from counting the number of structures, Yoffe et al.
[41] and Clote et al. [4] determined the asymptotic expected distance between the 5′ and 3′ ends of
RNA sequence, where the 5′ to 3′ distance of a given structure S on sequence s1, . . . , sn is defined as
the minimum number of backbone or base-pairing edges in a minimum length path from s1 to sn.

In [3], Clote computed the asymptotic number 1.07427 · n−3/2 · 2.35467n of saturated structures,
defined by Zuker [42] as those for which no base pair can be added without violating the definition of
secondary structure. In [5], Clote et al. provided another proof for the asymptotic number of saturated
structures, which additionally yielded the asymptotic expected number of base pairs 0.337361 · n

for saturated structures. An overview of methods for RNA enumerative combinatorics is given in
Lorenz et al. [21], where additionally it is shown that the asymptotic number of shapes of secondary
structures for a length n sequence is 2.44251 · n−3/2 · 1.32218n.3 In [18] Hofacker et al. showed that
the asymptotic number of canonical secondary structures (those having no isolated base pair) is
2.1614 · n−3/2 · 1.96798n, a result that was confirmed by a different method in Clote et al. [5], where
additionally the expected number of base pairs was shown to be 0.31724 · n.

A locally optimal, or kinetically trapped, secondary structure S is one for which no secondary
structure T , obtained from S by the removal or addition of a single base pair, has lower energy. It
follows that saturated structures are exactly the kinetically trapped structures with respect to the
Nussinov energy model [28], in which each base pair receives a stabilizing energy contribution of −1.
In this paper, we consider the base stacking energy model, in which each stacked base pair receives a
stabilizing energy contribution of −1. Here, the base pair (i, j) in secondary structure S is defined to
be a stacked base pair, provided that (i− 1, j +1) is also a base pair in S – i.e. provided that there is
an outer base pair that provides a stabilizing stacking energy. In [9], Evers and Giegerich describe a
dynamic programming algorithm to enumerate all structures that are locally optimal with respect to
the base stacking energy model; i.e. those structures in which no stem can be extended. The authors
called such structures “saturated”. When a strictly positive minimal value is specified for the length
of every stem, a structure is saturated in the sense of Zuker [42] if and only if it is saturated in
the sense of Evers and Giegerich [9]. However, as mentioned in [3], when the lengths of stems are
not constrained, there are structures that are saturated in the sense of Evers and Giegerich [9], but
which are not saturated in the sense of Zuker [42]. For clarity of exposition, we will call a secondary

3 The shape of a secondary structure was defined by Voss et al. [38] to represent its branching topology; for
instance, the shape of the well-known clover-leaf structure of tRNA is [ [ ] [ ] [ ] ] . The asymptotic number of
shapes for a length n sequence yields the run time for the Giegerich Lab software RNAshapes on length n sequences,
since Steffen et al. [34] report that RNAshapes runs in time O(n3ks) for s sequences, each of length at most n and
k shapes.
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structure G-saturated if no stem can be extended. In this paper, we give an enumerative framework
based on weighted plane trees that allows us to enumerate G-saturated structures (as well as recover
the enumeration of secondary structures and of saturated structures). We also consider analogous
problems for structures with annotated single-stranded, stacked nucleotides (also called dangles).

Outline of paper

The plan of this paper is as follows. In Section 2, we define the notions of secondary structure and
context free grammar, and provide context free grammars for various classes of secondary structures
considered in the paper. In that section, we show that the asymptotic number of secondary structures
with annotated dangles, as computed in the partition function of the Markham-Zuker software
UNAFOLD [23], is 0.63998 · n−3/2 · 3.06039n, exponentially larger than the number of all secondary
structures 1.104366 · n−3/2 · 2.618034n, previously established by Stein and Waterman [35]. This
new result provides a partial explanation for M. Zuker’s observation (personal communication) that
UNAFOLD requires substantially more computation time when dangles are included.4 In Section 3, we
describe the computation of secondary structure melting curves with respect to the Nussinov energy
model and the base stacking energy model. Figure 3 shows that folding is more cooperative in the
base stacking energy model. In Section 4, we describe the correspondence between RNA secondary
structures and plane trees, and then give generating functions for the number of secondary structures
and locally optimal secondary structures, with respect to the Nussinov model and the base stacking
energy model. In Section 5, we give asymptotic results on the number of secondary structures and
locally optimal secondary structures, as well as their expected number of base pairs. In Section 6,
we give similar asymptotic results when annotations for external dangles are included for each type
of structure. Finally Section 7 summarizes our main contributions.

2 Definitions

Definition 1 (Secondary structure) An RNA secondary structure for a given RNA sequence
a1, . . . , an of length n is defined to be a set S of ordered pairs (i, j), with 1 ≤ i < j ≤ n, such
that the following conditions are satisfied.

1. Watson-Crick and wobble pairs: If (i, j) ∈ S, then {ai, aj} ∈ {{A, U}{G, C}{G, U}}.
2. No base triples: If (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j) belong to S, then

i = k.
3. Nonexistence of pseudoknots: If (i, j) and (k, ℓ) belong to S, then it is not the case that i < k < j < ℓ.
4. Threshold requirement for hairpins: If (i, j) belongs to S, then j − i > θ, for a fixed value θ ≥ 0; i.e.

there must be at least θ unpaired bases in a hairpin loop.

For software, such as mfold [43] and RNAfold [16], to predict RNA secondary structure, θ is taken
to be 3; i.e., for reasons related to steric constraints, every hairpin is required to contain at least
three unpaired bases.

A base pair (i, j) ∈ S is called a link. An element i is said to be linked if it is involved in a link and
free otherwise. A link (i, j) is said to be stacked onto another link (i′, j′) if i′ = i + 1 and j′ = j − 1.
A stem is a maximal sequence ℓ0, . . . , ℓk of links such that ℓi is stacked onto ℓi+1 for 0 ≤ i ≤ k − 1;
the value k is called the length of the stem. In some applications a threshold condition on stems is
required:

5. Threshold requirement for stems: Each stem has length at least τ , for a fixed value τ ≥ 0.

Note that Condition (5) is of no effect for τ = 0.

4 To the best of our knowledge, UNAFOLD is currently the only software that computes the partition function over
all secondary structures in a mathematically rigorous manner.
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In this paper, we are concerned with the asymptotic number of locally optimal structures. In
order to employ generating functions, we will need to assume the homopolymer model (following
a convention established by Stein and Waterman [35]), meaning that any position can pair with
any other position (arbitrary base pairs, not only Watson-Crick and wobble pairs). We thus define a
secondary structure of a homopolymer of length n to be a set S of base pairs (i, j), where 1 ≤ i < j ≤ n,
such that the previous conditions (2,3,4,5) are satisfied.

The following notion of context free grammar is used for two reasons: (1) to provide a clean
and succinct definition for RNA secondary structure, with respect to a particular energy model, and
(2) for certain enumeration results. See Lorenz et al. [21] for more on context free grammars and
their application to combinatorics. In particular, we refer the reader to [21] for an explanation of the
DSV method used in this article, which allows us to go directly from a context free grammar to a
functional equation for generating functions.

Definition 2 (Context free grammar) A context free grammar is given by G = (V,Σ, R, S), where
V is a finite set of nonterminal symbols (also called variables), Σ is a disjoint finite set of terminal
symbols, S ∈ V is the start nonterminal, and

R ⊂ V × (V ∪ Σ)∗

is a finite set of production rules. Elements of R are usually denoted by A → w, rather than (A,w).
If x, y ∈ (V ∪ Σ)∗ and A → w is a rule, then by replacing the occurrence of A in xAy we obtain

xwy. Such a derivation in one step is denoted by xAy ⇒G xwy, while the reflexive, transitive closure
of ⇒G is denoted ⇒∗

G. The language generated by context free grammar G is denoted by L(G), and
defined by

L(G) = {w ∈ Σ∗ : S ⇒∗
G w}.

Now, in the following sections, we give context free grammars for RNA secondary structures,
including structures with explicitly annotated dangles. Using the correspondence between grammar
and recursions for dynamic programming, each grammar corresponds to an algorithm for the partition
function for secondary structures with respect to a different energy model – the Nussinov model,
the base stacking energy model, the Turner model, the Turner model with a rigorous treatment of
dangles, the Turner model with external dangles. For notational simplicity, we take θ, the minimum
number of unpaired bases in a hairpin loop to be 1 (see condition 4 of Definition 1). It is not difficult
to extend the grammar for any fixed value of θ.5

Nussinov energy model

In [28], Nussinov and Jacobson describe a dynamic programming algorithm to compute the minimum
energy structure for a simple energy model, in which each base pair constitutes an energy term of
−1.

It is well-known [21] that the following unambiguous grammar G1 generates all secondary struc-
tures of the homopolymer model with θ = 1. Here G1 has start non-terminal symbol S, and terminal
symbols •, ( , ) . The non-terminal symbol S generates all non-empty secondary structures by using
the following grammar (or production) rules.6

S → •| (S ) |S (S )

Let S(z) denote the complex generating function S(z) =
P∞

n=0 snzn, where Taylor coefficient [zn]S(z)
is the number sn of secondary structures for a homopolymer of size n. By the DSV methodology [5,
21], we have

S(z) = S = z + zS + z2S + z2S2.

