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Synthetic biology is a rapidly emerging discipline, with long-term ramifications that

range from single-molecule detection within cells to the creation of synthetic genomes
and novel life forms. Truly phenomenal results have been obtained by pioneering groups

– for instance, the combinatorial synthesis of genetic networks, genome synthesis using

BioBricks, and hybridization chain reaction (HCR), in which stable DNA monomers
assemble only upon exposure to a target DNA fragment, biomolecular self-assembly

pathways, etc. Such work strongly suggests that nanotechnology and synthetic biology

together seem poised to constitute the most transformative development of the 21st
century.

In this paper we present a Constraint Programming (CP) approach to solve the
RNA inverse folding problem. Given a target RNA secondary structure, we determine

an RNA sequence which folds into the target structure; i.e. whose minimum free en-
ergy structure is the target structure. Our approach represents a step forward in RNA
design – we produce the first complete RNA inverse folding approach which allows
for the specification of a wide range of design constraints. We also introduce a Large

Neighborhood Search approach which allows us to tackle larger instances at the cost
of losing completeness, yet while retaining the advantages of meeting design constraints

(motif, GC-content, etc.). Results demonstrate that our software, RNAiFold, performs
as well or better than all state-of-the-art approaches; nevertheless, our approach is
unique in terms of completeness, flexibility and the support of various design constraints.
The algorithms presented in this paper are publicly available via the interactive web-

server http://bioinformatics.bc.edu/clotelab/RNAiFold; additionally, the source
code can be downloaded from that site.

Keywords: Computational Biology; RNA inverse folding; Synthetic Biology; RNA molec-

ular design.
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1. Introduction

Much of the work in synthetic biology concerns what might be called “synthetic
genomics”, pertaining to synthetic regulation of genes [12] and the development
of genomic building blocks, from which “parts” of a novel genome can be con-
structed [44]. In contrast to such work, in this paper, we instead consider RNA
molecular design using computational methods from dynamic programming [7] and
constraint programming [27], with subsequent experimental validation using in-line
probing [46]. Ribonucleic acid molecules are currently of great interest to the bio-
logical community, due to their primordial role in the presumed RNA world [42],
anterior to DNA and proteins, and especially due to the many surprising, recently
discovered regulatory roles played by RNA [8,11,32,35]. As in the case of proteins,
the function of RNA is often determined by its structure; consider, for instance,
the regulation of genes and alternative splicing by allostery (riboswitches) [11, 26]
and the catalysis of enzymatic reactions (ribozymes) [18]. Due to the extensive
study of RNA (secondary) structure, there is now software available for secondary
structure prediction [28,36,37], motif discovery [23,58], structure alignment [24,39],
riboswitch detection [10], precursor microRNA gene finders [53], non-coding RNA
gene finders [49], etc. Due to the regulatory importance of RNA and the availabil-
ity of such software, it is clear that some of the next important steps in sythetic
biology will concern the computational design and experimental validation of RNA
structures [1], as in the pioneering work of the lab of Niles Pierce [54].

1.1. RNA inverse folding

Given an RNA sequence, the structure prediction problem is to determine the na-
tive structure into which the sequence folds. Since the pioneering work of Anfin-
sen [3], it is widely accepted that the native structure of a given macromolecule
can be identified with its minimum free energy (MFE) structure. The ‘RNA inverse
folding’ problem is the inverse; i.e. given a target structure, determine an RNA
sequence whose MFE structure is the target structure. There are several widely-
used thermodynamics-based software suites, which compute the MFE structure of
pseudoknot-free sequences in time that is cubic in the RNA sequence length – for
instance, Vienna RNA Package RNAfold [25, 28], mfold [56], UNAFOLD [36], and
RNAstructure [37], all of which implement the Zuker algorithm [57], though with
slightly different energy parameters [38, 52]. Since RNA MFE secondary structure
can be efficiently computed, while determination of the MFE pseudoknotted (hence,
a fortiori, tertiary) structure is an NP-complete problem [34], in this paper we focus
exclusively on the inverse folding problem for RNA secondary structures.

There is experimental evidence that RNA secondary structure forms indepen-
dently of the tertiary structure [6]. From this data and newer NMR data [5], it is
broadly believed that RNA folds in a hierarchical fashion [13], although there are
exceptions [50, 51]. Since it appears that RNA secondary structure largely forms a
scaffold for tertiary structure formation, any solution of the RNA secondary struc-
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ture inverse folding problem is a major step towards functional RNA molecular
design.

Several algorithms exist for the RNA inverse folding problem: RNAinverse [29],
RNA-SSD [2], INFO-RNA [9], MODENA [47], NUPACK-DESIGN [54], Inv [21]. All of these
algorithms can be classified as heuristic methods, which start with an initial se-
quence that is iteratively modified until it either folds into the target structure or
some stopping criterion is reached.

The first approach found in the literature is RNAinverse, which forms part of
the Vienna RNA Package [25, 29]. RNAinverse divides the given target structure
S0 into smaller subunits and attempts to find an RNA sequence by an adaptive
walk, or greedy algorithm. Sequence positions are randomly mutated; mutations
are accepted if the objective function improves. In this case, the objective function
is the Hamming distance between the MFE secondary structure of the current
sequence and the target structure S0. RNAinverse can return the correct solution,
an approximate solution, or no solution at all.

RNA-SSD [2] is a different and very efficient algorithm, which nevertheless, shares
the same overall approach of applying a divide-and-conquer strategy by hierarchi-
cally decomposing the target structure. In comparison with RNAinverse, RNA-SSD
uses a more sophisticated initialization procedure to choose an initial RNA sequence,
and applies stochastic local search in place of of an adaptive walk. RNA-SSD is ca-
pable of finding the correct sequence for structures over one thousand nucleotides
long.

The third approach is INFO-RNA [9]. Its main difference from previous approaches
lies in the initialization step, which uses a dynamic programming algorithm to
choose the sequence s1, . . . , sn that is compatible with the target structure S0,
having the lowest free energy. Although the free energy E(s1, . . . , sn;S0) of tar-
get secondary structure S0 on s1, . . . , sn is less than or equal to the free energy
E(s′1, . . . , s

′
n;S0) for all distinct sequences s′1, . . . , s

′
n that are compatible with S0,

this does not mean that the MFE structure of s1, . . . , sn is target structure S0.
INFO-RNA performs at least as well as RNA-SSD, and due to the initialization step,
tends to yield RNA sequences, whose MFE structure has lower energy than se-
quences returned by other algorithms. Although this might seem to be a desirable
feature, the solutions returned by INFO-RNA have high GC content and tend to
have little resemblance with biologically active RNA, found in databases such as
Rfam [22].

The fourth approach, MODENA [47], differs considerably from other inverse fold-
ing approaches, since it relies on a multi-objective optimization algorithm. MODENA
uses the well-known NSGA2 [15] genetic algorithm to find solutions in the set of
weak Pareto optimal solutions with respect to two optimization functions: struc-
ture stability (energy of the MFE structure of the proposed sequence) and structure
similarity (distance between the MFE structure for the candidate sequence and the
target structure). MODENA compares favorably to INFO-RNA and RNAinverse when
benchmarked on a data set from Rfam [22].
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NUPACK-DESIGN [54], is a remarkable, pioneering project of the Niles Pierce Lab,
to design RNA molecules that have subsequently been synthesized and tested for
folding properties, both in vitro and in vivo. NUPACK-DESIGN employs a similar ap-
proach to that of RNA-SSD, but, in this case, instead of finding sequences whose MFE
structure is the given target structure, NUPACK-DESIGN attempts to find sequences
having minimal ensemble defect [16] (See Appendix A and B).

