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Abstract: 

We describe four novel algorithms, RNAhairpin, RNAmloopNum, 
RNAmloopOrder, RNAmloopHP,  
which compute the Boltzmann partition function for global structural 
constraints – respectively  
for the number of hairpins, the number of multiloops, maximum order (or 
depth) of multiloops,  
and the simultaneous number of hairpins and of multiloops. Given an RNA 
sequence of length n  
and a user-specified inte � �ger 0  K  n, RNAhairpin [resp. RNAmloopNum 
resp. RNAmloopOrder]  

� �computes the partition functions Z(k) for each 0  k  K in time O(K2n3) 
and space O(Kn2),  

� �while RNAmloopHP computes the partition functions Z(m, h) for 0  mm  
M multiloops and  

� �0  h  H hairpins, with run time O(M2H2n3) and space O(MHn2). In 
addition, programs  
RNAhairpin [resp. RNAmloopHP] sample from the low energy ensemble of 
structures having h  
hairpins [resp. m multiloops and h hairpins], for given h,m. Moreover, by 
using the fast Fourier  
transform (FFT), RNAhairpin and RNAmloopNum have been improved to 
run in time O(n4) and  

space O(n2), although this improvement is not possible for 
RNAmloopOrder.  
We present two applications of the novel algorithms. First, we show that 
for many Rfam  
families of RNA, structures sampled from RNAmloopHP are more accurate 
than the minimum  
free energy structure; for instance, sensitivity improves by almost 24% for 
transfer RNA, while  
for certain ribozyme families, there is an improvement of around 5%. 
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Second, we show that  
the probabilities p(k) = Z(k)/Z of forming k hairpins [resp. multiloops] 
provide discriminating  
novel features for a support vector machine or relevance vector machine 
binary classifier for  
Rfam families of RNA. Our data suggests that multiloop order does not 
provide any significant  
discriminatory power over that of hairpin and multiloop number, and since 
these probabilities  

can be efficiently computed using the FFT, hairpin and multiloop formation 
probabilities could  
be added to other features in existent noncoding RNA gene finders. Our 
programs, written in  
C/C++, are publicly available at 
http://bioinformatics.bc.edu/clotelab/RNAparametric. 
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Abstract

We describe four novel algorithms, RNAhairpin, RNAmloopNum, RNAmloopOrder, RNAmloopHP,
which compute the Boltzmann partition function for global structural constraints – respectively
for the number of hairpins, the number of multiloops, maximum order (or depth) of multiloops,
and the simultaneous number of hairpins and of multiloops. Given an RNA sequence of length n
and a user-specified integer 0 ≤ K ≤ n, RNAhairpin [resp. RNAmloopNum resp. RNAmloopOrder]
computes the partition functions Z(k) for each 0 ≤ k ≤ K in time O(K2n3) and space O(Kn2),
while RNAmloopHP computes the partition functions Z(m,h) for 0 ≤ mm ≤ M multiloops and
0 ≤ h ≤ H hairpins, with run time O(M2H2n3) and space O(MHn2). In addition, programs
RNAhairpin [resp. RNAmloopHP] sample from the low energy ensemble of structures having h
hairpins [resp. m multiloops and h hairpins], for given h,m. Moreover, by using the fast Fourier
transform (FFT), RNAhairpin and RNAmloopNum have been improved to run in time O(n4) and
space O(n2), although this improvement is not possible for RNAmloopOrder.

We present two applications of the novel algorithms. First, we show that for many Rfam
families of RNA, structures sampled from RNAmloopHP are more accurate than the minimum
free energy structure; for instance, sensitivity improves by almost 24% for transfer RNA, while
for certain ribozyme families, there is an improvement of around 5%. Second, we show that
the probabilities p(k) = Z(k)/Z of forming k hairpins [resp. multiloops] provide discriminating
novel features for a support vector machine or relevance vector machine binary classifier for
Rfam families of RNA. Our data suggests that multiloop order does not provide any significant
discriminatory power over that of hairpin and multiloop number, and since these probabilities
can be efficiently computed using the FFT, hairpin and multiloop formation probabilities could
be added to other features in existent noncoding RNA gene finders. Our programs, written in
C/C++, are publicly available at http://bioinformatics.bc.edu/clotelab/RNAparametric.

1 Introduction

It has recently emerged that RNA plays surprising and previously unsuspected roles in many bio-
logical processes, including retranslation of the genetic code (selenocysteine insertion (Böck et al.,
1991), ribosomal frameshift (Bekaert et al., 2003)), gene regulation by allostery (riboswitches)
(Mandal et al., 2003) and by the RISC complex (microRNAs) (Lim et al., 2003), regulation of
heat shock protein expression by temperature sensitive conformational switches (Chowdhury et al.,
2003; Tucker and Breaker, 2005), pointwise editing of messenger RNA (guide RNA) (von Haeseler

∗to whom correspondence should be addressed
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et al., 1992), chemical modification of specific nucleotides in the ribosome (small nucleolar RNAs)
(Omer et al., 2000), regulation of alternative splicing (Cheah et al., 2007), regulation of chromatin
remodeling (small interfering RNAs) (Cam et al., 2009) etc. RNA can encode genomic information
(e.g. HIV and hepatitis C) and with no assistance from proteins can catalyze reactions such as
peptidytransferase (at ribosomal P-site) (Weinger et al., 2004) and cleavage of RNA phosphodiester
bonds at specific sites (group I introns) (Vicens and Cech, 2006). Since RNA plays various unsus-
pected regulatory and catalytic roles, and since it is known from the encode consortium report
(Project Consortium, 2007) that the human genome is “pervasively transcribed”, most of whose
RNA transcripts have completely unknown structure and function, it is clear that the development
of noncoding RNA gene finders remains an important open problem, despite significant advances
with tools such as RNAz (Gruber et al., 2007), FOLDALIGN (Havgaard et al., 2005), etc. The cur-
rent paper provides novel computable features that could prove useful in enriching features sets for
noncoding RNA gene finders.

In this paper, we present four novel thermodynamics-based algorithms to compute parametric
structural aspects of the Boltzmann ensemble of low energy structures for a given RNA sequence.
Specifically, given an RNA sequence s = a1, . . . , an and optionally an upper bound K, RNAhairpin
computes, for each value of parameter k, for 0 ≤ k ≤ K ≤ n, the Boltzmann partition func-
tion Zh(k) and Boltzmann probability ph(k) = Zh(k)/Z of all structures of s having exactly k
hairpins. Here Zh(k) designates the sum of Boltzmann factors exp(−E(S)/RT ), taken over all
secondary structures S of s that have exactly k hairpins; the partition function Z denotes the
sum of all Boltzmann factors, where the sum is taken over all secondary structures of s. Anal-
ogously, RNAmloopNum computes, for each value of 0 ≤ k ≤ K ≤ n, the Boltzmann partition
function Zm(k) and probability pm(k) = Zm(k)/Z of all structures, that have exactly k multiloops.
The program RNAmloopOrder computes the Boltzmann partition function Zd(k) and probability
pd(k) = Zd(k)/Z of all structures, having multiloops of order k but none of larger order, where
multiloop order is is the maximum depth of multiloop nesting. (See Section 6 for formal defini-
tion.) Finally, RNAmloopHP simultaneously computes the Boltzmann partition function Z(m,h)
and probability p(m,h) = Z(m,h)/Z of all structures, having m multiloops and h hairpins. Since
our preliminary work showed that structures sampled from RNAhairpin could improve structure
prediction for certain Rfam families, the program RNAmloopHP also supports sampling.