5 This is done, for instance, in grammar G4 by replacing the rule •≥θ → • by •≥θ → • θ, where • θ consists
of θ occurrences of • .

6 Our grammar G1 is equivalent to the “tree grammar nussinov78” from [33].
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Introducing the auxilliary variable u to count number of base pairs, we have

S(z, u) = S = z + zS + uz2S + uz2S2 =
X

n

X

k≤n

sk,nukzn (1)

where sk,n denotes the number of secondary structures on a length n homopolymer, having exactly
k base pairs. It follows that

∂S(z, u)

∂u
=
X

n

X

k≤n

ksk,nuk−1zn

hence

[zn]
∂S(z, u)

∂u
(z, 1) =

X

k≤n

ksk,n. (2)

Since

[zn]S(z,1) =
X

k≤n

sk,n

is the number of secondary structures on a homopolymer of length n, it follows that the asymptotic
expected energy over all secondary structures of a homopolymer of length n, with respect to the
Nussinov energy model, is equal to −1 times the asymptotic expected number of base pairs

− lim
n→∞

[zn]∂S(z,u)
∂u (z, 1)

[zn]S(z, 1)
. (3)

Base stacking energy model

In the base stacking energy model, an energy term of −1 is assigned to each base pair (i, j) of
structure S, provided that (i, j) has an outer stacking pair – i.e. provided that (i+ 1, j − 1) ∈ S. The
set of all secondary structures is generated by the context free grammar G2 with non-terminals S, T ,
start symbol S, and terminals •, ( , ) with the following rules:

S → •|S • |T |ST

T → ( • ) | (S • ) | (T ) | (ST )

Here, the non-terminal S generates all secondary structures, while the non-terminal T generates all
secondary structures, such that the first and last positions are base-paired together. By introducing
auxilliary non-terminal T , we can count the number of stacked base pairs, as well as the number of
base pairs. It is not difficult to show by induction that G2 is an unambiguous grammar that generates
all secondary structures, hence is equivalent to the previous grammar G1.

By the DSV methodology [5,21], the generating function S(z) =
P

n snzn satifies the following
equations

S(z) = S = z + zS + T + ST

T (z) = T = z2T + z2ST + z3 + z3S.

Introducing the auxilliary variables u, v responsible for counting the number of base pairs resp.
number of stacked base pairs, we have

S(z, u, v) = S = z + zS + T + ST (4)

T (z, u, v) = T = uvz2T + uz2ST + uz3 + uz3S.
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Letting sk,m,n denote the number of secondary structures on a length n homopolymer, having k

stacked base pairs and m base pairs, we have

S(z, u, v) =
X

n

X

k,m≤n

sk,m,nukvmzn

∂

∂u
S(z, u, v) =

X

n

X

k,m≤n

ksk,m,nuk−1vmzn

hence

[zn]
∂S(z, u, v)

∂u
(z, 1,1) =

X

k,m≤n

ksk,m,n. (5)

Since S(z, 1,1) is is the number of secondary structures on a homopolymer of length n, it follows that
the asymptotic expected energy over all secondary structures of a homopolymer of length n, with
respect to the base stacking energy model, is equal to −1 times the asymptotic expected number of
stacked base pairs,

− lim
n→∞

∂S(z,u,v)
∂u (z,1, 1)

[zn]S(z,1, 1)
. (6)

Grammar for McCaskill algorithm

All thermodynamics-based RNA secondary structure prediction algorithms use the Turner nearest
neighbor energy model [25,40], which contains free energy parameters for base stacking, single nu-
cleotide dangles, hairpins, bulges, internal loops and multiloops. These parameters are obtained by
a least squares fit of UV absorption data in optical melting experiments. For instance, at 37◦ C the

RNA-RNA stacking free energy of
5′-AC-3′

3′-UG-5′
is −2.24 kcal/mol and that of

5′-CC-3′

3′-GG-5′
is −3.36 kcal/mol

[40]. Software such as mfold of Zuker [46] and RNAfold from Vienna RNA Package [17] use the Turner
energy model, while alternative approaches, such as Pfold [19] use stochastic context free grammars.

In [26], McCaskill describes a cubic time, dynamic programming algorithm to compute the parti-
tion function Z =

P

S exp(−E(S)/RT ) over all secondary structures S of a given RNA sequence. Here
R is the universal gas constant, T is absolute temperature, and E(S) is the energy of structure S with
respect to the Turner energy model [40]. By analyzing McCaskill’s recursions, we obtain the follow-
ing grammar G3, which generates the same set of secondary structures as that generated by G1, G2;
however, by permitting the classification of various types of loops, the grammar G3 will permit us
later to incorporate energy terms for dangles, also known as single-stranded, stacked nucleotides, into
our considerations. A stacked base pair in secondary structure S is given by base pair (i, j) ∈ S, such
that (i − 1, j + 1) ∈ S. A hairpin loop in secondary structure S is given by base pair (i, j) ∈ S, such
that i + 1, . . . , j − 1 are unpaired in S. A left bulge of S is given by base pairs (i, j), (k, ℓ) ∈ S, such
that i+1 < k < ℓ < j and ℓ+1 = j. A right bulge of S is given by base pairs (i, j), (k, ℓ) ∈ S, such that
i < k < ℓ < j − 1 and i + 1 = k. An internal loop of S is given by base pairs (i, j), (k, ℓ) ∈ S, such that
i+1 < k < ℓ < j−1; i.e. an internal loop is comprised of both a left and right bulge. A multiloop M of
S is given by base pairs (i, j), (k1, ℓ1), . . . , (kr, ℓr) ∈ S, such that i < k1 < ℓ1 < · · · < kr < ℓr < j, where
r ≥ 2, and positions i+1, . . . , k1−1, ℓ1+1, . . . , k2−1, ℓ2+1, . . . , kr −1, ℓr +1, . . . , j−1 are all unpaired
in S. For any positions i < x < y < j, where we do not require x or y to be base-paired, we say that
the multiloop restricted to [x, y] has c components, if exactly c of the base pairs (k1, ℓ1), . . . , (kr, ℓr)
are found in the interval [x, y]. See Figure 1 for an illustration of various loops, and see [45,44] for
more on loop classification and the Turner energy model.

Let grammar G3 contain non-terminal symbols S (start), U (unpaired portion), B (base-paired
portion), M1 (multiloop with exactly one component), M (multiloop with at least one component),
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Fig. 1 Secondary structure together with various loops: stacked base pair, hairpin, bulge, internal loop, multiloop.

with the following production rules

S → •|B|S • |SB

B → (U ) | (B ) | (UB ) | (BU ) | (UBU ) | (MM1 )

U → •| • U

M1 → B|BU

M → M1|UM1|MM1

It is not difficult to show that G3 is an unambiguous context free grammar equivalent to G1, G2, thus
generates all secondary structures. The grammar G3 is equivalent to the “tree grammar wuchty98”
as defined in [33], though notation is vastly different.

Grammar for Markham-Zuker algorithm

To the best of our knowledge, the Markham-Zuker software UNAFOLD [23] is the only current thermodynamics-
based algorithm that computes the partition function for RNA secondary structures in a mathemat-
ically rigorous manner, including correct treatment of energy contributions from single-stranded,
stacked nucleotides – also called dangles. By enlarging the set of terminal symbols, we describe here
an unambiguous context free grammar G4, which generates all secondary structures with dangle
explicitly given. M. Zuker (personal communication) has mentioned that the algorithm UNAFOLD may
take approximately twice as long to run when the user chooses to include treatment of dangles. As we
will later see, an explanation for this phenomenon is that the asymptotic number of secondary struc-
tures, where the dangle state is explicitly annotated, is much larger than the number of secondary
structures.
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The context free grammar G4 has start symbol S, terminal alphabet {5, 3, • , ( , ) } and non-
terminal alphabet {S, B, M, M1, U, •≥θ} and rule set

S → • |S • |{ǫ + S}B|{ǫ + S}5B|{ǫ + S}B3|{ǫ + S}5B3

B → ( •≥θ ) | (B ) | (UB ) | (BU ) | (UBU ) |
(MM1 ) | ( 3MM1 ) | (MM15 ) | ( 3MM15 )

M → {ǫ + U + M}M1

M1 → M1 • |B|5B|B3|5B3

•≥θ → • | •≥θU

U → • |U •

Note that +, ǫ are meta-symbols, used to express the rules more succinctly. For instance, S → {ǫ+S}B
is an abbreviation of the rules S → B and S → SB. The previous rules provide for an unambiguous
context free grammar that generates all non-empty secondary structures, where all dangles are
explicitly annotated. For instance, 5 ( • • • ) indicates that in the secondary structure • ( • • • ) ,
the first position is single-stranded nucleotide which is 5′ to the position 2, and stacks on the base pair
(2,6). Similarly, ( • • • ) 3 indicates that in the secondary structure ( • • • ) • , the last position is
single-stranded nucleotide which is 3′ to the position 5 and stacks on the base pair (1,5). Since the
Turner energy parameters for hairpins, bulges and internal loops already include contributions for
single-stranded positions within the loop which may dangle on the outer, closing base pair, it follows
that in thermodynamics-based structure prediction, we do not consider internal dangles in hairpins,
bulges or internal loops of the form ( 3 · · · ) , ( · · · 5 ) , ( 3 · · · 5 ) , though such internal dangles are
considered in multiloops. Of course, external dangles of the form 5 ( · · · ) , ( · · · ) 3 and 5 ( · · · ) 3 are
considered for all types of loops.