Finally, the algorithm Inv [21] uses a stochastic local search routine to deter-
mine a sequence whose minimum free energy pseudoknotted structure is a given
target 3-noncrossing RNA structure. Here, a 3-noncrossing structure is a (possibly
pseudoknotted) structure, in which no three base pairs mutually cross each other.
Inv relies on the dynamic programming (exponential time) minimum free energy
structure prediction algorithm for 3-noncrossing structures [30], and the fact that
each 3-noncrossing RNA structure has a unique loop-decomposition.

In this paper we present two algorithms to solve the inverse folding problem
for RNA secondary structures. The first is a Constraint Programming (CP) imple-
mentation which performs surprisingly well, compared to the previously mentioned
approaches. However, CP performs an exhaustive exploration of the search space
which can lead, in some cases especially when the structures are large and com-
plex, to a prohibitive inverse folding time. For this reason, we have also developed
a Large Neighborhood Search (LNS) method which builds on the underlying CP
framework, which achieves better results for larger structures. LNS can also be used
when completeness is not required; i.e. when it is not necessary to prove that no
solution exists, in the case that none does exist.

2. Methods

As previously mentioned, our algorithm is based on a Constraint Programming
formulation of the RNA inverse folding problem. Constraint programming (CP) has
become one of the main methodologies for solving hard combinatorial optimization
problems. Its salient features are its rich modeling language and its computational
model based on branch and prune. At the modeling level, CP models a complex
application in terms of decision variables, domains which specify the possible values
for the variables, and constraints which capture its combinatorial substructures,
giving the underlying solver significant information on the application structure.
For instance, CP solvers feature global constraints such as alldifferent(x1,. . . ,xn),
which specifies that the variables x1, . . . , xn must be given different values. This
contrasts with frameworks such as mixed-integer programs where all the constraints
are linear.

Our algorithm is developed using the COMET framework [27] and RNAfold

(from the Vienna RNA Package [25]) adapted as a plug-in with COMET. The
programming language, COMET, features a very efficient CP engine along with
several global constraints that are key for the efficiency of our approach.

When implementing a program using CP, we need to determine two different
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aspects: modeling (variables, domains and constraints) and search (variable and
value heuristics). As mentioned in the introduction, we have developed two different
algorithms, using CP and LNS. The modeling part is common to both and only the
search part differs. We describe each of these in the following subsections.

Modeling

The RNA inverse folding problem can be stated as follows: given a secondary struc-
ture S0, presented as a dot-bracket expression of length n, find the RNA sequence
(i.e. a word in the alphabet {A,G,C,U}) whose minimum free energy (MFE) struc-
ture is S0. In our case, MFE structure is predicted by RNAfold, a tool from the
Vienna RNA Package [25]. The secondary structure can be alternatively viewed as
a set of canonical base pairs ({GC,CG,AU,UA,GU, UG}) and a set of unpaired
positions.

Variables and Domains

The first modeling choice corresponds to the variables that define the problem and
the values they can take (i.e. variable domains). In order to boost efficiency and
create a framework that easily permits the addition of sequence constraints, we
define several sets of variables.

• X: A set of variables corresponding to the nucleotides of the solution se-
quence X = {x1, x2, ..., xn} (corresponding to the 4 different nucleotides).

• UP : A set of variables, UP = {up1, up2, ..., upk}, corresponding only to
unpaired nucleotides in the target structure S0, where k is the number of
unpaired positions in S0.

• BP : A set of variables, BP = {bp1, bp2, ..., bp`}, corresponding to every
base pair in S0, where ` is the number of base pairs in S0. Note that ` base
pairs correspond to 2 · ` nucleotides in the sequence, the specific canonical
base pairs found in RNA structures.

• BPT : A set of variables, BPT = {bpt1, bpt2, ..., bpt`}, corresponding to ev-
ery base pair in S0 and indicating the type of the base pair ({GC,AU,GU}).

• GC: A set of boolean variables, GC = {gc1, gc2, ..., gcn}, for each position
in the sequence representing whether it is assigned to a G or a C or not.

It is important to distinguish between search variables and auxiliary variables.
Search variables are the ones on which the search will focus, i.e., the ones that will be
explicitly assigned a value. Auxiliary variables help simplify constraint declarations
and/or heuristics, and they need to be unequivocally determined via channeling
constraints a. In our approach, UP and BP are search variables, while X, BPT

aIn Constraint Programming, channeling constraint refers to a type of constraint that links two

different modelings of the same problem and ensures that the solutions for both modelings are
consistent with one another.
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and GC are auxiliary variables.
A straightforward approach would be to choose letters among {A,G,C,U}, and

pairs of letters among {GC,CG,AU,UA,GU, UG}, as domains for X and BP ,
respectively. However, this is not only more computationally costly, but also the
correspondence between sequence variables X and base pairs and unpaired variables
becomes very complex. For this reason we choose to use an integer representation
for all the domain values.

Going a step further, we choose integers corresponding to the marks in an op-
timal Golomb ruler [4, 45] of size 5, for the domain values of X ({A,G,C,U}). A
Golomb ruler is a ruler with marks placed at certain integer positions such that
all the pairwise differences between marks are different. An optimal Golomb ruler,
given a certain number of marks, is a Golomb ruler of minimum length. For 5
marks, the optimal Golomb ruler has marks in positions {0, 1, 3, 7, 12}. Excluding
0 which is always the first mark by definition, the domains of all the variables are
the following.

• dom(X) = {1, 3, 7, 12} corresponding to {G, A,C,U}.
• dom(UP ) = {1, 3, 7, 12} corresponding to {G, A,C,U}.
• dom(BP ) = {−11,−9,−6, 6, 9, 11} corresponding to
{GU,AU,GC, CG, UA, UG}.

• dom(BPT ) = {36, 81, 121} corresponding to {GC,AU,GU}.
• dom(GC) = {0, 1}.

Note that (as will be formally described below) each base pair value is the differ-
ence of its sequence values, and each base pair type is the squared difference of its
sequence values. This allows for a direct implementation of certain constraints (see
below) which, in turn, represents a great speed-up when checking their consistency
and performing their propagation.

Additionally, we maintain the following dictionaries.

• BPstart. Given a base pair, the position of its first nucleotide in S0.
• BPend. Given a base pair, the position of its last nucleotide in S0.
• UPdict. Given an unpaired variable, its corresponding position in S0.

Constraints

There are three types of constraints in our approach: channeling constraints, struc-
tural constraints and sequence constraints. The first two types of constraints are
always used, while the last type of constraint is optional. Sequence constraints are
used to specify biologically important motifs, GC-content, and other biologically
relevant features desired for RNA molecular design. These are not to be confused
with structural constraints, which enforce that the sequence folds into the target
structure.

Channeling constraints allow us to unequivocally determine the value of all
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auxiliary variables from the search variables. They are the following.

• For each base pair i, BPi := xBPstart(i) − xBPend(i).
• For each base pair i, BPTi := (xBPstart(i) − xBPend(i))2.
• For each unpaired position i, UPi := xUPdict(i).
• For each position i, GCi := (xi == 1 ∧ xi == 7).