Other groups have shown an interest in global structural features of RNA families. Here we cite
four specific examples. First, Hofacker et al. (Hofacker et al., 1998) determined the asymptotic
number of hairpins, multiloops, and other structural features for random RNA, using the homopoly-
mer model first introduced by Stein and Waterman (Stein and Waterman, 1978). Second, Giegerich
et al. (Steffen et al., 2006) developed the program RNAshapes, which computes the minimum free
energy structure for various shapes; for instance, the cloverleaf shape of tRNA is [ [ ] [ ] [ ] ] .
Third, the rna strand database (Andronescu et al., 2008) consists of 4666 RNA secondary struc-
tures collected from other databases, including the Nucleic Acid Database (HM et al., 2003), the
Protein Data Bank (Berman et al., 2002), Sprinzl’s tRNA database (Sprinzl et al., 1998), Gutell’s
database (Gutell et al., 2005), etc. rna strand provides frequency analysis for sequence length,
number of stems, hairpin loops, bulges, internal loops, multiloops, pseudoknots, etc., which can be
generated for a class of RNAs selected by the user from a set of predefined RNA classes, such as
16S ribosomal RNA, 23S ribosomal RNA, 5S ribosomal RNA, 7SK RNA, ciliate telomerase RNA,
cis-regulatory element, group I intron, etc. Fourth, Kazan et al. (Kazan et al., 2010) presented a
machine learning algorithm RNAcontext, which used sequence profiles (sequence LOGOS) as well
as local secondary structure profiles (structure LOGOS) to predict RNA nucleotides that bind to a
particular riboprotein. Here, a structural profile computes the frequency, for each k in the putative
binding region, that nucleotide position k is located in a hairpin, bulge/internal loop, multiloop, or
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base pair (frequencies are obtained by counting instances from Sfold samples).

Additionally, a number of groups have developed algorithms to compute the minimum free
energy structure and partition function by integrating base pairing constraints. These constraints
may be hard, in the sense that certain nucleotides are required to pair with certain other nucleotides,
while other nucleotides may be required to be unpaired. Alternatively, constraints may be soft,
in the sense that certain nucleotides are more likely to be paired or unpaired. Since chemical and
enzymatic probing data (SHAPE, in-line probing, PARS) is not binary 0/1, such soft constraints
permit a better mathematical integration of such footprinting data in structure prediction. For
instance, the methods of Deigan et al. (Deigan et al., 2009) and Zarringhalam et al. (Zarringhalam
et al., 2012) obtain accuracies of 96− 100% for RNA structure prediction of moderate size. See the
papers of Mathews et al. (Mathews et al., 2004), Deigan et al. (Deigan et al., 2009), Zarringhalam
et al. (Zarringhalam et al., 2012), and Washietl et al. (Washietl et al., 2012).

Our contribution in this paper is to extend such constrained structure prediction to more global
features, such as requiring secondary structures to have a certain number of hairpins, a certain
number of multiloops and multiloops of a certain maximum order. In addition to computing the
number of structures having k hairpins and the partition function Zh(k) for each 0 ≤ k ≤ K ≤ n,
the program RNAhairpin can additionally sample a user-specified number of low energy structures
having a user-specified number of hairpins. Similarly, the program RNAmloopHP samples low energy
structures simultaneously having m multiloops and h hairpins, for user-specified values of m,h. In
future work, we hope to extend RNAmloopNum and RNAmloopOrder to sample low energy structures
having a user-specified number or order of multiloops, and to extend all algorithms to compute
parametric minimum free energy structures – for instance, in the case of RNAmloopHP, to compute
the minimum free energy structure over all structures having m multiloops and h hairpins.

The following is the plan of the paper. Section 2 introduces standard definitions and notation
to be used. Since our algorithms derive from McCaskill’s algorithm (McCaskill, 1990) to compute
the partition function Z =

∑
S exp(−E(S)/RT ), for the benefit of the reader, we present that

algorithm in Section 3. Sections 4, 5, and 6 respectively describe the algorithms to compute the
partition functions Zh(k), Zm(k), Zd(k) for formation of k hairpins k multiloops and (maximum)
order k multiloops, for all k. Section 8 describes two applications of the new algorithms, and
Section 9 presents a discussion and conclusion of the paper. In the Appendix, we describe how the
fast Fourier transform is used to speed up the computations of RNAhairpin and RNAmloopNum.

2 Basic definitions

In this section, we introduce some notation and definitions used in the description of the algorithms
RNAhairpin, RNAmloopNum and RNAmloopOrder. Let a = a1, . . . , an be an arbitrary RNA sequence,
and let a[i, j] denote the subsequence ai, . . . , aj . Given an RNA sequence a = a1, . . . , an, a secondary
structure is a set of ordered pairs corresponding to base pair positions, which satisfies the following
requirements.

1. Watson-Crick or GU wobble pairs: If (i, j) belongs to S, then pair (ai, aj) must be one of the
following canonical base pairs: (A,U), (U,A), (G,C), (C,G), (G,U), (U,G).

2. Threshold requirement: If (i, j) belongs to S, then j − i > θ.

3. Nonexistence of pseudoknots: If (i, j) and (k, ℓ) belong to S, then it is not the case that
i < k < j < ℓ.

3
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4. No base triples: If (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j) belong to S,

then i = k.

Following standard convention, the threshold θ, or minimum number of unpaired bases in a hairpin
loop, is taken to be 3.

Secondary structures are often portrayed in dot bracket notation, consisting of a balanced paren-
thesis expression with dots. Positions i, j occupied by left and right parenthesis correspond to the
base pair (i, j), while positions occupied by a dot correspond to an unpaired position i. The dot
bracket notation for the minimum free energy (MFE) structure for the selenocysteine insertion
element fdhA is

CGCCACCCUGCGAACCCAAUAAUAAAAUAUACAAGGGAGCAAGGUGGCG

(((((((.(((...(((.................))).))).)))))))

with free energy -20.53 kcal/mol. A pseudoknot (not considered in our software RNAhairpin,
RNAmloopNum), and RNAmloopOrder consists of two unnested base pairs, (i, j), (k, ℓ), where i < k <
j < ℓ.

In defining multiloops below, we will have recourse to the notion of component, defined as
follows. For 1 ≤ i ≤ ℓ ≤ r ≤ j ≤ n, the base pair (ℓ, r) is an exterior base pair in the interval [i, j],
if there is no base pair (ℓ′, r′) with i ≤ ℓ′ < ℓ < r < r′ ≤ j. When the interval i = 1 and j = n, then
we drop mention of the interval [i, j] and simply speak of exterior base pair. If S is a secondary
structure on RNA sequence a1, . . . , an and 1 ≤ i ≤ j ≤ n, then the number of exterior base pairs
in the interval [i, j] is said to be the number of components of S in [i, j].