In the grammar G4, non-terminals represent the following: S denotes the start symbol to generate
all structures, B indicates that the leftmost and rightmost positions are paired together, M denotes
a substructure located within a multiloop, having at least one component (the base pair closing the
multiloop has been generated before non-terminal M), M1 denotes a substructure located within a
multiloop, having exactly one component, where additionally the leftmost position is paired with a
position in the substructure to the right (though not necessarily the rightmost position).

Note that the Markham-Zuker approach allows dangle annotations of the rightmost unpaired
nucleotide in (BB• ) of the form (BB5 ) or (BB3 ) ; i.e. where a single-stranded position occurring
between two closing parentheses can be annotated as either a 5′-dangle, 3′-dangle, or no dangle.
Indeed,

S ⇒ B ⇒ (MM15 ) ⇒ (M1M15 ) ⇒ (BM15 ) ⇒ (BB5 )

and

S ⇒ B ⇒ (MM1 ) ⇒ (M1M13 ) ⇒ (BM13 ) ⇒ (BB3 )

and

S ⇒ B ⇒ (MM1 ) ⇒ (M1M1 ) ⇒ (BM1 ) ⇒ (BM1 • ) ⇒ (BB • )

Theorem 1 In the homopolymer model, where the minimum number of unpaired bases in a hairpin loop

is 1, the asymptotic number of secondary structures with annotated dangles, following the Markham-Zuker

recursions in [24] is

Sn ∼ 0.63998 · n−3/2 · 3.06039n.

Proof sketch: It is not difficult to prove by recursion on n that the set of dangle-annotated secondary
structures of length n generated by grammar G4, is equal to the value of the Markham-Zuker partition
function described in pages 14-16 of [24], provided that all energies are set to 0.7 Now apply DSV

7 It is clear that the number of structures equals the partition function
P

S exp(−E(S)/RT ) provided that
E(S) = 0.
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methodology and analyze the dominant singularity using the Flajolet-Odlyzko theorem, as fully
described in [21]. In supplementary material located at http://bioinformatics.bc.edu/clotelab/,
we provide a detailed computation using Mathematica. 2

Grammar for external dangles

Define external dangle to mean a 5′-dangle, which occurs to the immediate left of an opening paren-
thesis, or a 3′-dangle, which occurs to the right of a closing parenthesis. Since our work is theo-
retical in nature, in the construction using plane trees in Section 6, we choose to consider the case
that all dangles are external; i.e. no internal dangles, such as the earlier examples of (BB5 ) and
(BB3 ) , are allowed. We now give a context free grammar for secondary structures having possible
5′-dangles and 3′-dangles in bulges, internal loops, multiloops and external loops. Let G5 be a con-
text free grammar with start symbol S, terminal alphabet {5, 3, • , ( , ) } and non-terminal alphabet
{S, B, M, M1, U, •≥θ} and rule set

S → • |S • |{ǫ + S}B|{ǫ + S}5B|{ǫ + S}B3|{ǫ + S}5B3

B → ( •≥θ ) | (B ) | ( {5 + U5 + U}B ) | (B{3 + 3U + U} ) |
( {5 + U5 + U}B{3 + 3U + U} ) | (MM1 )

M → {ǫ + U + M}M1

M1 → M1 • |B|5B|B3|5B3

•≥θ → • | •≥θU

U → • |U •

As in grammar G4, the symbols +, ǫ are meta-symbols, to permit a concise representation of grammar
rules; moreover, the meaning of non-terminals S, B, M, M1 is the same in G5 as in G4. It can be proved
by induction that grammar G5 is an unambiguous context free grammar, that generates all non-empty
secondary structures with explicitly annotated 5′-dangles and 3′-dangles, i.e. those dangles that are
external to any type of loop, whether the loop is a hairpin, bulge, internal loop, multiloop or external
loop.

Theorem 2 In the homopolymer model, where the minimum number of unpaired bases in a hairpin loop is

1, the asymptotic number of secondary structures with annotated external dangles, generated by grammar

G5 is

Sn ∼ 0.96691 · n−3/2 · 3.079596n.

Proof sketch: Using the DSV methodology, we analyze the dominant singularity using the Flajolet-
Odlyzko theorem, as fully described in [21]. In supplementary material located at http://bioinformatics.
bc.edu/clotelab/, we provide a detailed computation using Mathematica. Moreover, in the latter
part of this paper, in a self-contained manner, we give an alternate proof using plane trees. 2

Grammar for saturated structures

In [5], we presented the following grammar which generates all saturated secondary structures in the
sense of Zuker [42]; i.e. locally optimal with respect to the Nussinov energy model. Let G6 be the
context-free grammar with nonterminal symbols S, R, terminal symbols •, ( , ) , start symbol S and
production rules

S → •| • •|R • |R • •| (S ) |S (S )

R → (S ) |R (S )

It can be shown by induction on expression length that L(S) is the set of saturated structures, and
L(R) is the set of saturated structures with no visible position; i.e. external to every base pair. Here,
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position i is said to be visible in a secondary structure T if it is external to every base pair of T ; i.e.
for all (x, y) ∈ T , i < x or i > y.

It is possible to describe context free grammars that generate (1) all secondary structures, (2) all
saturated secondary structures, (3) all G-saturated secondary structures, optionally with annotated
external dangles. However, the subsequent analysis of dominant singularity becomes increasingly
arduous. For this reason, beginning in Section 4, we present a new, unified method using duality,
marked plane trees, substitution of generating functions, and the Drmota-Lalley-Woods theorem (see
Theorem 3).

3 Computational results

In this section, we present computational results to highlight differences between the Nussinov model
and the base stacking energy model, and additionally to determine the relation between folding time
and number of saturated structures. Figure 3 displays a melting curve with respect to the Nussinov
energy model and the base stacking energy model. By extending ideas we first described in [2], we
developed two algorithms (one for the Nussinov model and one for the base stacking energy model),
each running in time O(n5) and space O(n3), to compute the expected number of base pairs as a
function of temperature.8 Figure 3 clearly shows that the melting temperature TM , depends on the
energy model, where TM is defined as the temperature at which, on average, half the base pairs of the
high temperature structure are no longer present. Moreover, as the figure shows, the base stacking
energy model leads to more cooperative folding, as signified by the sigmoidal nature of the curve (see
Dill and Bromberg [6] for a discussion of cooperative folding).

Additionally, the Nussinov energy model and the base stacking energy model are remarkably
different with respect to pseudoknotted structures, defined by dropping requirement (3) in our defi-
nition of secondary structure; i.e. a pseudoknotted structure S allows base pair crossings of the form
(i, j), (k, ℓ) ∈ S, where i < k < j < ℓ. While Tabaska et al. [36] showed that the minimum energy
pseudoknotted structure can be computed in cubic time O(n3) by using the maximum weighted
matching algorithm, provided one considers the Nussinov energy model, in the preprint [32], Sheikh
et al. show that determination of the minimum energy pseudoknotted structure for the base stacking
energy model is NP -complete, a refinement of a result of Lyngsø and Pedersen [22].

4 Enumeration of locally optimal secondary structures

4.1 Duality: RNA secondary structure ↔ weighted plane tree

It is well known that secondary structures have a tree shape, and there are several ways to formulate
it. Here we find convenient to associate in a bijective way to a secondary structure (in the homopoly-
mer formulation) a rooted plane tree with nonnegative integers (weights) at the corners and at the
edges. The transformation is shown in Figure 3. Start with a secondary structure S of length n, the
elements in the sequence being ranked from 1 to n. Call segment of S a sequence i, i + 1, . . . , j such
that i < j and: (i) either i = 0, or 1 ≤ i ≤ n and the element i is linked, (ii) either j = n + 1, or
1 ≤ j ≤ n and the element j is linked, (iii) all elements in i + 1, . . . , j − 1 are free. Note that there
are j − i − 1 free elements in the segment. Then perform two reduction operations on S:

Stem-reduction Replace each stem ℓ0, . . . , ℓk by a single link.
Segment-reduction Replace each segment by a unit segment (with no free element on it).