Structural constraints will ensure that the sequence folds into the target struc-
ture S0. In order to minimize computational cost, we break down the structure hier-
archically, as previously done in most prior methods, RNAinverse [29], RNA-SSD [2].
Each constraint will ensure that a certain substructure is the minimum free energy
structure for the corresponding subsequence. First, we create a tree-like decompo-
sition T1, where nodes correspond to substructures; from this, we next create a
reduced tree-like decomposition T2, obtained by repeatedly merging adjacent nodes
of T1 together. As explained below, adjacent nodes u, v of T1 are merged when it
happens that the substructure Su corresponding to node u is energetically unstable
(free energy of Su is positive), while the substructure Suv is energetically stable
(free energy of Suv is negative). Here if Su [resp. Sv] represent the substructures
corresponding to adjacent nodes u, v of T1, then uv is the substructure correspond-
ing to the concatenation of Su with Sv. This operation is iterated, thus yielding a
reduced tree T2, with the property that the substructure corresponding to each node
of T2 has negative free energy. Finally, constraints will be generated to correspond
to the nodes of reduced tree T2, as depicted in the right panel of Figure 2.

The structure decomposition tree T1 is defined as follows:

• The root of the tree is a node, corresponding to the (entire) target structure
S0.

• Recursively, create a node for each helix in the target structure. As shown
in Figure 2 for the example target secondary structure S0 given by

(((...((........))....))).....((((....(.(((....))))...))))

the root of T2 (corresponding to S0) has two children, corresponding to
helices P1, P2. For each node/substructure, recursively perform the same
decomposition where a node is considered a parent node for the helices
into which it can be decomposed. In our illustrative example, P1 [resp. P2]
has child P1a [resp. P2a]. If the currently considered node/helix u ∈ T1

leads to a multiloop (also called multi-way junction), then u has children
v1, . . . , vk−1, corresponding to the k− 1 remaining helices that are incident
to the multiloop. If the currently considered node/helix u ∈ T1 leads to an
internal loop or bulge of size greater than 2, then u has a single child v,
corresponding to the remainder of the stem after the internal loop or bulge.

• Leaves of the tree correspond to terminal helices, i.e., stem loops, as de-
picted by P1a and P2a in Figure 2.
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Fig. 1. RNA structure and its tree-like decomposition.

(Left) Target RNA secondary structure S0. (Middle) Structure decomposition tree
T1. (Right) Reduced tructure decomposition tree T2.

Formally, for the purpose of our decomposition, a helix is a set of consecutive base
pairs, where consecutive is loosely defined as to allow, within a helix, bulges of size
at most 2, and internal loops of sizes at most (1× 1), (2× 1), (1× 2), (2× 2).b

After computing the structure decomposition tree T1, we subsequently perform
a recursive merge operation, proceeding from leaves to the root. Initially T2 is
defined to be T1. We recursively merge adjacent nodes of T2 until no further merge
operations are needed. This produces the final reduced tree T2. Two adjacent nodes
of T2 are merged together, if either of the following holds.

• The stacking free energy of the stem (assuming that all base pairs in the
stem are GC pairs) does not exceed, in absolute value, the free energy of
the apical loop; i.e. the stem-loop structure is not energetically favorable,
assuming base pairs are realized by GC pairs. This happens, for instance,
in the stem-loop ((.......)).

• The outermost or external base pair of the stem is separated from the rest
of the stem by a bulge or internal loop of any size.

As mentioned, the merge operation is performed recursively from leaves to root.
The reduction of tree T1 to T2 is very important, since certain nodes/substructures

bAn internal loop of size (n×m) is enclosed by base pairs (i, j) and (i + n + 1, j −m− 1), where
positions i + 1, . . . , i + n and j −m, j −m + 1, . . . , j − 1 are unpaired.
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Fig. 2. RNA structure and its tree-like decomposition.

(Left) RNA structure for Rhizobiaceae group bacterium NR64, with EMBL acces-
sion number Z83250. Image produced using VARNA [14]. (Right) Tree decomposition
of helices for Z83250.

u of T1 might be energetically unstable, meaning that no sequence would fold into
the structure corresponding to u. Figure 2 depicts the reduction procedure, where,
given the target structure S0 (left panel)

(((...((........))....))).....((((....(.(((....))))...))))

we obtain the structure decomposition tree T1 (middle panel), and after the merge
procedure, the reduced tree decomposition T2 (right panel). Finally, each node in
the reduced tree T2 corresponds to a structural constraint that is considered by our
algorithm RNAiFold. Figure 2 depicts the structure decomposition tree T1 for the
Rhizobiaceae group bacterium NR64 RNA, with EMBL accession number Z83250.

We also maintain a global structural constraint, which ensures that the whole
sequence folds into the target structure S0. However, note that this constraint will
never be checked until all the other constraints are met, for a candidate sequence.

Finally, sequence constraints are optional constraints that allow us to further
specify desired features of a solution sequence. They are the following:
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• Lower and upper bound on the number of base pairs of each type. Given
a list of lower bounds lbs and a list of upper bounds ubs for each type of
base pair ({GC,AU,GU}), we can use a global constraint within COMET:
cardinality(lbs, BPT, ubs).

• Maximum number of consecutive nucleotides of each type. Ensuring that
the number of nucleotides of a particular type is bound by a speci-
fied maximum maxcs, can be realized by the following global constraint:
stretch(0, X,maxcs).

• Lower and upper bound on GC content. This is handled in an analogous
manner, as in the base pair types: cardinality(lb, GC, ub).

CP Search

When implementing the search part of a Constraint Programming problem, we need
to focus in the order in which variables will be assigned and on the order in which
values will be assigned to the variables. Our CP algorithm is complete, meaning that
it explores the search space exhaustively. This implies that, given sufficient time,
our CP algorithm will either return a solution or prove that none exists. Moreover,
we can as well return all the solutions, i. e., all the sequences that fold into the
given target structure. Variable and value ordering heuristics give us the order in
which we traverse the search space.

Variable ordering

Our ordering is specified in a stepwise manner:

(1) Variables are first grouped according to the structural constraint to which they
belong. Structural constraints are ordered by levels, from top (parent) to bottom
(child), as shown in the example tree in the right panel of Figure 2. Note that the
rest of constraints are not involved in variable ordering, also, they are checked
and propagated after any individual variable assignment.

(2) Within each constraint, BP variables are assigned first; subsequently, UP vari-
ables are assigned.

(3) Within BP , variables are assigned from inside to outside of the helix.
(4) Within UP , variables are grouped in consecutive runs; runs are ordered from

large to small.
(5) Within a UP run, variables are assigned from left to right.

To illustrate this ordering we have extracted the intermediate variable assign-
ments for a toy example, which is depicted in Figure 3. We name this heuristic
levels bottom-up.
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Fig. 3. Trace of a toy example to illustrate variable ordering.

In red full helix assignments corresponding to constraint check.

Value ordering

BP values are assigned the most stable value. If it is the start or the end of a
helix, the order is the following: {GC,CG,AU,UA,GU, UG}. Otherwise, the order
is determined by the stacking energy contribution given the previously assigned base
pair. Additionally, we introduce a random component that is added to the energy
contribution, thus ensuring different values depending on the random seed. This
random component is a parameter of our algorithm, but all the results presented in
the following sections use an additional random energy between 0 and 2Kcal/mol.