Free energy parameters

Following the pioneering work of I.Tinoco, Jr., Freier et al. (Freier et al., 1986) measured the
free energy and enthalpy of numerous RNA hybridization duplexes, such as 5′-GAACGUUC-3′ with
its reverse complement. By least-squares fitting, base stacking free energies were determined. By
similar methods, the Turner Lab (Matthews et al., 1999; Xia et al., 1999) has extended and refined
base stacking free energies, loop free energies for hairpins, bulges, internal loops, multiloops, and
dangles, which latter are stacked single-stranded nucleotides adjacent to a canonical 5′ or 3′ base
pair. In this paper, we use the energy parameters from the Turner 1999 model (Matthews et al.,
1999; Xia et al., 1999) as implemented in Vienna RNA Package 1.8.5 (Hofacker, 2003), except that
we do not consider dangles. In future work, we plan to extend to the algorithms to the Turner 2004
energy model with dangles (Turner and Mathews, 2009).

3 McCaskill’s partition function

Since our work extends McCaskill’s algorithm (McCaskill, 1990), for the paper to be self-contained,
we give a brief presentation of McCaskill’s algorithm. This presentation follows the very lucid
account given by Bompfunewerer et al. in (Bompfunewerer et al., 2008).

Given RNA nucleotide sequence a1, . . . , an, we will use the standard notation H to denote the
free energy of a hairpin, I to denote the free energy of an internal loop (combining the cases of
stacked base pair, bulge and proper internal loop), while the free energy for a multiloop containing
Nb base pairs and Nu unpaired bases is given by the affine approximation a+ bNb + cNu.

For RNA sequence a1, . . . , an, for all 1 ≤ i ≤ j ≤ n, the McCaskill partition function Z(i, j) is
defined by

∑
S e−E(S)/RT , where the sum is taken over all secondary structures S of a[i, j], E(S)

4
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is the free energy of secondary structure S, R is the universal gas constant with value R = 1.987
cal/mol−1 K−1, and T is absolute temperature.

Definition 1 (McCaskill’s partition function)

• Z(i, j): partition function over all secondary structures of a[i, j].

• ZB(i, j): partition function over all secondary structures of a[i, j], which contain the base
pair (i, j).

• ZM(i, j): partition function over all secondary structures of a[i, j], subject to the constraint
that a[i, j] is part of a multiloop and has at least one component.

• ZM1(i, j): partition function over all secondary structures of a[i, j], subject to the constraint
that a[i, j] is part of a multiloop and has at exactly one component. Moreover, it is required
that i base-pair in the interval [i, j]; i.e. (i, r) is a base pair, for some i < r ≤ j.

With this, we have the unconstrained partition function

Z(i, j) = Z(i, j − 1) +

j−θ−1∑
r=i

Z(i, r − 1) · ZB(r, j). (1)

The constrained partition function closed by base pair (i, j) is given by

ZB(i, j) = e−H(i,j)/RT +
∑

i≤k≤ℓ≤j

e−I(i,j;k,ℓ)/RT · ZB(k, ℓ) + (2)

e−(a+b)/RT ·

(
j−θ−2∑
r=i+1

ZM(i+ 1, r − 1) · ZM1(r, j − 1)

)
.

The multiloop partition function with a single component and where position i is required to
base-pair in the interval [i, j] is given by

ZM1(i, j) =

j∑
r=i+θ+1

ZB(i, r) · e−c(j−r)/RT . (3)

Finally, the multiloop partition function with one or more components, having no requirement that
position i base-pair in the interval [i, j] is given by

ZM(i, j) =

j−θ−1∑
r=i

ZM1(r, j) · e−(b+c(r−i))/RT + (4)

j−θ−1∑
r=i+θ+2

ZM(i, r − 1) · ZM1(r, j) · e−b/RT

See Figure 1 for a pictorial representation of the recursions of McCaskill’s (original) algorithm
(McCaskill, 1990); note that the recursions are are not quite the same as those given in (Hofacker
et al., 1994). We now turn to our parametric versions of the partition function.
================ FIGURE 1 GOES ABOUT HERE ===================
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4 Hairpins

We begin by defining some abbreviations for the partition function for hairpins

ZH(i, j) =

{
0 if j − i ≤ θ

e−H(i,j)/RT else

and internal loops having h hairpins

ZIh(i, j) =
∑

i≤k≤ℓ≤j

e−I(i,j;k,l)/RT · ZBh(k, ℓ)

where the sum is over k, ℓ such that (k− i) + (j − ℓ) > 0. This combines the treatment of both left
and right bulges with proper internal loops.

For h ≥ 0, define the base cases Zh(i, i) = 1, ZBh(i, i) = ZMh(i, i) = ZM1h(i, i) = 0. The
unconstrained partition function for secondary structures restricted to the interval [i, j] that contain
h hairpins is given by

Zh(i, j) =

{
1 if h = 0

Zh(i, j − 1) +
∑j−θ−1

r=i

∑
h0+h1=h Z

h0(i, r − 1)ZBh1(r, j) if h > 0.

The partition function for secondary structures restricted to the interval [i, j] that contain h hairpins
and are closed by the base pair (i, j) is given by ZBh(i, j) = 0, if h = 0; ZBh(i, j) = ZH(i, j) +
ZIh(i, j), if h = 1; and for h ≥ 2 by

ZBh(i, j) = ZIh(i, j) +

j−θ−2∑
r=i+θ+3

h−1∑
k=1

ZMk(i+ 1, r − 1) · ZM1h−k(r, j − 1) · e−(a+b)/RT .

The multiloop partition function with a single component and where position i is required to
base-pair in the interval [i, j] is given by

ZM1h(i, j) =

j∑
r=i+θ+1

ZBh(i, r) · e−c(j−r)/RT . (5)

Finally, the multiloop partition function with one or more components, having no requirement that
position i base-pair in the interval [i, j] is given by

ZMh(i, j) =

j−θ−1∑
r=i

ZM1h(r, j) · e−(b+c(r−i))/RT + (6)

j−θ−1∑
r=i+θ+2

h−1∑
k=1

ZMk(i, r − 1) · ZM1h−k(r, j) · e−b/RT

5 Number of multiloops

As before, define the abbreviations for the partition function for hairpins

ZH(i, j) =

{
0 if j − i ≤ θ

e−H(i,j)/RT else

6
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and internal loops having k multiloops

ZIm(i, j) =
∑

i≤k≤ℓ≤j

e−I(i,j;k,l)/RT · ZBm(k, ℓ)

where the sum is over k, ℓ such that (k− i) + (j − ℓ) > 0. As in the previous section, this combines
the treatment of both left and right bulges with proper internal loops.

Define Z0(i, i) = 1, and for m > 0, define Zm(i, i) = 0. For the remaining base cases, define
ZBm(i, i) = ZMm(i, i) = ZM1m(i, i) = 0. The unconstrained partition function for secondary
structures restricted to the interval [i, j] that contain m multiloops is given by

Zm(i, j) = Zm(i, j − 1) +

j−θ−1∑
r=i

m∑
k=0

Zk(i, r − 1) · ZBm−k(r, j)

The partition function for secondary structures restricted to the interval [i, j] that contain m
multiloops and are closed by the base pair (i, j) is given by ZBm(i, j) = ZIm(i, j), if m = 0, and
in the case that m > 0 and i, j can form a base pair by

ZBm(i, j) = ZIm(i, j) +

j−θ−2∑
r=i+θ+3

m−1∑
k=0

ZMk(i+ 1, r − 1)

·ZM1m−k−1(r, j − 1) · e−(a+b)/RT .