Call R the reduced structure (which has no free element). Given the standard plane representation
of R, draw a vertex, called a dual vertex in each region, and for each link of R, draw a dual edge

connecting the vertices in the regions on each side of the link. The obtained figure (keeping the dual

8 Alternatively, and more simply, we could have produced this curve from the Taylor coefficients of the expressions
to the right of the limit in equations (3) and (6), after first solving for S(z, u) [resp. S(z, u, v)] in equation (1) [resp.
(4)].
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Fig. 2 Theoretical melting curve for two simple energy models of RNA secondary structure. Temperature in
Celsius is given on the x-axis, while expected number of base pairs is given on the y-axis. We implemented an
algorithm, using dynamic programming, with run time O(n5) and space O(n3), to compute the partition func-
tion Zk =

P

S∈Sk
exp(−E(S)/RT ), where (S)k denotes the set of all secondary structures for a homopolymer of

length 100 nt, having exactly k base pairs. The expected number of base pairs is thus
P

k k · pk, where pk = Zk

Z
denotes the probability that a secondary structure has k base pairs, and Z denotes the full partition function
Z =

P

S exp(−E(S)/RT ) =
P

k Zk. (Alternatively, and more simply, we could have produced this curve from the
Taylor coefficients of the expressions to the right of the limit in equations (3) and(6), after first solving for S(z, u)
[resp. S(z, u, v)] in equation (1) [resp. (4)].) In the Nussinov-Jacobson energy model [28], E(S) is defined to be
−1 · |S|; i.e. −1 times the number of base pairs of S. In the base stacking energy model, E(S) is defined to be
−1 times the number of stacked base pairs of S. Although both models are quite similar, we see that the melting
curves are indeed different, where the base stacking model entails more cooperative folding (see [6] for discussion of
cooperative folding).

secondary structure S ↔ weighted tree T
hairpin ↔ leaf

bulge ↔ inner node with one child
multiloop ↔ inner node with several children

segment with L free elements ↔ corner of weight L
stem of length k ↔ edge of weight k

Table 1 Correspondence between types of loop in secondary structure S and types of node in the plane tree T
obtained by duality.

vertices and dual edges only) is a rooted plane tree T . Note that each edge of T corresponds to a link
of R (hence corresponds to a stem of S), and each corner of T corresponds to a segment of S. We
weight T by giving to each of its corners a weight corresponding to the number of free elements in
the corresponding segment, and giving to each of its edges a weight corresponding to the length of
the corresponding stem. Several parameters are in correspondence through the bijection (we use the
standard terminology for parameters of secondary structures, a node of a tree is called a leaf if its
arity is 0 and an inner node if it has positive arity): See Table 1 for a summary of the correspondences
between secondary structure loops and nodes of a weighted tree.
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Fig. 3 (a) A (homopolymer) secondary structure, (b) deformed into a tree-like shape, (c) the reduced structure
superimposed with the dual rooted plane tree (in dashed lines, with the root indicated by an ingoing arrow), (d)
the rooted plane tree with weights at corners (surrounded by circles) to indicate segment lengths, and weights at
edges (surrounded by squares) to indicate stem lengths.

Note also that the number of links of S is the number |E| of edges plus the total weight We over
all edges, and that the number of free elements of S is the total weight Wc over all corners, hence
the length n of S satisfies n = 2|E| + 2We + Wc.

A weighted rooted plane tree with at least one edge is called admissible if it corresponds to a valid
secondary structure (which has at least one link), i.e., if the weights satisfy the following conditions:

1. Each non-root node with one child has at least one of its two incident corners of positive weight
(otherwise the stem-reduction would not have been complete).

2. Each corner at a leaf has weight at least θ (to satisfy the θ-threshold condition).
3. Each edge has weight at least τ (to satisfy the τ -threshold condition).

4.2 Generating functions

For r ≥ 1, a weighted combinatorial class indexed by r parameters is a set A together with a weight-

function W from A to R and r parameter-functions P1, . . . , Pr (one for each parameter) from A
to N such that for any fixed integers n1, . . . , nr, the set of structures γ ∈ A such that P1(γ) =
n1, . . . , Pr(γ) = nr is finite. This set is denoted A[n1, . . . , nr]. The corresponding multivariate gener-
ating function is

A(x1, . . . , xr) :=
X

γ∈A
x

P1(γ)
1 · · ·xPr(γ)

r W (γ). (7)
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We say that variable xi marks the parameter Pi, for 1 ≤ i ≤ r. We also use the notation

[xn1

1 . . . xnr

r ]A(x1, . . . , xr) :=
X

γ∈A[n1,...,nr]

W (γ).

In general we consider enumerative generating functions, where W (·) assigns weight 1 to each struc-
ture. However we allow ourselves to weight these structures, e.g., to weight each secondary structure
by p#(links), with p a so-called stickiness parameter. The variables xi are a priori considered as formal,
but one can also evaluate a generating function at given values, provided the sum converges. The
convergence domain of A(x1, . . . , xr) is the set of r-tuples (x1, . . . , xr) of nonnegative real values such
that A(x1, . . . , xr) converges.

As a first example, we briefly recall here how to enumerate (homopolymer) secondary structures,
via the dual representation by weighted rooted plane trees and using generating functions. Let F be
the family of rooted plane trees, possibly reduced to a single vertex, with some marked corners (to
be occupied by positive weights later on) incident to inner nodes such that each node with one child
has at least one marked corner. Let F ≡ F (u, v, x) be the generating function of F where u marks the
number of leaves, v marks the number of marked corners, and x marks the number of edges. When
the root-node v has arity 1, exactly one of its two corners is marked, hence the generating function
for trees in F whose root-node has arity 1 is 2vxF . When the root-node v has arity k ≥ 2, there are
(k+1) corners incident to v, and each of these can be marked (independently). Hence the generating
function for trees in F where the root-node has arity k is (1 + v)k+1xkF k. Consequently, F satisfies

F = u + (2v + v2)xF +
X

k≥2

xk(1 + v)k+1F k = u +
x(1 + v)2F

1 − x(1 + v)F
− xF. (8)

Let G be the family of rooted plane trees with at least one edge and with some marked corners (to
be occupied by positive weights later on) incident to inner nodes such that each non-root node with
one child has at least one marked corner. Let G ≡ G(u, v, x) be the generating function of G where
u marks the number of leaves, v marks the number of marked corners, and x marks the number of
edges. Again by decomposing at the root, we get

G =
X

k≥1

xk(1 + v)k+1F k =
x(1 + v)2F

1 − x(1 + v)F
. (9)

Let g(t, s) be the series counting secondary structures with at least one link, where t marks the
number of free elements, and s marks the number of links. Note that g(t, s) is also the generating
function of admissible rooted weighted plane trees where t marks the total weight over corners, and
s marks the number of edges plus the total weight over edges. Such a tree is uniquely obtained from
a tree in G where each corner at a leaf is assigned a weight of value at least θ, each non-marked
corner at an inner node is assigned weight 0, each marked corner is assigned a positive weight, and
each edge is assigned a weight of value at least τ . Hence we have g(t, s) = G(U,V, X), where

U :=
X

i≥θ

ti =
tθ

1 − t
, V =

t

1 − t
, X := s

X

i≥τ

si =
sτ+1

1 − s
.

To summarize, we have an expression (written as a system of two equations) for the generating
function g(t, s) enumerating secondary structures with at least one link, where t marks the number
of free elements and s marks the number of links (the generating function of all secondary structures,
including the ones with no link, is clearly g(t, s) + t + t2 + · · · = g(t, s) + t

1−t ). Indeed, if we define
f(t, s) := F (U,V, X), then we easily see (since the substitutions of variables are rational expressions
whose series-expansion have nonnegative coefficients) that there is a one-line equation specifying
f(t, s), of the form f(t, s) = Q(t, s, f(t, s)), with Q ≡ Q(t, s, y) a rational expression whose series-
expansion (in s, t, y) has nonnegative coefficients. And there is a rational expression R ≡ R(t, s, y)
whose series-expansion has nonnegative coefficients and such that g(t, s) = R(t, s, f(t, s)). Precisely

Q = substitute

 

u =
tθ

1 − t
, v =

t

1 − t
, x =

sτ+1

1 − s

!

into u +
x(1 + v)2y

1 − x(1 + v)y
− xy,
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≥ θ

Fig. 4 Situations where it is possible to add a link to a secondary structure.

R = substitute

„

v =
t

1 − t
, x =

sτ+1

1 − s

«

into
x(1 + v)2y

1 − x(1 + v)y
.

This allows us to extract the counting coefficients. Let gp(t) be the weighted generating function
of secondary structures where t marks the length, and where each structure has weight p#(links):
gp(t) = g(t, pt2)+ t/(1− t) (the term t/(1− t) gathers secondary structures with no link); for instance
for θ = 1 and τ = 0 we find

gp(t) = t+ t2 +(1+p)t3+(1+3p)t4+(1+6p+p2)t5+(1+10p+6p2)t6 +(1+15p+20p2+p3)t7 + · · · .

4.3 Counting saturated structures

The Nussinov energy E(S) of a secondary structure S is defined as E(S) = −L(S), with L(S) the
number of links in S. A secondary structure S is called saturated (or locally optimal for the Nussinov
energy) if it is not possible to add a link to S (i.e., decrease the energy by 1) while keeping a valid
secondary structure.

Lemma 1 Assume τ = 0 (no restriction on the lengths of stems). Saturated secondary structures with at

least one link correspond to admissible weighted rooted plane trees such that:

– all corners have weight at most θ + 1,

– at each node there is at most one corner of strictly positive weight.