UP values are assigned in the following order: {A,U,G,C}.
Note that randomizing the heuristic does not compromise completeness, it only

entails that different runs of the algorithm will (potentially) yield different solutions,
since the order in which the search space is visited would be different.

Parallelism

COMET allows for parallelization of solvers. A given number of solvers are run in
parallel; if or when a solver finds a solution, all the other solvers halt. Given the fact
that our variable ordering contains a random component, different parallel runs are
bound to explore the search space in a different fashion, and, thus, they can find
a solution within a different run time. We take advantage of this feature and run
our algorithm with 4 parallel solvers. The parallel implementation of COMET en-
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sures that completeness is maintained by sharing information among all the parallel
solvers.

The type of parallelism we use constitutes no shared memory. It is basically
the replacement of a for loop for a parallelized version named parall in COMET.
Operationally, the parall creates a thread to execute the loop body for each iteration.
These threads are joined after the loop, i.e., the instruction following the loop
is only executed after all threads completed their execution. Each thread has its
native runtime control block and stack, as well as equivalent data structures for the
COMET runtime.

LNS

Large Neighborhood Search is a meta heuristic that attempts to find a high quality
solution by iteratively changing a candidate (or tentative) solution. As opposed to
other methods where differences between tentative solutions between two successive
iterations is minimal, LNS fixes a small part of the tentative solution and explores
(exhaustively if possible) the remaining, unfixed positions. This explains the origin
of the name, ‘Large Neighborhood Search’.

COMET supports a straightforward implementation of LNS, where we reuse
the program design and constraints from the CP implementation, while we add a
‘restart’ component. This restart component will fix some of the variables to their
current values and will unassign the remaining variables. Thus, we only need to
specify when to restart and what to do when we restart.

First of all, we choose to restart after an amount of time, which is proportional
to the length of the target structure. Second, we choose to fix only BP variables that
are correct with respect to the target structure. However, this can be problematic.
Indeed, imagine that we restart and we fix a single helix in the tree which was not
solved during the search and thus, the LNS algorithm never attempted to solve
substructures of the parent or ancestor in the decomposition tree. If we fix the base
pairs, given that we have a fixed value ordering for UP , the search will explore
exactly the same space, and it will restart at the same point, with no improvement.
For this reason, we introduce two additional features:

• a random component for the value ordering of UP variables;
• a hard restart – if, after a certain number of restarts (which we fix at 5), we

have always fixed the exact same set of variables, we start from scratch; i.e., we
do not fix any variables.

Additionally, we have added a slightly modified variable ordering heuristic, which
we call leaves to root, in which leaf nodes in the decomposition tree are always visited
before any interior nodes, regardless of the level. For instance (and opposed to levels
bottom-up heuristic), in Figure 2, node P1a2b1 in level 5 will be assigned prior to
node P1a2a1a in level 6.
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3. Results

In this section we present a comparison of our approach against the approaches men-
tioned in the Introduction, excluding Inv, which concerns 3-noncrossing structures.
It should be mentioned that different sets of structures are used in benchmarking
studies for different papers [2], [9], [47], [54]. Since we believe that the benchmarking
set introduced by Taneda et al. [47] is the most unbiased and biologically relevant
set of target structures, we believe the benchmarking results for this data set to be
the most representative for the behavior of RNAiFold (see Tables 1 and 5). Never-
theless, in the remaining Tables 2 and 3, we benchmark RNAiFold against all the
other data sets considered in the literature.

The benchmarking set of target secondary structures of Taneda et al. is built in
the following manner.

• Download the seed alignment for various families from Rfam [22].
• Select the largest sequence in each seed alignment.
• Extract the annotated structure for the given sequence.
• Remove pseudoknotted pairs.

Since the Rfam database is modified and updated over time, to permit accurate
benchmarking, we used the same set of Rfam structures used in the benchmarking
from [47].

In order to compare with other approaches (mostly heuristic) we run our al-
gorithms for each instance a certain number of times (usually 50), and report the
number of times where the algorithm was able to return a solution, and the aver-
age time in which it did. For our LNS algorithm, which is heuristic, this is clearly
understood. For our CP algorithm, even though it is complete, since we have added
a random component to the variable (and value) ordering heuristic, different runs
will explore the search space in a different order, and, thus, yield different results.

All benchmarking was carried out on an Intel Core i72630QM using 4 cores
(2GHz, 16GB memory, Linux Ubuntu 10.4), with a cutoff time of 10 minutes for all
runs and for all algorithms. MODENA results are reported as in [47], where there
is only 1 run with a population size of equal to the number of runs of the rest of the
algorithms. Reported time is total time (in seconds) for MODENA to return the
final population. All other times are reported also in seconds and are the average
over all runs that returned a solution, where a dash (‘−’) corresponds to no solution
found and thus no average time available. For all tables, best results are shown in
bold face. Note that the algorithm that solves more runs might not be the fastest,
since the average time is computed only over solved runs.

INFO-RNA 2.0 (newest version) was run, while allowing 0 mismatches in the final
sequence (-n 0). MODENA was run with the maximum number of iterations allowed
(9999) and a population equal to the number of runs. RNA-SSD code was modified to
avoid premature termination due to the maximum number of tries and keep trying
until a solution is found. RNAinverse was run with -R 1 (search until one solution
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is found).
We will discuss the results separately for CP and LNS.

CP results

Table 1. Rfam CP Results.
Parameters CP INFO-RNA MODENA RNA-SSD RNAinverse

RF id n sol time sol time sol time sol time sol time
RF00001.121 117 38 21.5 50 0.0 6 36.8 22 1.0 41 233.1

RF00002.2 151 44 29.5 4 62.6 20 39.4 6 12.2 0 -
RF00003.94 161 0 - 1 72.1 29 70.2 0 - 0 -

RF00004.126 193 50 1.5 50 0.1 34 52.9 50 2.0 50 48.3
RF00005.1 74 50 0.2 50 0.0 33 12.4 50 0.1 50 0.1
RF00006.1 89 50 0.3 50 0.0 37 15.1 50 0.6 50 4.3

RF00007.20 154 50 5.6 50 0.0 34 44.4 50 1.1 50 12.4
RF00008.11 54 50 0.1 50 0.0 26 8.7 50 0.0 50 0.0

RF00009.115 348 48 20.8 0 - 29 214.1 26 48.2 0 -
RF00010.253 357 0 - 0 - 0 - 0 - 0 -
RF00011.18 382 0 - 0 - 0 - 0 - 0 -
RF00012.15 215 50 2.7 15 25.0 27 64.5 28 28.8 1 139.4

RF00013.139 185 50 1.6 50 0.8 12 51.5 49 2.8 50 19.8
RF00014.2 87 50 0.3 50 0.0 33 17.5 49 0.1 50 0.0

RF00015.101 140 49 1.3 50 0.2 38 29.1 40 0.6 50 52.4
RF00016.15 129 0 - 0 - 0 - 0 - 0 -
RF00017.90 301 50 19.3 50 0.0 28 208.1 50 7.0 50 10.0
RF00018.2 360 47 12.1 1 697.0 28 331.5 0 - 0 -