The multiloop partition function with a single component and where position i is required to
base-pair in the interval [i, j] is given by

ZM1m(i, j) =

j∑
r=i+θ+1

ZBm(i, r) · e−c(j−r)/RT . (7)

Finally, the multiloop partition function with one or more components, having no requirement that
position i base-pair in the interval [i, j] is given by

ZMm(i, j) =

j−θ−1∑
r=i

ZM1m(r, j) · e−(b+c(r−i))/RT + (8)

j−θ−1∑
r=i+θ+2

m−1∑
k=1

ZMk(i, r − 1) · ZM1m−k−1(r, j) · e−b/RT

================ FIGURE 2 GOES ABOUT HERE ===================

6 Multiloop order

The order (or depth) of a secondary structure is the maximum depth of nesting of its multiloops.
Formally, multiloop order can be defined via a finite analogue of the Cantor-Bendixson topological
derivative (Clote, 1984; Kechris, 1995). The derivative D(S) of secondary structure S is equal to
the set of base pairs (i, j) ∈ S, within which there is an internal branching; i.e.

D(S) = {(i, j) ∈ S : there exist distinct (x, y), (u, v) ∈ S
such that i < x < y < u < v < j}.
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The order of a secondary structure S is now defined to be n− 1, where n is the least integer such
that D(S) = ∅. For readers familiar with the notion of RNA shape (Giegerich et al., 2004), it
follows that the order of a helix is zero, with shape [ ] , while the order of a tRNA cloverleaf
secondary structure is one, with shape [ [ ] [ ] [ ] ] . Examples of order 2 secondary structures,
with shape [ [ [ ] [ ] [ ] ] [ ] ] , are furnished by certain RNase P RNA molecules, such as
strand database (Andronescu et al., 2008) sequence ASE00001 from Acidianus ambivalens, and
by some transfer-messenger RNA, such as strand database sequence TMR00040, from Azos.oryz..

For typographic reasons, we denote the multiloop partition function by Zd, rather than Zo. As
before, define the partition function for hairpins

ZH(i, j) =

{
0 if j − i ≤ θ

e−H(i,j)/RT else

and internal loops having multiloop order or depth d

ZId(i, j) =
∑

i≤k≤ℓ≤j

e−I(i,j;k,ℓ)/RT · ZBd(k, ℓ)

where the sum is over k, ℓ such that (k − i) + (j − ℓ) > 0. Define Z0(i, i) = 1 and for d > 0,
define Zd(i, i) = 0. For d ≥ 0, define ZBd(i, i) = ZMd(i, i) = ZM1d(i, i) = 0. The unconstrained
partition function for secondary structures of multiloop order d, when restricted to the interval
[i, j], is given by

Zd(i, j) = Zd(i, j − 1) +

j−θ−1∑
r=i

∑
0≤k,ℓ≤d,max(k,ℓ)=d

Zk(i, r − 1) · ZBℓ(r, j)

The partition function for secondary structures of multiloop order d when restricted to the interval
[i, j] and are closed by the base pair (i, j) is given as follows. For d = 0, let

ZBd(i, j) = ZH(i, j) + ZId(i, j)

while for d > 0, define

ZBd(i, j) = ZId(i, j) +

j−θ−1∑
r=i+θ+3

∑
0≤k,ℓ≤d,max(k,ℓ)=d

ZMk(i+ 1, r − 1) · ZM1ℓ(r, j − 1) · e−(a+b)/RT .

The multiloop partition function with a single component and where position i is required to
base-pair in the interval [i, j] is given by

ZM1d(i, j) =

j∑
r=i+θ+1

ZBd(i, r) · e−c(j−r)/RT . (9)

Finally, the multiloop partition function with one or more components, having no requirement that
position i base-pair in the interval [i, j] is given by

ZMd(i, j) =

j−θ−1∑
r=i

ZM1d(r, j) · e−(b+c(r−i))/RT + (10)

j−θ−1∑
r=i+θ+2

∑
0≤k,ℓ≤d,max(k,ℓ)=d

ZMk(i, r − 1) ·

ZM1ℓ(r, j) · e−b/RT .
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7 Simultaneous multiloop number and hairpin number

Given the algorithms described in Sections 4 and 5, it is straightforward to design the algorithm
RNAmloopHP, which computes the partitiion function Z(m,h) simultaneously for m multiloops and
h hairpins. Sampling low energy structures is done by a straightforward variation of the sampling
method introduced by Ding and Lawrence (Ding and Lawrence, 2003). For purposes of brevity,
further details of the partition function and sampling will not be discussed, though the interested
reader can study our publicly available source code.

8 Applications

In this section, we mention two main applications of the new algorithms, though first we mention
that RNAhairpin presents a novel method to generate suboptimal secondary structures.

In the literature, there are a number of approaches to compute suboptimal secondary structures.
Historically, the first method was due to Zuker (Zuker, 1989), as implemented in mfold mfold

(Zuker, 1989) and Unafold (Markham and Zuker, 2008), who for certain base pairs (i, j) computed
the minimum free erergy structure containing (i, j) that was sufficiently distinct from previously
generated suboptimal structures. Next, the program RNAsubopt of Wuchty et al. (Wuchty et al.,
1999) generated all secondary structures within a user-specified energy above the minimum free
energy. In contrast the program Sfold (Ding and Lawrence, 2003) samples from the low energy
Boltzmann ensemble of structures; indeed, our implementation of sampling in RNAhairpin is a
modification of the method of Ding and Lawrence (Ding and Lawrence, 2003). (Note that the
Sfold algorithm is implemented in the Vienna RNA Package program RNAsubopt with flag -p;
as well the program RNAstructure (Mathews et al., 2004) also supports sampling.) The program
RNAshapes of Steffen et al. (Steffen et al., 2006) computes the minimum free energy structure from
each shape class. The program RNAbor of Freyhult et al. (Freyhult et al., 2007) computes, for each
k, the minimum free energy structure MFE(k) having base pair distance k from a user-specified
reference structure, while the program RNA2Dfold of Lorenz et al. (Lorenz et al., 2009) computes,
for each k, ℓ, the minimum free energy structure MFE(k, ℓ) having base pair distance k [resp. ℓ]
from a first [resp. second] user-specified reference structure. The program RNAlocopt of Lorenz and
Clote (Lorenz and Clote, 2011) samples low locally optimal secondary structures, where a locally
optimal structure has the property that its free energy cannot be lowered by the addition or removal
of a single base pair. The program RNAbormea of Lou and Clote (Clote et al., 2012) determines for
each k, the maximum expected accuracy structure among all structures having base pair distance
k from a user-specified reference structure. To this list of previous methods, RNAhairpin generates
suboptimal secondary structures in a manner that seems orthogonal to previous methods.

8.1 Improved structure prediction for certain RNA families

Certain RNAs have a characteristic structure that is important for their function. For instance,
the cloverleaf structure of transfer RNA generally has three hairpins, which then form an L-shaped
tertiary structure by additional pseudoknots. Transfer RNAs usually contain a small number of
chemically modified nucleotides, making their structure at times difficult to predict using minimum
free energy structure methods. In such cases, RNAhairpin [resp. and expecially RNAmloopHP] can
improve structure prediction by sampling low energy structures that are required to have a specific
number of hairpins [resp. number m of multiloops and h of hairpins].