Proof. As shown in Figure 4, if there are two positive corners at the same inner node, then it is
possible to add a link. Also, if there is a corner with weight at least θ + 2 then one can link the first
and last free elements in the corresponding segment. Hence the weight of each corner is at most θ+1.
And these are the only two situations where it is possible to add a link without breaking planarity
nor breaking the θ-threshold condition. 2

Call F the family of rooted plane trees with some marked corners incident to inner nodes (these
marked corners are to be occupied by positive weights later on) such that: (i) each node with one
child has exactly one marked corner, (ii) each node with several children has at most one marked
corner. Let F ≡ F (u, v, x) be the generating function of F where u marks the number of leaves, v

marks the number of marked corners, and x marks the number of edges. When the root-node v has
arity 1, exactly one of its two corners is marked, hence the generating function for trees in F whose
root-node has arity 1 is 2vxF . When the root-vertex v has arity k ≥ 2, there are (k + 1) corners
incident to v, and at most one of these corners has positive weight. Hence the generating function
for trees in F where the root-vertex has arity k is (1 + (k + 1)v)xkF k. Consequently, F satisfies

F = u + 2vxF +
X

k≥2

(1 + (k + 1)v)xkF k,
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Hence, using the identity
P

k≥0(k + 1)Ak = 1/(1 − A)2, F satisfies

F = u +
x2F 2

1 − xF
+

v

(1 − xF )2
− v. (10)

Now let G be the family of rooted plane trees with at least one edge, and with marked corners
incident to inner nodes such that: (i’) each node v with one child has exactly one marked corner if v is
different from the root-node, and has at most one marked corner if v is the root-node, (ii) each node
with several children has at most one marked corner. Let G ≡ G(u, v, x) be the generating function
of G where u, v, x mark respectively the numbers of leaves, marked corners, and edges. Decomposing
again at the root, we get

G =
X

k≥1

(1 + (k + 1)v)xkF k =
xF

1 − xF
+

v

(1 − xF )2
− v. (11)

We take here τ = 0 (no restriction on the lengths of stems). Let g(t, s) be the generating function
of saturated secondary structures with at least one link, where t marks the number of free elements
and s marks the number of links. Then Lemma 1 ensures that g(t, s) = G(U, V, X), where

U = tθ(1 + t), V = t + . . . + tθ+1 =
t − tθ+2

1 − t
, X =

s

1 − s
.

To summarize (in a similar way as for general structures), we have an expression (written as a
system of two equations) for the generating function g(t, s) enumerating saturated secondary struc-
tures with at least one link, where t marks the number of free elements and s marks the number of
links (the generating function of all saturated secondary structures, including the ones with no link,

is g(t, s)+t+· · ·+tθ+1 = g(t, s)+ t−tθ+2

1−t ). Indeed, if we define f(t, s) := F (U, V, X), then there is a one-
line equation specifying f(t, s), of the form f(t, s) = Q(t, s, f(t, s)), with Q(t, s, y) a rational expression
whose series-expansion (in s, t, y) has nonnegative coefficients. And there is a rational expression
R(t, s, y) whose series-expansion has nonnegative coefficients and such that g(t, s) = R(t, s, f(t, s)).
Precisely

Q = substitute

 

u = tθ(1 + t), v =
t − tθ+2

1 − t
, x =

s

1 − s

!

into u +
x2y2

1 − xy
+

v

(1 − xy)2
− v,

R = substitute

 

v =
t − tθ+2

1 − t
, x =

s

1 − s

!

into
xy

1 − xy
+

v

(1 − xy)2
− v.

Again this allows us to extract the counting coefficients. Let gp(t) be the weighted generating function
of saturated secondary structures where t marks the length, and where each structure has weight
p#(links): gp(t) = g(t, pt2) + t + · · · + tθ+1; for θ = 1 and τ = 0 we find

gp(t) = t + t2 + pt3 + 3pt4 + (4p + p2)t5 + (2p + 6p2)t6 + (17p2 + p3)t7 + · · · .

4.4 Counting G-saturated structures

The base stacking energy E(S) of a secondary structure S is defined as E(S) := −T (S), with T (S) the
sum of sizes of all stems of S. A (homopolymer) secondary structure is called G-saturated (locally
optimal for the base stacking energy) if it is not possible to add a link so as to extend a stem (i.e.,
decrease by 1 the base stacking energy). In general, the addition of a link to a secondary structure
either creates a new stem of length 0 or extends an already existing stem. Hence, in a G-saturated
structure a valid link addition always creates a new stem of length 0. In case τ > 0, creating a stem
of length 0 is not a valid link addition (since the stems must have positive length), hence no valid
link addition to a G-saturated is possible for τ > 0. In other words, the concepts of saturated and of
G-saturated structures coincide when τ > 0 (whereas for τ = 0 the class of saturated structures is
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≥ θ

Fig. 5 Situations where it is possible to extend a stem of a secondary structure.

strictly contained in the class of G-saturated structures). In this section we enumerate G-saturated
structures according to the number of free elements and the number of links, for any given values of
the threshold parameters τ and θ.

Again we formulate the conditions on the dual representation. For this purpose we define ad-
jacency of corners. Two corners c and c′ of a rooted plane tree T are called adjacent if they are
incident to the same vertex v of T and there is an edge e incident to v such that c and c′ are the
corners incident to v on each side of e. Note that the two corners on each side of the root (the root
is represented as an ingoing arrow in Figure 3) are considered as adjacent only when the root-node
v has arity 1 (in which case they are adjacent through the unique edge incident to v).

Lemma 2 The G-saturated secondary structures with at least one link correspond to admissible weighted

rooted plane trees such that:

– the corners at leaves have weight at most θ + 1,

– any two adjacent corners can not both have strictly positive weight.

Proof. As shown in Figure 5, if there are two adjacent positive corners, then it is possible to add a
link so as to extend an existing stem. Also, if there is a corner of weight at least θ + 2 at a leaf ℓ,
then one can link the first and last free elements in the corresponding segment and thus extend the
stem associated to the edge leading to ℓ. Hence the weight of a corner at a leaf is at most θ +1. And
these are the only two situations where it is possible to extend a stem without breaking planarity
nor breaking the θ-threshold and τ -threshold condition. 2

Call F the family of rooted plane trees with some marked corners incident to inner nodes (again
these marked corners are to be occupied by positive weights later on) such that: (i) each inner node
with one child has exactly one marked corner, (ii) two corners can not both be marked if they are
adjacent or if they are the two corners on each side of the root (the root is indicated by an ingoing
arrow in Figure 3). Let F ≡ F (u, v, x) be the generating function of F where u marks the number
of leaves, v marks the number of marked corners, and x marks the number of edges. Finding an
equation satisfied by F is a little more involved than for saturated structures. At first we need a
preliminary study on independent sets (i.e., sets containing only pairwise non-adjacent elements) on
a k-sequence or on a k-cycle.

For k > 0 and m ≤ k, let ck,m (resp. sk,m) be the number of ways of choosing m marked

elements on the oriented cycle (1,2, . . . , k) (resp. sequence 1, 2, . . . , k) of k elements such that no
two consecutive elements are marked, and let Ck = Ck(v) :=

P

m ck,mvm (resp. Sk = Sk(v) :=
P

m sk,mvm) be the corresponding (polynomial) generating function. The polynomials Sk are well-
known to be the Fibonacci polynomials and satisfy an easy recurrence which we briefly recompute
here. We take the convention S0 = 1. Let k ≥ 2. If an independent set on the k-sequence starts with
a marked element, then the next element is forbidden and the remaining (k − 2)-sequence might be
occupied by any independent set; this gives a contribution vSk−2 in Sk, where the factor v takes
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account of the first element being marked. If an independent set on the k-sequence starts with a
non-marked element, then the remaining (k − 1)-sequence might be occupied by any independent
set; this gives a contribution Sk−1 in Sk. Therefore

Sk = vSk−2 + Sk−1 for k ≥ 2, S0 = 1, S1 = 1 + v.

Now define S ≡ S(v, z) :=
P

k≥0 Sk(v)zk. The recurrence on Sk above multiplied by zk and summed

over k ≥ 2 yields S − S0 − zS1 = vz2S + z(S − S0). With S0 = 1 and S1 = 1 + v we obtain

S =
1 + vz

1 − z − vz2
.

Let us go back to independent sets on the k-cycle (1, . . . , k), for k ≥ 3. In such a set, either 1 is
occupied, in which case the adjacent elements 2 and k are unoccupied and the remaining segment
3, . . . , k − 1 might be occupied by any independent set. This gives contribution vSk−3 to Ck. If 1
is unoccupied, then the remaining segment 2, . . . , k might be occupied by any independent set; this
gives contribution Sk−1 to Ck. Consequently

Ck = vSk−3 + Sk−1 for k ≥ 3.

If the root-node v of a tree in F has arity 1 then exactly one of its two incident corners is marked
(by definition of F), thus the generating function of trees in F whose root-node has arity 1 is 2vxF ;
if v has arity k ≥ 2 then the marked corners around v form an independent set (no two consecutive
corners are marked). Thus, for k ≥ 2, the generating function of trees in F whose root-node has arity
k is Ck+1(v)xkF k (since there are k + 1 corners incident to the root-node). Consequently F satisfies

F = u + 2vxF +
X

k≥2

Ck+1(v)xkF k

= u + 2vxF +
X

k≥2

ˆ

vSk−2 + Sk

˜

xkF k

= u + 2vxF + vx2F 2S(v, xF ) +
`

S(v, xF ) − 1 − (1 + v)xF
´

.

Using the rational expression of S above and rearranging, we obtain

F = u + 2vxF +
1 + 2vx2F 2 · (1 + vxF )

1 − xF − vx2F 2
− xF − 1. (12)

Now let G be the family of rooted plane trees with at least one edge and where some corners at inner
nodes are marked such that (i) each non-root inner node of arity 1 has exactly one marked corner,
(ii) two adjacent corners can not both be marked. And let G ≡ G(u, v, x) be the generating function
of G where u marks the number of leaves, v marks the number of marked corners, and x marks the
number of edges. The difference between G and F is at the root-vertex: in G the two corners on each
side of the root are allowed to be both marked when the root-vertex has more than one child, and
are allowed to be both unmarked when the root-vertex has one child. So we have

G =
X

k≥1

Sk+1(v)xkF k.