RF00019.115 83 50 0.2 50 0.0 32 14.9 50 0.2 50 0.3
RF00020.107 119 0 - 0 - 0 - 0 - 0 -
RF00021.10 118 50 0.3 50 0.0 37 27.8 49 0.2 50 0.2
RF00022.1 148 50 0.7 50 0.0 38 32.6 24 0.9 35 225.5

RF00024.16 451 0 - 0 - 0 - 0 - 0 -
RF00025.12 210 50 1.4 9 47.9 33 54.2 29 2.9 0 -
RF00026.1 102 50 0.4 33 5.5 38 15.2 50 1.4 44 173.2
RF00027.7 79 50 0.1 50 0.0 32 17.4 50 0.1 50 0.4
RF00028.1 344 39 6.2 0 - 0 - 4 71.2 0 -

RF00029.107 73 50 0.3 50 0.0 37 10.4 50 0.2 50 0.3
RF00030.30 340 46 6.8 1 57.3 22 186.8 34 39.3 0 -

sum - 1111 133.2 813 271.5 683 1555.5 860 220.9 771 919.7
avg - 38.3 5.7 28.0 12.9 23.6 67.6 29.7 10.0 26.6 54.1

Summary of the experimental results. The first column is the Rfam identifier, the
second column is the length of the structure. The rest of the columns are: (sol)
number of runs where the algorithm returned a solution out of 50 executions (for
MODENA is the number of correct individuals in the final population), and
(time) the average time (in seconds) to find a solution (over the runs that did
return a solution), for all the algorithms tested. The last two rows show sum and
average values.

Tables 1,2,3 show the comparison results for our method against MODENA,
RNA-SSD, INFO-RNA and RNAinverse. According to results from Table 1, we see
that CP is far superior to other methods. There are more runs in which the algo-
rithm returns a solution, and it is only slightly slower than INFO-RNA on some of
the easiest structures (those that are always solved in less than 1 second). Note that
times are averaged over runs that returned a solution, and thus, speed comparison
with methods that returned less solutions is not completely fair. In any case, our
method is faster overall.

Tables 2 and 3 show a comparison over two sets of biologically relevant structures
from [2]. In these cases, CP shows comparable performance, and it is only inferior for
some of the larger structures, especially in the set from Table 2, where it is possible
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Table 2. RNA-SSD set 1 CP Results.
Parameters CP INFO-RNA MODENA RNA-SSD RNAinverse

RF id n runs sol time sol time sol time sol time sol time
Z83250 260 50 50 2.6 50 0.0 14 125.6 50 2.1 43 213.9
L11935 264 50 50 5.0 50 0.0 16 121.8 50 1.1 50 109.1
LIU92530 289 50 50 10.0 50 0.0 0 - 1 354.9 17 351.9
U84629 299 50 50 5.5 50 0.0 9 153.1 35 6.4 1 554.6
AF107506 337 50 50 9.5 50 0.0 28 218.2 49 6.6 7 347.6
AF106618 350 50 50 20.8 50 0.0 5 131.9 50 2.1 38 265
AJ011149 376 50 47 140.5 49 0.0 0 - 26 62.5 1 463.5
S70838 389 50 50 27.9 50 0.0 3 275.4 47 7.1 10 295.2
U63350 418 25 25 11.7 25 1.2 17 191.3 21 2.8 6 346.3
AF141485 473 25 17 51.4 25 0.1 13 266.6 22 65.1 0 -
U81771 491 25 25 28.8 25 0.1 10 221.6 23 26.2 0 -
AJ130779 506 25 22 70.1 25 0.1 12 227 23 11 2 507.2
AF096836 646 25 25 48.2 24 0.3 4 440.4 18 15.5 0 -
X61771 659 25 8 67.0 18 0.3 0 - 18 129.6 0 -
AJ236455 751 25 0 - 0 - 0 - 19 39.2 0 -
AJ132572 780 25 23 158.2 24 0.3 0 - 20 30 0 -
AB015827 856 10 4 245.2 10 5.2 0 - 9 49.7 0 -
D38777 858 10 1 173.3 10 1.5 0 - 10 17.3 0 -
AF029195 1053 10 7 321.0 10 2.7 0 - 10 42.2 0 -
X81949 1200 10 6 197.1 5 15.7 0 - 6 48.5 0 -
AJ133622 1296 10 0 - 8 7.8 0 - 4 128.6 0 -
AF056938 1398 10 5 477.9 10 2.5 4 319.7 7 58.5 0 -
X99676 1442 10 2 569.2 8 9.8 1 510.1 7 156.5 0 -
L77117 1475 10 0 - 5 20.4 0 - 5 90.4 0 -

sum - 680 567 2640.9 631 68 136 3202.7 530 1353.9 175 3454.3
avg - 28.3 23.6 125.8 26.3 3.0 5.7 246.4 22.1 56.4 7.3 345.4

Summary of the experimental results. The first column is the Rfam identifier, the
second column is the length of the structure and the third the number of runs
executed for all the algorithms. The rest of the columns are: (sol) number of runs
where the algorithm returned a solution out of runs (for MODENA is the number
of correct individuals in the final population), and (time) the average time (in
seconds) to find a solution (over the runs that did return a solution), for all the
algorithms tested. The last two rows show sum and average values.

that, given a larger cutoff time, CP would find solutions as well. The newest version
of INFO-RNA performs extremely well, especially in the benchmarks of Table 2. Our
algorithm is slightly slower than both RNA-SSD and INFO-RNA.

Table 4 shows a summary of all the datasets. Our algorithm finds, overall, a
solution in a greater amount of runs; solves a similar amount of structures when
compared to RNA-SSD and INFO-RNA, and it is only slightly slower than these two
methods.

We do not claim our approach is faster than previous methods, but it solves
more instances more often and it is at least comparable in speed, which can be
counterintuitive given the exhaustive nature of our CP approach. We show that the
addition of a large number of potentially relevant biological constraints does not
jeopardize speed. However, times reported here correspond to finding one solution;
finding all solutions or proving that none exists will, of course, require a greater
amount of time.

Note that, given the stochastic nature of our algorithm (to prevent helices from
being composed entirely of GC pairs), we run RNAiFold several times and provide
statistics on these multiple runs for comparison. Even though in the long run, each
execution of RNAiFold will either return a solution or prove that none exists, the
speed with which it can find a solution is influenced by the stochastic nature of our
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Table 3. RNA-SSD set 2 CP Results.