Table 1 presents a comparison of RNAhairpin and RNAfold statistics for sequences taken from
the seed alignments of several families from Rfam 11.0 (Burge et al., 2013) (August 2012, 2208
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families). For each sequence, we sampled only one low energy structure having H hairpins. For
a given sequence and structure computed either by RNAhairpin or RNAfold, the sensitivity, or
true positive rate, is computed, defined as the ratio of number of correctly predicted base pairs
in the Rfam structure over the number of base pairs in the Rfam structure. The average and
standard deviation of sensitivity is given, for each Rfam family of the table, for both RNAhairpin

and RNAstructure. For these computations, version 1.8.5 of RNAfold was used without dangles,
so that both RNAhairpin and RNAfold employed the same energy model. In future work, we plan
to lift RNAhairpin to the Turner 2004 energy model and implement dangles, which then would
support the same energy model as version 2.0 and higher of RNAfold (Lorenz et al., 2011).

In the case of tRNA, there is more than 20% improvement in sensitivity of RNAhairpin over
RNAfold; RNAhairpin has greater sensitivity than RNAfold for other instances, such as in the case
of the hammerhead ribozyme (around 4% improvement). On the other hand, RNAfold has greater
sensitivity than RNAhairpin for several classes, including HIV primer binding site RF00375 (over
5% improvement), and purine riboswitch aptamers RF00167 (around 4.5% improvement). Clearly
RNAhairpin is not a better structure prediction tool than RNAfold; however, for particular classes
of functional RNA, which require certain hairpin structures for function, RNAhairpin may provide
a useful tool. See Section 9 for more discussion.

The program RNAmloopHP, which samples low energy structures having m multiloops and h
hairpins, improves the structure prediction accuracy of RNAhairpin (e.g. an improvement of over
4% for RF000167 purine riboswitches), and also outperforms RNAfold for a larger number of cases on
the previously described Rfam families. For instance, there is an improvement of almost approx24%
in RF00005 (tRNA), over 4% in RF00008 (type III hammerhead ribozyme), 5% in RF00504 (glycine
riboswitch), etc. On the other hand, RNAmloopHP has significantly lower sensitivity than RNAfold in
the following two cases, where the difference is over 5% for RF00375 (HIV primer binding site), and
8% for RF00635 (HAR1A). The consensus structures for these Rfam families have large loop regions,
which may in fact be base-paired, which could explain the poorer performance of RNAmloopHP.
(Recall that Rfam consensus structures are determined by covariation found in multiple alignments,
thus loop regions in consensus structures could indeed by base-paired and involve additional hairpins
and/or multiloops.) In any case, we do not propose the use of RNAmloopHP in place of minimum
free energy structure software, such as RNAfold; instead, if a biologist has knowledge or intuition
about the existence of a certain number of multiloops and hairpins, then RNAmloopHP may prove
to be a useful tool.

8.2 Support vector machine results

In this section, we describe receiver operating characteristic (ROC) curves, computed by 5-fold
cross-validation, where in each case, the positive instances were taken to be sequences from the
seed alignment of a given Rfam family, and negative instances were taken to be random sequences
having the same number of dinucleotides, as computed by our implementation of the Altschul-
Erikson algorithm (Altschul and Erikson, 1985). (Similar results were obtained, when we took
negative instances to be sequences the seed alignments of all other Rfam families – data not shown.)

For each positive instance, we generated 10 random negative instances. Using libSVM (Chang
and Lin, 2001), we performed a stratified training by selecting one-fifth of the positive instances
together with an equal number of negative instances (one of the 10 negative instances was selected
for each positive instance) for training. The remaining four-fifths of the positive sequences, together
with all corresponding negative instances, constituted the test set (note that in testing, there were
10 negative instances per positive sequence). A radial basis kernel was chosen with cost C = 1,
and parameter γ taken to be the reciprocal of the number of features.
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We considered three features sets: HP, HP/M, and HP/M/O, where HP features were the 21

probabilities of hairpin formation ph(0), . . . , ph(20), where M features were the 6 probabilities of
multiloop formation pm(0), . . . , pm(5), and where O features were the 6 probabilities of multiloop
order (or depth) pd(0), . . . , pd(5). Thus the SVM binary classifier HP (hairpins) has 21 features,
though in most cases all but a small number of the features are 0; the classifier HP/M (hairpin
and multiloop number) has 27=21+6 features; the classifier HP/M/O (hairpin, multiloop number,
multiloop order) has 33=21+6+6 features. The R packages e1071 (Meyer et al., 2012) and pROC

(Robin et al., 2011) were used with libSVM (Chang and Lin, 2001).
Table 3 summarizes the area under curve (AUC) values for ROC curves for the three different

SVM classifiers HP, HP/M, HP/M/O, while Figure 3 depicts the corresponding ROC curves. Note
that in all cases, inclusion of multiloop order probabilities as features does not add any discrimi-
natory power, and even in certain cases reduces the AUC. This is fortunate, since RNAmloopOrder
cannot be sped up by using the fast Fourier transform, unlike RNAhairpin and RNAmloopNum. The
results of this table and figure indicate that, although hairpin and multiloop formation probabilities
may not be sufficient to be used solely as the feature set of a noncoding RNA gene finder, we believe
that, when added, these features could lead to improvements in performance of existent RNA gene
finders. Moreover, to the best of our knowledge, current noncoding RNA gene finders do not take
into account global propensity to form hairpins or multiloops.

Table 4 presents the ratio of ROC area under curve values for support vector machines (SVM)
over that for relevance vector machines (RVM). A value greater [resp. less] than unity in the
table indicates that SVM outperforms [resp. underperforms] RVM using the same features. Fig-
ure 4 shows an unexpected situation for the 5-fold (stratified) cross-validation experiments of the
Rfam family RF00027, Using the feature set consisting of only 21 hairpin formation probabilities
ph(0), . . . , ph(20), the ratio of SVM/RVM AUC is 1.4234, indicating that SVM far outperforms
RVM for this family using these features, while for the full feature set of hairpin formation proba-
bilities ph(0), . . . , ph(20), multiloop number probabilities ph(0), . . . , ph(6), and multiloop maximum
order (depth) probabilities ph(0), . . . , ph(6), the ratio of SVM/RVM AUC is 0.8986, indicating that
RVM outperforms SVM.
================ FIGURE 3 GOES ABOUT HERE ===================
================ FIGURE 4 GOES ABOUT HERE ===================

9 Discussion and conclusion

We terminate the paper with a discussion of strengths and shortcomings of each application shown:
improved structure prediction and support vector machine classification.

Parametric structure prediction

For benchmarking purposes in Table 1, we sampled only one low energy structure having H many
hairpins, where in most cases H was taken to be the number of hairpins in the Rfam consensus
structure of the first member of the Rfam family. This explains how it could happen that the
RNAhairpin sensitivity for a certain sequence could at times be different than the RNAhairpin

sensitivity for the same sequence, even when the sampled structure and the minimum free energy
structure have the same number of hairpins. Of course, in general, our code RNAhairpin will be
used to sample a large number (1,000 or 10,000) of structures per sequence.