Using the rational expression of S above and rearranging, we obtain the following expression for G

in terms of F :

G =
xF (1 + 2v + (1 + v)vxF )

1 − xF − vx2F 2
. (13)

Now let g(t, s) be the generating function of G-saturated structures with at least one link, where
t marks the number of free elements and s marks the number of links. By Lemma 2,

g(t, s) = G(U,V, X), (14)
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where

U = tθ(1 + t), V =
t

1 − t
, X =

sτ+1

1 − s
.

The conclusion is similar to the other two cases (general structures, saturated structures): we have
an expression (written as a system of two equations) for the generating function g(t, s) enumerating G-

saturated secondary structures with at least one link, where t marks the number of free elements and s

marks the number of links (the generating function of all G-saturated secondary structures, including
the ones with no link, is g(t, s)+ t+ t2 + · · · = g(t, s)+ t

1−t ). Indeed, if we define f(t, s) := F (U,V, X),
then there is a one-line equation specifying f(t, s), of the form f(t, s) = Q(t, s, f(t, s)), with Q(t, s, y)
a rational expression whose series-expansion (in s, t, y) has nonnegative coefficients. And there is
a rational expression R(t, s, y) whose series-expansion has nonnegative coefficients and such that
g(t, s) = R(t, s, f(t, s)). Precisely

Q = substitute

„

u = tθ(1 + t), v =
t

1 − t
, x =

sτ+1

1 − s

«

into u + 2vxy +
1 + 2vx2y2(1 + vxy)

1 − xy − vx2y2
− 1− xy,

R = substitute

„

v =
t

1 − t
, x =

sτ+1

1 − s

«

into
xy(1 + 2v + (1 + v)vxy)

1 − xy − vx2y2
.

Again this allows us to extract the counting coefficients. Let gp(t) be the weighted generating function
of G-saturated secondary structures where t marks the length, and where each structure has weight
p#(links): gp(t) = g(t, pt2) + t/(1 − t); for θ = 1 and τ = 0 we find

gp(t) = t+ t2 +(1+ p)t3 +(1+3p)t4 +(1+4p+ p2)t5 +(1+4p+6p2)t6 +(1+4p+17p2 + p3)t7 + · · · .

5 Asymptotic results

5.1 Asymptotic enumeration

We show here that the number of structures of length n follows a universal asymptotic behaviour in
c γnn−3/2 (with c and γ explicit positive constants), which is typical of tree-structures. The proof
classically relies on the Drmota-Lalley-Woods theorem [11, VII.6], which we recall at first. Consider
an equation of the form

a(t) = Φ(t, a(t)), (15)

where Φ(t, y) is a rational expression in t and y. Such an equation is called admissible if the following
conditions are satisfied:

– the rational expression Φ(t, y) has a series-expansion in t and y with nonnegative coefficients, is
nonaffine in y, and satisfies 9 Φ(0,0) = 0 and Φy(0, 0) = 0,

– the unique generating function y = a(t) solution of (15) is aperiodic, i.e., can not be written as
a(t) = tqã(tp) for some integers p, q with p ≥ 2.

There is an easy criterion to check the aperiodicity condition: it suffices to prove that there is some
n0 such that [tn]a(t) > 0 for n ≥ n0.

Theorem 3 (Drmota-Lalley-Wood) Let y = a(t) be the generating function that is the unique solution

of an admissible equation y = Φ(t, y). Then

[tn]a(t) ∼ c γnn−3/2,

where γ = 1/t0, with (t0, y0) the unique pair in the convergence domain of Φ(t, y) that is solution of the

singularity system:

y = Φ(t, y), Φy(t, y) = 1;

9 We use the subscript notation for partial derivatives.
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and where

c =
q

t0Φt(t0, y0)/(2πΦy,y(t0, y0)).

Moreover, if Ψ(t, y) is a rational expression not constant in y, that has a series-expansion with nonnegative

coefficients, and such that the convergence domain of Ψ(t, y) is contained in the convergence domain of

Φ(t, y), then the coefficients of the generating function b(t) := Ψ(t, a(t)) behave as

[tn]b(t) ∼ d γnn−3/2,

where d = c · Ψy(t0, y0).

Remark 1 The Drmota-Lalley-Wood theorem is classically proved (e.g. in [11, VII.6]) for polynomial
systems (i.e., for Φ(t, y) a polynomial). But one easily checks that, more generally, if Φ(t, y) is a
bivariate series that diverges at all its singularities, then the conclusions remain the same.

From the Drmota-Lalley-Wood theorem we obtain

Proposition 1 Let p be a fixed positive real value (stickiness parameter). Let gp(t) be the univariate gen-

erating function of general (resp. saturated, resp. G-saturated) homopolymer secondary structures, where

t marks the length of the sequence and where each structure has weight p#(links).

Then, for any values of the threshold-parameters θ and τ (τ = 0 if one considers saturated structures),

there are computable positive constants c and γ (depending on τ , θ, p, and in which setting: general,

saturated, or G-saturated) such that

[tn]gp(t) ∼ c γnn−3/2.

Proof. Recall that, in each of the three settings (general, saturated, G-saturated), g(t, s) denotes the
generating function of secondary structures with at least one link, where t marks the number of
free elements and s marks the number of links. We have seen that, in each of the three settings,
there are two rational expressions Q(t, s, y) and R(t, s, y) that have nonnegative coefficients (in the
series-expansion), and there is an adjoint generating function f(t, s) such that f(t, s) = Q(t, s, f(t, s))
and g(t, s) = R(t, s, f(t, s)). In addition, the convergence domain of Q(t, s, y) is clearly the same as the
convergence domain of R(t, s, y); for instance, for G-saturated structures, the convergence domain is
the set of nonnegative triples (t, s, y) such that t < 1, s < 1, and xy + vx2y2 < 1, where v = t/(1 − t)
and x = sτ+1/(1 − s). Note that in all three settings, f(0,0) = 1 for θ = 0 and f(0, 0) = 0 for θ > 0.
If we set a(t) := f(t, pt2) − 1θ=0 (with θ the threshold parameter) and b(t) := g(t, pt2), then we
are in the conditions of the Drmota-Lalley-Wood theorem, with Φ(t, y) := Q(t, pt2, y + 1θ=0) − 1θ=0

and Ψ(t, y) := R(t, pt2, y + 1θ=0). The conditions for Φ and Ψ are readily checked, we show now
the aperiodicity of a(t) := f(t, pt2) (proving that the nth coefficient is strictly positive for n large
enough). Note that it is enough to consider p = 1 (the strict positivity of [tn]f(t) does not depend
on p > 0). In each of the three settings (general, saturated, G-saturated), a(t) is the enumerative
generating function of some explicit class of rooted weighted plane trees. For instance, for saturated
structures, a(t) counts admissible rooted weighted plane trees with all corners of weight at most
θ + 1, with at most one positive corner per node, and where each node of arity 1 has exactly one
positive corner. For i ≥ τ , consider the weighted rooted plane tree Ti made of one edge e leading to
a leaf ℓ, with weight 1 (resp. 0) at the corner to the left (resp. right) of the root, with weight i on
e and weight θ on ℓ. And consider the tree T ′

i defined exactly as Ti except that ℓ has weight θ + 1.
Note that Ti contributes to [t2i+θ+3]a(t) and T ′

i contributes to [t2i+θ+4]a(t). Hence [tn]a(t) > 0 for
all n ≥ 2τ +θ+3, so a(t) is aperiodic. In exactly the same way, a(t) is aperiodic in the general setting
and in the G-saturated setting.

Theorem 3 ensures that there are c > 0 and γ > 0 such that [tn]g(t, pt2) ∼ cγn n−3/2. Actually, in
the case of general and G-saturated structures, we have γ > 1 since (according to Theorem 3) there is
some y0 such that (1/γ, y0) is in the convergence domain of Φ(t, y), and since clearly any (t0, y0) in the
convergence domain of Φ(t, y) satisfies t0 < 1 (indeed Q(t, s, y) involves the quantity 1/(1−t), in each of
the general and in the G-saturated case). The generating function gp(t) (which includes also secondary
structures with no link, as opposed to g(t, s)) satisfies gp(t) = g(t, pt2)+t/(1−t) for secondary and for
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1.104366 · n−3/2
· 2.618034n

1.074271 · n−3/2
· 2.354674n

1.088582 · n−3/2
· 2.436901n

General

Saturated

G-saturated

1.637405 · n−3/2
· 2.041013n

1.527438 · n−3/2
· 1.705128n

1.632293 · n−3/2
· 1.826929n

p = 1 θ = 1 τ = 0 p = 3/8 θ = 1 τ = 0

Table 2 Asymptotic behaviour of the nth coefficient of the generating function gp(t) counting secondary structures
(general, saturated, or G-saturated) with weight p on each link.

G-saturated structures, and satisfies gp(t) = g(t, pt2) + t + . . . + tθ+1 for saturated structures. So the
additional term gathering saturated structures with no link has negligible asymptotic contribution
in all cases. 2

For p = 1, gp(t) is the enumerative generating function of homopolymer structures. Another value
of interest is p = 3/8. Indeed, if we want to count RNA secondary structures (each base is labelled
by a letter in {A, G, C, U}) instead of homopolymers, this corresponds to giving weight 4 to each
free element (because there are 4 possible labels) and giving weight 6 to each pair of linked elements
(because there are 6 allowed labellings out of 42 = 16, due to the Watson-Crick and wobble pairs).
Therefore the corresponding enumerative generating function is g(4t,6t2). We have

[tn]g(4t,6t2) = 4n[tn]g(t,3t2/8) = 4n[tn]g3/8(t).