Parameters CP INFO-RNA MODENA RNA-SSD RNAinverse

# n sol time sol time sol time sol time sol time

1 100 100 0.1 100 0.0 77 19.3 100 0.1 100 0.1
2 100 100 0.0 100 0.0 73 26.2 100 0.1 100 0.1
3 100 100 2.7 100 0.0 75 69.4 98 1.5 100 4.1
4 100 100 0.7 100 0.0 82 104.5 100 0.9 100 4.1
5 100 100 0.7 2 165.7 53 245.7 0 - 2 407.9
6 100 99 6.2 93 0.8 62 192.2 100 0.0 3 362
7 100 100 9.8 84 0.8 68 405.9 64 12.8 4 254.6
8 100 99 7.0 22 19.5 57 421.1 76 48.4 0 -
9 100 0 - 0 - 0 - 0 - 0 -

10 100 92 32.9 100 0.1 57 397.2 99 6.9 13 287.6

sum - 890 60.0 701 186.9 604 1881.5 737 70.7 422 1320.5
avg - 89 6.7 70.1 20.8 60.4 209.1 73.7 8.8 42.2 165.1

Description

1 Minimal catalytic domains of the hairpin ribozyme satellite
RNA of the tobacco ringspot virus (Figure 1a) (Fedor, 2000)

2 U3 snoRNA 5’-domain from Chlamydomonas reinhardtii,
in vivo probing (Figure 6B) (Antal et al., 2000)

3 H. marismortui 5S rRNA (Figure 2) (Szymanski et al., 2002)
4 VS Ribozyme from Neurospora mitochondria

(Figure 1A) (Lafontaine et al., 2001)
5 R180 ribozyme (Figure 2B) (Sun et al., 2002)
6 XS1 ribozyme, Bacillus subtilis P RNA-based ribozyme

(Figure 2A) (Mobley and Pan, 1999)
7 Homo Sapiens RNase P RNA (Figure 4) (Pitulle et al., 1998)
8 S20 mRNA from E.coli (Figure 2) (Mackie, 1992)
9 Halobacterium cutirubrum RNAse P RNA

(Figure 2) (Haas et al., 1990)
10 Group II intron ribozyme D135 from ai5g

(Figure 5) (Swisher et al., 2001)

Summary of the experimental results. The first column is the Rfam identifier, the
second column is the length of the structure. The rest of the columns are: (sol)
number of runs where the algorithm returned a solution out of 50 executions (for
MODENA is the number of correct individuals in the final population), and
(time) the average time (in seconds) to find a solution (over the runs that did
return a solution), for all the algorithms tested. The last two rows show sum and
average values.

algorithm.
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Table 4. Summary of solved structures for sets 1,2,3.

CP INFO-RNA MODENA RNA-SSD RNAinverse
Total solved 2568 2145 1423 2127 1368
Σ avg time 2834.1 526.4 6639.7 1645.5 5694.5
Str solved 53 53 45 54 35
avg avg time 53.5 9.9 147.5 30.5 162.7

Summary table showing: (1) Total number of successful runs, (2) sum of average
times, i.e., the sum of all average times in previous tables, (3) number of
structures solved, i.e., number of structures for which the algorithm returned at
least one solution, and (4) double averaged time, i.e., sum of average times divided
by number of structures solved.

LNS results

Table 5 shows a comparison of our LNS algorithm over the Rfam set of structures c.
Recall that we added different variable and value heuristics with the goal of solving
more inverse folding subproblems, and of increasing randomization to escape revis-
iting the same sequences again and again. We performed this comparison to sort
out which combination of heuristics is best. Boldface results signify the best result,
i.e. which solves a higher percentage of runs and, in case of a tie, does so with a
lower average time.

The results show that LNS with none of these added mechanisms is superior for
a larger number of sequences. However, these tables also show that LNS (with added
variable and value heuristics) is capable of solving more sequences, more quickly,
for target structures that are larger and more complex.

EteRNA results

Lastly, to show the use of introducing design constraints, we selected a set of 12
inverse folding problem instances from the EteRNA web site http://eterna.cmu.

edu. Results for both the CP and LNS programs are shown in Table 6. Note that
no other approach in the literature can solve these inverse folding problems given
their design constraints.

The EteRNA structures were selected at random, from the vast set of structures
available. EteRNA classifies its structures in 6 different levels of difficulty (from 0
to 5) and we selected two structures from each level. The constraints represented
in this small data set correspond to:

• MAX GC: maximum number allowed of GC base pairs. GC stacked base pairs
are the most stable base pairs, limiting the maximum number of base pairs that

cWe have performed the same comparison for the other datasets but it is not shown here due to
space constraints. It is, however, reported in the web server space.
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Table 5. Rfam LNS Results.

Levels Bottom-Up Leaves to root

Parameters A-U-C-G UP variable UP A-U-C-G UP variable UP

RF id n sol time sol time sol time sol time

RF00001.121 117 50 8.86 50 14.11 50 8.38 50 13.83
RF00002.2 151 50 23.22 48 150.11 50 22.53 48 152.41
RF00003.94 161 0 - 13 241.69 0 - 10 253.70
RF00004.126 193 50 0.79 50 1.16 50 0.41 50 0.88
RF00005.1 74 50 0.40 50 0.86 50 0.46 50 0.51
RF00006.1 89 50 0.39 50 6.49 50 2.34 50 8.47
RF00007.20 154 50 5.20 50 6.85 50 2.90 50 6.43
RF00008.11 54 50 0.01 50 0.03 50 0.01 50 0.07
RF00009.115 348 50 20.70 50 185.07 50 25.46 49 181.30
RF00010.253 357 0 - 0 - 0 - 0 -
RF00011.18 382 0 - 0 - 0 - 0 -
RF00012.15 215 50 1.29 50 8.65 50 1.25 50 11.15
RF00013.139 185 50 0.23 50 2.00 50 0.18 50 3.13
RF00014.2 87 50 1.34 50 0.66 50 0.90 50 0.10
RF00015.101 140 50 4.57 50 7.80 50 4.94 50 10.10
RF00016.15 129 0 - 0 - 0 - 0 -
RF00017.90 301 50 15.94 50 18.11 50 15.73 50 21.79
RF00018.2 360 50 18.18 30 272.45 50 15.67 34 252.14
RF00019.115 83 50 0.13 50 0.70 50 0.19 50 0.61
RF00020.107 119 0 - 0 - 0 - 0 -
RF00021.10 118 50 0.07 50 0.92 50 0.05 50 0.65
RF00022.1 148 50 2.21 50 4.38 50 1.10 50 5.13
RF00024.16 451 0 - 0 - 0 - 0 -
RF00025.12 210 50 0.27 50 8.29 50 0.21 50 5.39
RF00026.1 102 50 3.15 50 10.92 50 4.47 50 4.89
RF00027.7 79 50 0.03 50 0.52 50 0.03 50 0.32
RF00028.1 344 49 56.48 50 101.35 50 43.50 50 93.38
RF00029.107 73 50 2.63 50 3.67 50 3.94 50 2.34
RF00030.30 340 48 9.76 49 49.76 49 6.80 45 34.10

Summary of the experimental results. Computational time (in seconds) was
measured on an Intel Core i7-2630QM (2GHz, 16GB memory, Linux Ubuntu 10.4.
Time limit for was set to 10 minutes. The first column is the Rfam identifier, the
second column is the length of the structure. The rest of the columns are number
of runs where the algorithm returned a solution (over a total of 50 runs) and the
average time to find a solution (over the runs that did return a solution), for all
the algorithms tested. Levels bottom-up heuristic is explained in section CP and it
is the same variable ordering heuristic that the CP model uses; leaves to root
heuristic is a variant which is introduced in section LNS.

can appear in the structure increases the difficulty of finding a sequence, at least,
for someone trying to solve it “by hand”.

• MIN GU: similarly, GU base pairs are less stable, and are penalized when they
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Table 6. EteRNA Results.