Since the base pairs that appear in Rfam consensus structures are inferred by covariation ob-
served in a multiple alignment, many valid base pairs do not appear in the consensus structure.
For this reason, we did not compute positive predictive rate, defined as the ratio of the number of
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correctly predicted base pairs in the Rfam consensus structure, divided by the number of base pairs
in the predicted structure. This is the reason that Table 1 only reports average sensitivity values.

As previously mentioned, we computed the average sensitivity of the minimum free energy
(MFE) structure obtained from Vienna RNA Package RNAfold (Hofacker, 2003), version 1.8.5
without dangles, in order to ensure that both RNAhairpin and RNAfold employ the same energy
model. In future work, we plan to extend RNAhairpin to the Turner 2004 energy model with
dangles (Turner and Mathews, 2009). By the same token, it is not conceptually difficult to modify
the program RNAmloopNum, in order to sample low energy structures having a specified number
of multiloops. Such sampled structures could yield better structure predictions for certain types
of RNA. Finally, it would be possible to combine the algorithms RNAhairpin and RNAmloopNum in
order sample structures having both a specified number of hairpins and a possibly distinct number of
multiloops. Nevertheless, such an algorithm would run in time O(H2M2n3) and space O(HMn2),
where H [resp. M ] is an upper bound on the number of hairpins [resp. multiloops]. For relatively
small values of H,M , such an algorithm would indeed be feasible, and could prove useful for certain
classes of RNA, whose function is known to depend on certain structural motifs.

Table 1 presents examples of Rfam families, where the average sensitivity of RNAhairpin ex-
ceeds that of RNAfold. Improvements were obtained for RNA families, where a certain number of
hairpins are known to be functionally important, as in the cloverleaf tRNA, typically having three
hairpins. In this case, the sensitivity of RNAhairpin exceeds that of RNAfold by approximately 20%.
For certain ribozymes, such as type III hammerhead ribozyme (RF00008) and glycine ribozyme
(RF00504), the improvement was over 4% resp. 3%. Not shown in the table are RNA families, where
the sensitivity of RNAfold exceeded that of RNAhairpin – for instance, for 5S rRNA (RF00001),
RNAhairpin average sensitivity was 0.621306 compared with RNAfold sensitivity of 0.633189; for
purine riboswitches (RF00167), RNAhairpin obtained had 0.811327 compared with RNAfold sen-
sitivity of 0.856764. We believe that RNAhairpin showed better sensitivity than RNAfold in the
case of tRNA, because of two reasons: (1) tRNA has a well-known cloverleaf structure usually
involving 3 hairpins, and (2) there may be a large sequence and energy difference among especially
bacterial tRNAs. Item (2) could cause minimum free energy structures to be quite distinct from
the usual cloverleaf – manual investigation confirms this hypothesis in some randomly chosen in-
stances, while item (2) ensures that RNAhairpin will sample structures having 3 hairpins, hence
more likely to adopt the functional cloverleaf structure. It could be that similar reasons explain the
small improvement of RNAhairpin over RNAfold for some of the other examples, including certain
ribozymes. However, along this line of reasoning, we expected RNAhairpin to outperform RNAfold

for purine riboswitch aptamers, which have a very well-defined multiloop with two hairpins; Ta-
ble 1 shows this is not the case. As described in the caption of Table 2, by sampling low energy
structures that simultaneously have a specified number m of multiloops and number h of hairpins,
we substantially improve the prediction accuracy of RNAfold. However, such improvements tend
to occur when the Rfam families show a prounounced common fold, as in the case of tRNA and
certain ribozymes, and when there are no large loop (undefined) regions in the Rfam consensus
structures. In any case, we believe that minimum free energy structure prediction algorithms, such
as RNAfold, UNAFold, mfold, RNAstructure, remain the best universal thermodynamics-based tool
for structure prediction.

Features for SVM classifiers

The development of noncoding RNA gene finders is important for the analysis and classification
of the pervasively transcribed RNA from the human genome, most of which has no previously
known structure or function. In this paper, we have described four novel thermodynamics-based
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algorithms, RNAhairpin, RNAmloopNum, RNAmloopOrder, and RNAmloopHP which compute global,
parametric features of the ensemble of low energy secondary structures for a given RNA sequence.
For the first three algorithms, we have shown that there is a significant global signal, as witnessed
by ROC area under curve, that suggests that probability and multiloop formation probabilities
present useful features that could be added to existent noncoding RNA gene finders – note that
this remark only concerns gene finders for specific noncoding RNA families, not general ncRNA
gene finders.

One of our goals in developing these parametric algorithms was to provide additional discrimi-
natory features that can be added to other features within the context of a support vector machine,
in order to improve the accuracy of noncoding RNA gene finders. Indeed, by adding novel features,
it is known that one can improve the accuracy of SVM classifiers. For instance, the state-of-the-
art precursor microRNA (pre-miRNA) SVM developed by Ng and Mishra (Ng and Mishra, 2007)
uses features MFEI2, MFEI1, %G+C, dP, dG, dQ, dD, dF,,zG, zQ, zD, zP, zF, etc. (see (Ng
and Mishra, 2007) for explanation), which outperforms the simpler triplet kernel pre-miRNA SVM
developed by Xue et al. (Xue et al., 2005).
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RNA family H RNAhairpin µ± σ RNAfold µ± σ avg len num seq

RF00001 2 0.6213± 0.2667 0.6332± 0.2721 116.6 712
RF00004 5 0.7548± 0.1840 0.7104± 0.2058 190.5 208
RF00005 3 0.7345± 0.2313 0.5370± 0.1992 73.4 960
RF00008 2 0.9565± 0.1284 0.9154± 0.1894 55.4 84
RF00031 1 0.7679± 0.1748 0.7657± 0.1945 64.5 61
RF00045 4 0.4420± 0.2983 0.4205± 0.3274 202.6 66
RF00094 2 0.3080± 0.2131 0.3604± 0.2091 91.1 33
RF00167 2 0.8113± 0.2301 0.8568± 0.2290 100.8 133
RF00375 2 0.8278± 0.3060 0.8814± 0.2044 99.0 130
RF00504 2 0.5940± 0.2711 0.5603± 0.2895 100.9 44
RF00635 4 0.3024± 0.1127 0.3707± 0.1204 117.9 13
RF01055 4 0.5821± 0.2725 0.5787± 0.2641 142.0 160

Table 1: Comparison between RNAhairpin and RNAfold of the average sensitivity (ratio of number
of correctly predicted base pairs in Rfam structure over number of base pairs in Rfam structure)
for various Rfam families. RNAhairpin was used to sample a single secondary structure having
H many hairpins, and the average sensitivity of RNAhairpin and RNAfold was computed over all
sequences in the seed alignment of the following Rfam families: RF00001 (5S rRNA), RF00004
(splicesomal U2 RNA), RF00005 (tRNA), RF00008 (type III hammerhead ribozyme), RF00031
(selenocysteine insertion sequence I), RF00045 (snoRNA), RF00094 (HDV ribozyme), RF00167
(purine riboswitch), RF00375 (HIV primer binding site), RF00504 (glycine riboswitch), RF00635
(HAR1A), RF01055 (moco RNA motif).
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RNA family M H RNAhairpin µ± σ RNAfold µ± σ avg len num seq