In other words, [tn]g3/8 is the expected number of RNA secondary structures with the desired prop-
erties (general, saturated, or G-saturated) on a random sequence of size n (i.e., for a random word
in {A, G, C, U}n).

Table 2 shows the asymptotic behaviour of [tn]gp(t) for p = 1 and p = 3/8 in the three settings.
(The methodology to compute γ for saturated structures using computer algebra tools is detailed
in [5].)

5.2 Limit law for the number of links

Using a theorem of Drmota [7] (closely related to the Drmota-Lalley-Wood theorem) we show that
the number of links in a random secondary structure (general, saturated, or G-saturated) of length
n is asymptotically a gaussian law with Θ(n) expectation and Θ(

√
n) standard deviation.

Consider an equation of the form

a(t, u) = Φ(t, u, a(t, u)), (16)

where Φ(t, u, y) is a rational expression in t, u and y. Such an equation is called admissible if Φ(t, u, y)
is nonconstant in u, has a series-expansion (in t, u, y) with nonnegative coefficients, the equation
y = Φ(t, 1, y) is admissible (in the sense of Section 5.1), and there is a 3×3-matrix m[i, j] with integer
coefficients and nonzero determinant such that [tm[i,1]um[i,2]ym[i,3]]Φ(t, u, y) > 0 for all i ∈ {1, 2, 3}.

Theorem 4 (Drmota [7]) Let y = a(t, u) be a generating function that is the unique solution of an

admissible equation y = Φ(t, u, y). Assume that the generating function b(t, u) =
P

γ∈G t|γ|uχ(γ)W (γ) of

a weighted combinatorial class G is given by b(t, u) = Ψ(t, u, a(t, u)), with Ψ(t, u, y) a rational expression

with nonnegative coefficients (in the series-expansion), nonconstant in y, and such that the convergence

domain of Ψ(t, 1, y) is included in the one of Φ(t, 1, y). For n ≥ 0 let Gn := {γ ∈ G, |γ| = n}, and define

the random variable Xn as χ(γ), with γ a random structure in Gn under the distribution

P (γ) =
W (γ)

P

γ∈Gn
W (γ)

.
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0.276393 · n+ 0.211474 · √n · NGeneral

Saturated

G-saturated

p = 1 θ = 1 τ = 0 p = 3/8 θ = 1 τ = 0

0.337361 · n+ 0.132800 · √n · N
0.311958 · n+ 0.185032 · √n · N

0.230789 · n+ 0.218613 · √n · N
0.321153 · n+ 0.123935 · √n · N
0.273773 · n+ 0.211618 · √n · N

Table 3 Asymptotic behaviour of the number of links (N denotes a normal gaussian law).

For u > 0 in a neighbourhood of 1, denote by ρ(u) the radius of convergence of y : t → a(t, u), and let

µ = −ρ′(1)

ρ(1)
, σ2 = −ρ′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

„

ρ′(1)

ρ(1)

«2

.

Then µ and σ are strictly positive and
Xn − µ · n

σ
√

n
converges as a random variable to a normal (gaussian)

law.

Remark 2 Again the theorem was originally proved for polynomial systems, but the arguments of
the proof hold more generally when Φ is rational. The role of the condition involving the existence
of a nonsingular 3 × 3 matrix is to grant the strict positivity of σ, as recently proved in [8].

Proposition 2 Let p > 0. For n ≥ 1, let Xn be the number of links in a general (resp. saturated, resp. G-

saturated) secondary structure of length n taken at random with weight proportional to p#(links) (uniformly

at random when p = 1). Then there are computable strictly positive constants µ and σ (depending on p,

θ, τ , and on which setting: general, saturated, or G-saturated) such that Xn−µ·n
σ
√

n
converges as a random

variable to a normal (gaussian) law.

Proof. In each of the three settings (general, saturated, G-saturated), we have called g(t, s) the
enumerative generating function of secondary structures with at least one link. We have seen that
there are two rational expressions Q(t, s, y) and R(t, s, y) that have nonnegative coefficients (in the
series-expansion), and there is an adjoint generating function f(t, s) such that f(t, s) = Q(t, s, f(t, s))
and g(t, s) = R(t, s, f(t, s)); and the convergence domain of Q(t, s, y) is the same as the convergence
domain of R(t, s, y). Note that the bivariate series g(t, put2) (with variables t and u) is the weighted
generating function of secondary structures (with at least one link) where t marks the length, u

marks the number of links, and where each structure has weight p#(links). It is easily checked that,
if we set a(t, u) := f(t, put2) − 1θ=0 (with θ the threshold parameter) and b(t) := g(t, put2), then we
are in the conditions of Theorem 4, with Φ(t, u, y) := Q(t, put2, y + 1θ=0) − 1θ=0 and Ψ(t, u, y) :=
R(t, put2, y + 1θ=0). Indeed the 3 × 3 matrix condition is readily checked, and for u = 1 we get the
equation of Proposition 1, where we have already checked that the conditions are satisfied. 2

Table 3 shows the asymptotic behaviour for some standard parameter values. (The methodology
to compute µ for saturated structures using computer algebra tools is detailed in [5].) The case
p = 1 corresponds to a homopolymer of length n taken uniformly at random, while the case p = 3/8
corresponds to a (uniformly) random secondary structure where the underlying sequence is (any
word) in {A, G, C, U}n. As expected, saturated structures tend to have more links than G-saturated
structures, which tend to have more links than general structures.

6 Inclusion of dangles

We show here that the counting approach developed so far (based on duality with plane trees,
generating functions, and substitution operations) can be easily adapted to take the presence of so-
called dangling bases into account. In the parenthesis representation of the secondary structure (see



22 Éric Fusy1, Peter Clote2
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Fig. 6 Bottom: a secondary structure with dangles (two 5′-dangles and three 3′-dangles). Top-left: the secondary
structure with the dual plane tree. Top-right: each dangle yields a marked edge-side in the dual plane tree (corners
at inner nodes are simply marked if they have weight 1, are doubly marked if they have weight greater than 1).

5 3

(a) (b) (c) (d)

Fig. 7 (a) The first drawing shows a lateral corner, the second drawing shows an extremal corner (depending
edges are bolder). (b) A 5′-dangle yields a marked left-side of edge in the dual tree. (c) A 3′-dangle yields a marked
right-side of edge in the dual tree. (d) Situation of an extremal corner of weight 1, in which case the two depending
edge-sides can not both be marked.

Figure 6, bottom) a dangling base (shortly dangle) is a distinguished free base of two possible kinds:
a 5-dangle has to be just before an opening parenthesis, a 3′-dangle has to be just after of a closing
parenthesis. Note that a dangling base that is just before an opening parenthesis and just after a
closing parenthesis is either a 5′-dangle or a 3′-dangle but not both. For a structure with dangling
bases, the underlying secondary structure is the structure where dangling bases are considered as
usual free bases (i.e., are not distinguished).

In the dual plane tree, a 5′-dangle (resp. a 3′-dangle) is indicated by a marked edge-side to the
left (resp. to the right) of the edge, see Figure 7(b)-(c). To take dangles into account in our counting
method, we need to distinguish two types of corners in the dual plane tree T : a corner c at vertex v is
called lateral if c is incident to the edge going to the parent of v in T (when v is not the root-vertex)
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or c is incident to the root (when v is the root-node); note that every inner node has two incident
lateral corners (one on the left side, one on the right side). The other corners at inner nodes in the
tree are called extremal, see Figure 7(a). Given a corner c of T (at an inner node), an edge-side s

incident to c is said to depend on c if c is incident to s at the extremity of s closest to the root;
note that a lateral corner has one depending edge-side while an extremal corner has two depending
edge-sides, see Figure 7(a).

We now make important observations to determine when the edge-sides depending on a corner
c can be marked. If c has weight 0 then none of the depending edge-sides can be marked, because
there is no free base in the sector of c (hence no candidate to become a dangle). If c is lateral and
has positive weight (i.e., is a marked corner) then the depending edge-side is allowed to be marked.
If c is extremal of weight 1 then at most one of the two edge-sides depending on c is allowed to be
marked (because the unique free base in the sector of c can not be both a 5′-dangle and a 3′-dangle).
If c is extremal of weight at least 2 then the two depending edge-sides are allowed to be marked (and
are allowed to be both marked).

Given these observations we can easily include a variable for dangles in our generating function
expressions (recall we have treated 3 cases: general, saturated, G-saturated).

General structures, inclusion of dangles in the results of Section 4.2. Denote by F ≡ F (u, v1, v2, x)
the generating function of F (the one defined in Section 4.2) where u marks the number of leaves,
v1 (resp. v2) marks the number of marked corners that are lateral (resp. extremal), and x marks the
number of edges. Since a tree-vertex with k ≥ 1 children has two incident corners that are lateral
(the k − 1 other ones are extremal), we get the following equation (which specifies F uniquely):

F = u + (2v1 + v2
1)xF +

X

k≥2

xk(1 + v1)
2(1 + v2)

k−1F k

= u +
x(1 + v1)

2F

1 − x(1 + v2)F
− xF.