Parameters Constraints LNS CP

description n M GC m GU M G sol time sol time

Prion Pseudoknot 36 - 3 - 10 82.18 10 59.41
Human astrovirus 43 - 6 - 1 478.22 0 -
Homo Sapiens 1 Se-
ries

83 - 8 - 10 62.72 7 1.69

HIV Primer Binding
Site

107 12 8 - 4 243.14 2 32.18

Homo Sapiens 3 109 10 20 - 1 482.54 0 -
Other Ribosomal
RNA

112 12 6 2 10 122.03 10 1.05

Bacilus Subtilis
sRNA

113 - 11 - 4 294.84 3 311.81

5s Ribosomal RNA 120 - 4 - 10 30.30 10 30.16
Tribolium
Castaneum

123 18 13 - 7 224.71 4 83.77

Oryza sativa 4 176 40 20 - 10 215.83 0 -
Symbiotic plasmid 300 55 10 4 2 206.39 0 -
Telomerase RNA 546 - 15 - 6 297.43 0 -

Summary of the experimental results. Computational time (in seconds) were
measured on an Intel Core i7-2630QM (2GHz, 16GB memory, Linux Ubuntu 10.4)
Time limit was set to 10 minutes. The first column is the description, the second
column is the length of the structure, the third column is the maximum number of
GC base pairs allowed, the fourth column is the minimum number of GU base
pairs and the fifth column is the maximum number of consecutive Gs. The rest of
the columns are number of runs where the algorithm returned a solution (over a
total of 10 runs) and the average time to find a solution (over the runs that did
return a solution), for all the algorithms tested.

close a stem. Fixing a minimum number of GU base pairs increases difficulty
as well.

• MAX G: maximum number allowed of consecutive Gs in the sequence. For
similar reasons as MAX GC, this increases the difficulty of finding a sequence.

See Appendix A for results and comparison of these instances in terms of En-
semble Defect.

4. Availability and Future Work

In order to allow the research community to benefit from our new methods for
RNA inverse folding with design constraints, we have created a web server at http:
//bioinformatics.bc.edu/clotelab/RNAiFold. This web site supports both the
CP and LNS methods for single molecule RNA inverse folding, as well inverse folding
for the hybridization of two RNA molecules. Source code for these programs is also
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available at the same location.
Our current algorithms solve the classical RNA inverse folding problem, calculate

a given number of (or all) the solutions, and return whether no solution exists.
Additionally, our programs incorporate new design constraints. We plan to add
new design constraints and to optimize other criteria such as ensemble defect. We
also intend to perform experimental validations of our designed RNAs in the near
future.

4.1. Riboswitch Design

Current and future work of our lab is to extend the current tool, RNAiFold, to
support riboswitch design.d In this case, we need to determine an RNA sequence that
folds into two different, metastable structures. Pioneering work has been done on
the problem by Flamm et al. [19] and Zadeh et al. [54]. The latter group has actually
performed both in vitro and in vivo RNA design. Since the method of Flamm et al.
is a generalization of RNAinverse, we expect our CP and LNS approach to provide
significant improvements.

In designing an RNA sequence that folds into two distinct metastable states,
S1, S2, one might consider the strategy of finding a sequence that folds into each
of S1, S2 with a certain probability, since clearly both target metastable structures
cannot simultaneously be the MFE structure. However, the Boltzmann probability
of any given structure, including the MFE structure, may be tiny; hence, we will
instead minimize expected base pair distance from target metastable structures for
structures within a certain basin of attraction. In supplementary information we
report preliminary analysis of known riboswitch sequences with respect to expected
base pair distance and other measures, including pointwise entropy. See Appendix
B for a description of relevant structural diversity measures in the context of RNA
synthetic design.

4.2. Structural Diversity, Robustness and RNA Evolution

Given that our CP approach can return all sequences whose MFE structure is the
given target structure, we can analyze the minimum free energy of these structures,
as well as their structural diversity (see Appendix B). Such analysis can provide in-
sights into subtle differences between naturally occurring RNA and synthetic RNA
whose minimum free energy structures are identical. Such insights may prove im-
portant in future work in synthetic biology and molecular evolution theory.

dA bacterial riboswitch is a portion of the 5′ untranslated region (UTR) of messenger RNA, that

performs gene regulation by undergoing a conformational change upon binding with a ligand, such
as guanine, thiamine pyrophosphate, lysine, etc. [43]. Recently, a eukaryotic riboswitch (the thi-
amine pyrophosphate, TPP, riboswitch (the most common bacterial riboswitch) has been found

that resides in an intronic region and controls alternative messenger RNA splicing by conforma-
tional change [11].
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Fig. 4. Minimum Free Energy distribution of tRNA

Minimum Free Energy distribution for over 4 million sequences returned by our
algorithm, where RV1660 is the only tRNA which RNAiFold found among all
sequences from the seed alignment of Rfam family RF00005.

As proof of concept, we computed the free energy of all sequences that RNAiFold
determined,e which fold into the following tRNA consensus secondary structure
(consensus structure taken from the Rfam RF00005 seed alignment):

(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))

Figure 4 plots the distribution of minimum free energy for all sequences output
by our program.

eAvailable computer memory was exhausted, after RNAiFold returned over 4 million sequences,
whose minimum free energy structure is the target structure, (taken to be the consensus secondary
structure for Rfam family RF00005).
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Appendix A. Ensemble Defect and NUPACK comparison

Design constraints can improve the odds of the designed sequences to actually fold
into the target structure (in vivo or in vitro) if they are specified as a result of some
biologically relevant insights. In this case, however, we use them as a test for our
algorithms, since they reduce the number of sequence solutions and thus, increase
the difficulty of the problem.

On the other hand, even though our algorithms do not optimize ensemble effect,
to demonstrate the quality of our solutions obtained when some design constraints
are added and when the randomized value ordering heuristic is utilized, we present
a comparison in terms of average ensemble defect with NUPACK for the EteRNA
instances. This comparison is shown in table 7. Note that in some cases our se-
quences have better ensemble defect, although NUPACK is superior in most (this is
not surprising, since NUPACK uses average ensemble defect in its search criteria).

However, NUPACK does not take into account the aforementioned constraints,
which might or might not impact the resulting ensemble defect values. Moreover,
our CP approach opens the possibility of calculating a large number of solutions (or
all solutions, if desired), and subsequently filtering the solutions by other criteria,
such as ensemble defect, structural diversity, etc.

Appendix B. Structural Diversity Measures

In this appendix, we define measures of structural diversity, all of which depend
only on the computation of the base pairing probabilities

pi,j =
∑

{S:(i,j)∈S}

P (S) =

∑
{S:(i,j)∈S} exp(−E(S)/RT )

Z
(B.1)

where P (S) is the Boltzmann probability of structure S of a given RNA sequence
a = a1, . . . , an,, E(S) is the Turner energy of secondary structure S [38, 52], R ≈
0.001987 kcal/mol.K is the universal gas constant, T is absolute temperature, and
the partition function Z =

∑
S exp(−E(S)/RT ), where the sum is taken over all

secondary structures S of a. As explained in [40, 55], probability pi,j of base pair
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Table 7. EteRNA Ensemble Defect Results.