RF00001 1 2 0.6308± 0.2571 0.6332± 0.2721 116.6 712
RF00004 0 5 0.6980± 0.1780 0.7104± 0.2058 190.5 208
RF00005 1 3 0.7740± 0.1946 0.5370± 0.1992 73.4 960
RF00008 1 2 0.9582± 0.1005 0.9154± 0.1894 55.4 84
RF00031 0 1 0.7679± 0.1748 0.7657± 0.1945 64.5 61
RF00045 1 4 0.4456± 0.2977 0.4205± 0.3274 202.6 66
RF00094 0 2 0.3464± 0.1951 0.3604± 0.2091 91.1 33
RF00167 1 2 0.8511± 0.1726 0.8568± 0.2290 100.8 133
RF00375 1 2 0.8283± 0.3063 0.8814± 0.2044 99.0 130
RF00504 1 2 0.6101± 0.264 0.5603± 0.2895 100.9 44
RF00635 1 3 0.2930± 0.1059 0.3707± 0.1204 117.9 13
RF01055 1 4 0.60170± 0.277 0.5787± 0.2641 142.0 160

Table 2: Comparison between RNAmloopHP and RNAfold of the average sensitivity for the same Rfam
families, as in Table 1. By now sampling a single secondary structure having simultaneously M
many multiloops and H many hairpins, the average sensitivity improved over that of RNAhairpin in
essentially all cases. Moreover, RNAmloopHP provides more accurate structure prediction (sensitiv-
ity) than RNAfold for a number of Rfam families. There is an improvement of almost approx24%
in RF00005 (tRNA), over 4% in RF00008 (type III hammerhead ribozyme), 2.5% in RF00045
(snoRNA), 5% in RF00504 (glycine riboswitch), over 2% in RF01055 (moco RNA motif). On
the other hand, RNAmloopHP has significantly lower sensitivity than RNAfold in the following two
cases, where the difference is over 5% for RF00375 (HIV primer binding site), and 8% for RF00635
(HAR1A). Insignificant differences, such as 0.6308 for RNAmloopHP versus 0.6332 in RF00001 (5S
rRNA) are likely to be due to the stochastic nature of sampling low energy structures, rather than
computing the MFE structure having a specified number of multiloops and hairpins.
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Family name and description H HM HMO num seq avg len avg GC %

RF00004 U2 spliceosomal RNA 0.9217 0.9282 0.9328 208 204.26 48.0%
RF00005 tRNA 0.6367 0.9038 0.9017 959 73.4 47.0%
RF00008 hammerhead III 0.9191 0.9705 0.9562 84 55.4 48.4%
RF00027 let 7 microRNA precursor 0.8338 0.8766 0.8617 67 79.6 43.7%
RF00031 SECIS 1 0.7917 0.8361 0.7941 61 64.5 49.0%
RF00045 SNORA73 0.6306 0.6515 0.6609 66 202.6 53.1%
RF00167 purine riboswitch 0.6508 0.8608 0.8529 136 100.8 38.1%

Table 3: Area under curve (AUC) for receiver operating characteristic (ROC) curves for seven Rfam
families, each family tested under 5-fold cross-validation with support vector machines (SVM) using
a radial basis kernel with cost C = 1 and γ equal to the inverse of the number of features. In the
case of H (hairpin number), there were 21 hairpin formation probabilities p(0), . . . , p(20) taken
as features, (though in most cases all but a very small number of these probabilities were zero);
in the case of HM (hairpin and multiloop number), there were 27=21+6 hairpin and multiloop
formation probabilities taken as features, and in the case of HMO (hairpin and multiloop number
with maximum multiloop order), there were 27=21+6 hairpin and multiloop formation probabilities
taken as features along with 6 multiloop maximum order probabilities, hence altogether 33=21+6+6
features. The R packages e1071 (Meyer et al., 2012) and pROC (Robin et al., 2011) were used with
libSVM (Chang and Lin, 2001).

Ratio SVM/RVM RF00004 RF00005 RF00008 RF00027 RF00031 RF00045 RF00167

HP 0.9874 1.0657 0.9874 1.4234 1.1965 0.9895 1.1894
HP/M 0.9863 0.9798 0.9977 1.0625 1.0954 0.9808 1.0153
HP/M/O 0.9818 0.9855 1.0025 0.8986 1.2324 1.0237 1.0031

Table 4: Ratio of ROC area under curve values for two types of machine learning methods: support
vector machines (SVM) and relevance vector machines (RVM), using the same seven Rfam families
that were considered in Table 3. In 11 out of 21 tests, AUC values for SVMs were greater than
those for RVMs. In the case of RF00027, it is interesting to note that when using only hairpin
features, SVM AUC was much higher than RVM AUC (SVM/RVM 1.4234), while for the same
class, when using the larger feature set for hairpins, multiloop number and multiloop order, SVM
AUC was lower than RVM AUC (SVM/RVM 0.8986). At present, the reason for this surprising
result is unclear. The R packages e1071 (Meyer et al., 2012) and pROC (Robin et al., 2011) were
used for SVM and RVM computations; for SVM, the radial basis kernel (rbfkernel) was employed
with default parameters, while for RVM, rvmbinary rbfdot kernel was used with default parameters
and 1000 iterations.
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Figure 1: Feynman diagram of original recursions from McCaskill’s algorithm (McCaskill, 1990) to
compute the partition function. Dashed lines present intervals of unpaired bases, and shaded arcs
represent structures in which i and j will not necessarily pair.

Figure 2: (Left) Hairpin profile of Rfam families: U2 spliceosomal RNA (RF00004), transfer RNA
(tRNA, RF00005) and U4 spliceosomal RNA (RF00015). (Center) Multiloop number profile of
Rfam families: RNaseP (RF00010), transfer messenger RNA (tmRNA, RF00023), and Rev response
element of HIV env gene (RF00036). (Right) Multiloop order (or depth) profile of Rfam families:
RNaseP (RF00010), transfer messenger RNA (tmRNA, RF00023), and Rev response element of
HIV env gene (RF00036). Notice that we chose Rfam families consisting of long RNA sequences
for multiloop number/order profiles, since multiloops are energetically unfavorable, hence are not
generally present in small RNA.
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Figure 3: Receiver operating characteristic (ROC) curves for the performance of support vector
machine binary classification using a feature set consisting of probabilities p(0), . . . , p(20) for the
number hairpins (HP), probabilities p(0), . . . , p(5) for the number of multiloops (M), and probabil-
ities p(0), . . . , p(5) for the maximum order of multiloops (O). In the case of HP (hairpin number),
there were 21 features, though in most cases all but at most 6-8 features had the value 0; in the
case of HP/M (hairpin and multiloop number), there were 27=21+6 features, and in the case of
HP/M/O (hairpin and multiloop number with maximum multiloop order), there were 33=21+6+6
features. The R packages e1071 (Meyer et al., 2012) and pROC (Robin et al., 2011) were used with
libSVM (Chang and Lin, 2001). A radial basis kernel was used in each case with cost C = 1; pa-
rameter γ was taken to be the inverse of the number of features, i.e. for HP, γ = 1/21 = 0.0476, for
HP/M, γ = 1/27 = 0.0370, for HP/M/O, γ = 1/33 = 0.0303. As shown in this figure, accounting
for multiloop order did not improve classification ROC curves, and data presented in Table 3 shows
that in some cases, ROC area under curve is lessened by taking into account maximum multiloop
order. This is in fact fortunate, since the fast Fourier transform can be applied to reduce time and
space requirements for RNAhairpin and RNAmloopNum, but not RNAmloopOrder. (Left) Rfam family
RF00004 (U2 spliceosomal RNA). (Right) Rfam family RF00167 (purine riboswitch).
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Figure 4: Receiver operating characteristic (ROC) curves for 5-fold cross-validation for sequences
from the seed alignment of RF00027. The left panel shows an overlay of support vector machine
(SVM) and relevance vector machine (RVM) for the feature set consisting of 21 hairpin formation
probabilities ph(0), . . . , ph(20), while the right panel presents an overlay of SVM and RVM for
the full feature set of hairpin formation probabilities ph(0), . . . , ph(20), multiloop number proba-
bilities ph(0), . . . , ph(6), and multiloop maximum order (depth) probabilities ph(0), . . . , ph(6). As
explained in the caption of Table 4, it seems unusual that SVM outperforms RVM using only
hairpin probability features, while the reverse is true when using the full feature set.
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Appendix: Using FFT to compute RNAhairpin.