Similarly, denoting by G ≡ G(u, v1, v2, x) the generating function of G (where the variables have the
same meaning as for F ), we have

G =
x(1 + v1)

2F

1 − x(1 + v2)F
.

Let g(t, s, r) be the generating function counting secondary structures with at least one link, where
t marks the number of free elements (including dangles), s marks the number of edges, and r marks
the number of dangles. Then g(t, s, r) = G(U,V1, V2, X), where

U =
tθ

1 − t
, V1 =

t(1 + r)

1 − t
, V2 =

t(1 + r)2

1 − t
− tr2, X =

sτ+1

1 − s
.

For p > 0, q ≥ 0, let gp,q(t) be the weighted generating function of secondary structures where each
structure has weight p#(links)q#(dangles). Then gp,q(t) = g(t, pt2, q)+ t/(1− t). For instance, for θ = 1
and τ = 0 we find

gp,q(t) = t + t2 + (1 + p)t3 + (1 + 3p + 2pq)t4 + (1 + 6p + p2 + 6pq + pq2)t5 + · · · .

Saturated structures, inclusion of dangles in the results of Section 4.3. The equation for F

obtained in Section 4.3 becomes (when splitting v into two variables v1, v2 respectively for lateral
and extremal marked corners):

F = u + 2v1xF +
X

k≥2

(1 + 2v1 + (k − 1)v2)x
kF k

= u +
x2F 2 + 2xF · (v1 − v2)

1 − xF
+

v2

(1 − xF )2
− v2,



24 Éric Fusy1, Peter Clote2

and the expression of G becomes

G =
X

k≥1

(1 + 2v1 + (k − 1)v2)x
kF k

=
xF ·

`

1 + 2(v1 − v2)
´

1 − xF
+

v2

(1 − xF )2
− v2.

A structure with dangles is called saturated if the underlying secondary structure is saturated. Let
g(t, s, r) be the generating function counting saturated structures with at least one link, where t

marks the number of free elements (including dangles), s marks the number of edges, and r marks
the number of dangles. Then g(t, s, r) = G(U,V1, V2, X), where

U = tθ(1 + t), V1 =
t − tθ+2

1 − t
(1 + r), V2 =

t − tθ+2

1 − t
(1 + r)2 − tr2, X =

s

1 − s
.

For p > 0, q ≥ 0, let gp,q(t) be the weighted generating function of saturated structures where each
structure has weight p#(links)q#(dangles). Then gp,q(t) = g(t, pt2, q) + t + · · · + tθ+1. For θ = 1 and
τ = 0 we find

gp,q(t) = t + t2 + pt3 + (3p + 2pq)t4 + (4p + p2 + 4pq)t5 + (2p + 6p2 + 2pq + 4p2q)t6 + · · · .

G-saturated structures, inclusion of dangles in the results of Section 4.4. Let Ck(v1, v2) be
the polynomial generating function for independent sets of the cycle (1, . . . , k), where v1 (resp. v2)
marks the number of elements of the independent set that belong to {1, k} (resp. to {2, . . . , k − 1}).
Let Sk(v) be the polynomial generating function for independent sets of the chain 1, . . . , k, where v

marks the number of elements in the independent set. Recall that S(v, z) :=
P

k≥0 Sk(v)zk is given
by

S(v, z) =
1 + vz

1 − z − vz2
.

Then one easily sees that for k ≥ 3,

Ck(v1, v2) = 2v1Sk−3(v2) + Sk−2(v2),

and the equation for F obtained in Section 4.4 becomes (when splitting v into two variables v1, v2

respectively for lateral and extremal marked corners):

F = u + 2v1xF +
X

k≥2

Ck+1(v1, v2)x
kF k

= u + 2v1xF +
X

k≥2

(2v1Sk−2(v2) + Sk−1(v2))x
kF k

= u + 2v1xF + 2v1x2F 2 · S(v2, xF ) + xF · (S(v2, xF ) − 1),

which yields the simplified equation

F = u + 2v1xF +
1 + 2v1x2F 2 · (1 + v2xF )

1 − xF − v2x2F 2
− xF − 1.

And the expression of G becomes at first

G =
X

k≥1

“

Sk−1(v2) + 2v1Sk−2(v2) + v2
1Sk−3(v2)

”

xkF k,

with the conventions S−1(v) = 1, S−2(v) = 0. Hence we have

G = xF · (1 + v1xF )2S(v2, xF ) + 2v1xF + v2
1x2F 2

=
xF ·

`

1 + 2v1 + xF · (v2 + v2
1)
´

1 − xF − v2x2F 2
.
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0.966912 · n−3/2
· 3.079596n

1.161018 · n−3/2
· 2.637053n

1.075299 · n−3/2
· 2.747414n

General

Saturated

G-saturated

1.324839 · n−3/2
· 2.421346n

1.661309 · n−3/2
· 1.923212n

1.545238 · n−3/2
· 2.068940n

p = 1 θ = 1 τ = 0 p = 3/8 θ = 1 τ = 0q = 1 q = 1

Table 4 Asymptotic behaviour of the nth coefficient of the generating function gp,1(t) counting secondary struc-
tures (general, saturated, or G-saturated) with dangles, with weight p on each link.

0.262126 · n+ 0.185467 · √n · NGeneral

Saturated

G-saturated

p = 1 θ = 1 τ = 0 p = 3/8 θ = 1 τ = 0

0.328673 · n+ 0.120693 · √n · N
0.311958 · n+ 0.185032 · √n · N

0.228159 · n+ 0.186545 · √n · N
0.315303 · n+ 0.112692 · √n · N
0.273631 · n+ 0.184741 · √n · N

q = 1 q = 1

Table 5 Asymptotic behaviour of the number of links (N denotes a normal gaussian law) for secondary structures
(general, saturated, or G-saturated) with dangles, with weight p on each link.

A structure with dangles is called G-saturated if the underlying secondary structure is G-saturated.
Let g(t, s, r) be the generating function counting G-saturated structures with at least one link, where
t marks the number of free elements (including dangles), s marks the number of edges, and r marks
the number of dangles. Then g(t, s, r) = G(U,V1, V2, X), where

U = tθ(1 + t), V1 =
t(1 + r)

1 − t
, V2 =

t(1 + r)2

1 − t
− tr2, X =

sτ+1

1 − s
.

For p > 0, q ≥ 0, let gp,q(t) be the weighted generating function of G-saturated structures where each
structure has weight p#(links)q#(dangles). Then gp,q(t) = g(t, pt2, q) + t/(1 − t). For θ = 1 and τ = 0
we find

gp,q = t+ t2 +(1+ p)t3 +(1+3p+2pq)t4 +(1+4p+ p2 +4pq)t5 +(1+4p+6p2 +4pq +4p2q)t6 + · · · .

Asymptotic results. Propositions 1 and 2 directly extend to the case of any weight q ≥ 0 for dangles
(the case without dangles is q = 0). We give the numeric values corresponding to q = 1 (asymptotic
enumeration of structures with dangles) in Tables 4 and 5, which are the counterparts of Tables 2
and 3.

7 Discussion

In this paper, we presented various context free grammars that generate the set of secondary struc-
tures, according to different energy models: Nussinov energy, base stacking energy, Turner energy,10

Turner with dangles (where dangles are rigorously treated by the method of Markham and Zuker [23,
24]), Turner (with external dangles), as well as saturated and G-saturated structures. Using DSV,
dominant singularity analysis and the Flajolet-Odlyzko theorem, we proved that the asymptotic
number of secondary structures with annotated dangles, as computed in the partition function of
the Markham-Zuker software UNAFOLD [23], is 0.63998 ·n−3/2 ·3.06039n, exponentially larger than the
number of all secondary structures 1.104366 · n−3/2 · 2.618034n, previously established by Stein and
Waterman [35]. This result provides a partial explanation for M. Zuker’s observation (personal com-
munication) that UNAFOLD requires substantially more computation time when dangles are included.

10 Exact base stacking parameters are ignored as is entropy; however, the context-free grammar allows the separate
marking of distinct features, such as stacked base pairs, hairpins, bulges, internal loops, multiloops.
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Since the Nussinov energy model and the base stacking energy model superficially appear to be
almost equivalent, we presented a computational result that displays their marked differences.11 In
particular, the base stacking energy model leads to more cooperative folding and a higher melting
temperature for homopolymers than does the Nussinov energy model.

Finally, in the main part of the paper, we give generating functions for the number of secondary
structures and locally optimal secondary structures, with respect to the Nussinov model and the base
stacking energy models, permitting the determination of the asymptotic number of (all resp. satu-
rated resp. G-saturated) structures and the expected number of their base pairs, optionally requiring
a minimum stem length and stickiness parameter. With stickiness parameter 2(pGC+pAG+pAU ) = 3

8 ,
we obtain combinatorial results for RNA sequences using a reasonable theoretical model. The prin-
cipal advantage of our uniform treatment, using duality, substitution of generating functions and
the Drmota-Lalley-Woods theorem is that with little additional effort, we can determine the asymp-
totic number of (all resp. saturated resp. G-saturated) structures with external dangles, and their
expected number of base pairs. Such computations would have been more difficult using grammars,
DSV and singularity analysis.
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