Parameters Constraints Avg Ensemble Defect

description n Max GC Min GU Max G NUPACK CP

Prion Pseudoknot 36 - 3 - 0.85% 0.94%
Human astrovirus 43 - 6 - 5.50% 22.40%
Homo Sapiens 1 Se-
ries

83 - 8 - 0.64% 0.64%

HIV Primer Binding
Site

107 12 8 - 0.89% 5.53%

Homo Sapiens 3 109 10 20 - 0.45% 11.85%
Other Ribosomal
RNA

112 12 6 2 0.86% 3.09%

Bacilus Subtilis
sRNA

113 - 11 - 0.50% 3.76%

5s Ribosomal RNA 120 - 4 - 4.10% 1.27%
Tribolium
Castaneum

123 18 13 - 3.20% 9.68%

Oryza sativa 4 176 40 20 - 0.50% 1.06%
Symbiotic plasmid 300 55 10 4 3.39% 11.72%
Telomerase RNA 546 - 15 - 8.79% 2.61%

Comparison against NUPACK. Average Ensemble Defect for 1 sequence found
with NUPACK (no constraints) and 1 sequence found with CP (with constraints).
The first column is the description, the second column is the length of the
structure, the third column is the maximum number of GC base pairs allowed, the
fourth column is the minimum number of GU base pairs and the fifth column is
the maximum number of consecutive Gs. The last two columns show average
ensemble defect for NUPACK and CP sequences.

(i, j), where 1 ≤ i < j ≤ n, can be computed in cubic time and quadratic space.
For each fixed position 1 ≤ i ≤ n, we define the probability distribution p∗i,j , for
j varying in [1, n + 1], by symmetrizing p for values 1 ≤ i, j ≤ n, and then define
p∗i,n+1 = 1−

∑
j>i pi,j −

∑
j<i pj,i [16,41].

Expected pointwise entropy. For a given RNA sequence a = a1, . . . , an and
fixed position 1 ≤ i ≤ n, the (Shannon) entropy of the probability distribution
pi,j , as j varies in [1, n + 1] is defined by Hi(a) = −

∑n+1
j=1 pi,j · ln pi,j . Given an

RNA sequence a = a1, . . . , an, we define the expected pointwise entropy 〈H(a)〉 by
〈H(a)〉 = −

∑n
i=1

∑n+1
j=1

pi,j ·ln pi,j

n . Clearly, if all low energy secondary structure of
the RNA sequence a = a1, . . . , an closely resemble the minimum free energy (MFE)
structure, then the expected pointwise entropy is close to 0.

Expected base pair distance from a structure. Let S0 be an arbitrary sec-
ondary structure of the RNA sequence a1, . . . , an. The expected base pair distance
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to S0 is defined by

E[{dbp(S, S0) : S ∈ S(a1, . . . , an)}] =
∑
S

P (S) · dbp(S, S0). (B.2)

For brevity, we will write E[bp-distance to S0], or even E[dbp(S0)], to abbrevi-
ate E[{dbp(S, S0) : S ∈ S(a1, . . . , an)}], defined in equation (B.2). We have the
following.f

E[dbp(S0)] =
X
S

P (S) · dbp(S, S0) =
X
S

P (S) ·

24 X
(i,j)∈S−S0

1 +
X

(i,j)∈S0−S

1

35
=

X
1≤i<j≤n

I[(i, j) 6∈ S0] ·
X
S

P (S) +
X

1≤i<j≤n

I[(i, j) ∈ S0] ·
X

{S:(i,j) 6∈S}
P (S)

=
X

1≤i<j≤n

I[(i, j) 6∈ S0]pi,j +
X

1≤i<j≤n

I[(i, j) ∈ S0] · (1 − pi,j)

=
X

1≤i<j≤n

I[(i, j) 6∈ S0] · pi,j + I[(i, j) ∈ S0] · (1 − pi,j) (B.3)

In this derivation, I[(i, j) 6∈ S0] denotes the indicator function for whether the
base pair (i, j) does not belong to S0. Although this notion, and the derivation
(B.3) both appear to be new, there is a clear relation to the notion of structural
diversity, 〈Dv〉, defined in the source code of Vienna RNA Package [25,28] as follows:
〈Dv〉 =

∑
S,T P (S) · P (T ) · dbp(S, T ) =

∑n
i=1

∑n
j=1 pi,j · (1− pi,j).

Ensemble defect. Given RNA sequence a = a1, . . . , an and target structure S0,
Dirks et al. [16] define the ensemble defect, denoted by n(a, S0), to be the expected
number of nucleotides whose base pairing status differs from target structure S0,
taken over the ensemble of secondary structures of a. Formally, we recall that

n(a, S0) = n−
∑

1≤i,j≤n

p∗i,j · I[(i, j) ∈ S0]−
∑

1≤i≤n

p∗i,n+1 · I[i unpaired in S0]

where p∗ is defined above, and I is the indicator function. This distance measure is
clearly motivated by the notion of structural diversity, 〈Dmh〉, defined by Morgan
and Higgs [41] and computed by Lorenz and Clote [33] in the context of the ensemble
of locally optimal (kinetically trapped) secondary structures. Following Morgan and
Higgs, we have 〈Dmh〉 = n−

∑n
i=1

∑n+1
j=1 (p∗i,j)

2.
For a related statistical mechanics study of RNA folding see [31].
A study of these measures for known Riboswitches is shown in table 8. Our next

step is to implement an algorithm where a sequence has to fold into two distinct
metastable secondary structures, using some of the previously mentioned measures
as a metric.

fTo the best of our knowledge, the observation in equation (B.3), that expected base pair distance
to a target structure S0 can be computed in O(n3) time, seems to be new.
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Table 8. Different Probability measures.

Measures Flamm Guanine xpt-pbuX S TPP A
Length 45 148 202 141 146 113
BPdist 25 42 48 25 9 24
E[S1] -12.2 -55.7 -66.7 -40.6 -33.92 -26.5
E[S2] -10.8 -38.6 -42.16 -23.9 -19.32 -23.8

EBPdist(S1) 11.07 3.85 18.55 79.91 22.63 25.26
EBPdist(S2) 14.91 42.8 60.91 64.17 28.79 31.39

µ-H 0.66 0.17 0.5 0.46 0.31 0.84
σ-H 0.26 0.19 0.39 0.36 0.34 0.4
〈Dv〉 12.87 6.85 30.23 24.73 16.33 33.71

barrier 11.8 27.89 25.64 18.2 16.9 10.6
n(S1) 16.84 6.85 29.45 106.93 36.02 37.22
n(S2) 22.93 59.17 82.97 90.36 49.32 48
〈Dmh〉 25.51 51.98 90.54 69.56 44.98 63.94

Type means riboswitch type, where F is the engineered bistable switch of Flamm et

al. [20]; guanine is Bacillus subtilis guanine riboswitch [48]; xpt-pbuX is Bacillus subtilis

xpt-pbuX riboswitch [35]; S is Thermoanaerobacter tencongensis S-adenosylmethionine

riboswitch [48]; TPP is T. tencongensis TPP riboswitch [48]; A is Vibrio vulnificus

adenine riboswitch [48]. Len is sequence length. BP dist is the base pair distance between

metastable structures S1, S2. E[S1] and E[S2] are resp. free energies of S1, S2. Exp BP

dist S1 is expected base pair distance to S1, computed by (B.2), and similarly for Exp

BP dist S2. The mean, µ-H and standard deviation σ-H of pointwise entropy are

explained in the text, as well as 〈Dv〉, lthe Vienna structural diversity. Barrier energy is

computed by our algorithm [17]. n(S1) and n(S2) denote ensemble defect, as defined in

(B.4). 〈Dmh〉 is the Morgan-Higgs structural diversity.
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