In (Freyhult et al., 2007), we developed the algorithm RNAbor, which computes the minimum free
energy structure MFE(k) and the partition function Z(k) for each integer k, where Z(k) is the sum
of Boltzmann factors exp(−E(S)/RT ) and the sum is taken over all structures having base pair
distance k from a user-specified reference structure. Like the parametric algorithms RNAhairpin,
RNAmloopNum and RNAmloopOrder in this paper, RNAbor runs in time O(n5) and space O(n3), when
all values Z(k) are needed for 0 ≤ k ≤ n.

In (Senter et al., 2012), we described a more efficient means to compute the partition functions
Z(k) for 0 ≤ k ≤ n, by using the FFT to determine probabilities p(k) = Z(k)/Z by polynomial
interpolation. Since the partition function Z can be separately computed by McCaskill’s algorithm
(McCaskill, 1990), the new method yields the values Z(k) for 0 ≤ k ≤ n in time O(n4) and space
O(n2).

Given the algorithmic similarities between the parametric algorithms of this paper and RNAbor,
we can use the same method of polynomial interpolation using the FFT to compute probabilities
ph(k) = Zh(k)/Z and pm(k) = Zm(k)/Z for hairpin resp. multiloop formation, for all 0 ≤ k ≤ n.
For technical reasons clear to the careful reader, In (Senter et al., 2012), we described a more
efficient means to we can not use this new method to compute probabilities pd(k) for multiloop
order (depth). Moreover, although RNAhairpin can sample low energy structures having exactly
k hairpins, for desires values k, and although it is not difficult (though labor intensive) to modify
both RNAhairpin and RNAmloopNum to compute in time O(n5) and space O(n3) the minimum free
energy structures MFEh(k) resp. MFEm(k), taken over all structures having k hairpins resp.
multiloops, the O(n4) time and O(n2) space FFT method can not compute these minimum free
energy structures.

With these remarks, we succinctly describe the overall recursions for the FFT version of
RNAhairpin; similar recursions apply to the FFT version of RNAmloopNum. Both FFT algo-
rithms have been implemented and are publicly available at http://bioinformatics.bc.edu/

RNAparametric/.

FFT version of RNAhairpin

Let s = s1, . . . , sn be a given RNA sequence. For all 1 ≤ i ≤ j ≤ n, we define the polynomial

Zi,j(x) =
n−1∑
k=0

zi,j(k) · xk

where zi,j is the hairpin partition function for interval [i, j]; i.e. zi,j is the sum of Boltzmann factors
exp(−E(S)/RT ), taken over all secondary structures S of si, . . . , sj . Since the coefficients of any
polynomial of degree strictly less than n can be efficiently determined by the FFT using polynomial
interpolation, provided that one first evaluates the polynomial at nmany complex nth roots of unity
1, exp(2πin ), . . . , exp(2πi(n−1)

n ). For a complex number α, in order to evaluate Z(α) = Z1,n(α), we
proceed by recursions that resemble somewhat the recursions given in Section 4. To compute
Z1,n(α), we use dynamic programming to evaluate Zi,j(α), for all 1 ≤ i ≤ j ≤ n; moreover, in order
to compute Zi,j(α), we need to compute ZBi,j(α), ZMi,j(α), and ZM1i,j(α).

Now let B denote the set of canonical base pairs GC, CG, AU, UA, GU, UG. To compute
Z(x) = Z1,n(x), we use the recursions

Zi,j(x) = Zi,j−1(x) · x+
∑

sk sj∈B,
i≤k<j

(
Zi,k−1(x) · ZBk,j(x)

)
. (11)
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The sum is taken over all possible base pairs (k, j) with i ≤ k < j.

We compute ZB(x) using the recursion

ZBi,j(x) = e−EH(i,j)/RT · x

+
∑

sksl∈B,
i<k<l<j

ZBk,l(x) · e−EI(i,j,k,l)/RT (12)

+
∑
sk∈B,
i<k<j

(
ZMi+1,k−1(x) · ZM1k,j−1(x) · e−(a+b)/RT

)
,

where EH(i, j) is the energy of the hairpin loop with closing base pair (i, j), EI(i, j, k, l) is the
energy of the stack, bulge or interior loop with the closing base pair (i, j) To reduce complexity of
the algorithm, the interior and bulge loop size can be limited to a maximum size of L, by requiring
that l > j − L in the above recursion.

The recursion for computing ZM1(x), is

ZM1i,j(x) =
∑
sk∈B,
i<k≤j

(
ZBi,k(x) · e−(b+c(j−k))/RT

)

The final recursion, for computing ZM(x), is

ZMi,j(x) =
∑
sk∈B,
i≤k<j

(
ZM1k,j(x) · e−(c(k−i))/RT + ZMi,k−1(x) · ZM1k,j(x) · e−(c(k−i))/RT

)
.

Note that ZM1i,j(x) [resp. ZMi,j(x)] are defined under the assumption that [i, j] is part of a
multi-loop for which the multiloop energy penalty a is already applied. Moreover, for ZMi,j(x),
there is either exactly one stem-loop structure in [i, j], corresponding to the ZM1i,j(x) term, or
more than one stem-loop in [i, j], corresponding to the ZMi,k−1(x) ·ZM1k,j(x) term. Justification
of recursions (11), (12), and (13) follow by induction.

Also, for all i < j such that j − i < θ we initialize the recursions as follows

Zi,j(x) = 1 , ZBi,j(x) = 0 , ZMi,j(x) = 0 , ZM1i,j(x) = 0

Finally, we mention that as in (Senter et al., 2012), it is necessary to interpolate the probabilities

ph(k) =
Zh
1,n(k)

Z due to numerical stability issues that arise when trying to interpolate very large
partition function values. This completes the sketch of the FFT version of RNAhairpin; analogous
recursions lead to an FFT interpolation of partition functions Zm(k) for multiloop number. For
more details, please consult (Senter et al., 2012).
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