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Abstract

Let S denote the set of (possibly noncanonical) base pairs {i, j} of an RNA tertiary
structure; i.e. {i, j} ∈ S if there is a hydrogen bond between the ith and jth nucleotide.
The page number of S, denoted π(S), is the minimum number k such that S can be
decomposed into a disjoint union of k secondary structures. Here, we show that computing
the page number is NP-complete; we describe an exact computation of page number, using
constraint programming, and determine the page number of a collection of RNA tertiary
structures, for which the topological genus is known. We describe an approximation
algorithm from which it follows that ω(S) ≤ π(S) ≤ ω(S) · log n, where the clique number
of S, ω(S), denotes the maximum number of base pairs that pairwise cross each other.

1 Introduction

Given an RNA sequence s = a1, . . . , an, where ai ∈ {A,C, G,U}, a secondary structure S on
s is defined to be a set of unordered pairs {i, j} such that:

1. Watson-Crick or GU wobble pairs: If {i, j} belongs to S, then pair {ai, aj} must be one
of the following canonical base pairs: {A,U}, {U,A}, {G, C}, {C,G}, {G, U}, {U,G}.

2. Threshold requirement: If {i, j} belongs to S, and i < j then j − i > θ.

3. Nonexistence of pseudoknots: If {i, j} and {k, `} belong to S, then it is not the case
that i < k < j < `.

4. No base triples: If {i, j} and {i, k} belong to S, then j = k; if {i, j} and {k, j} belong
to S, then i = k.
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For steric reasons, following convention, the threshold θ, or minimum number of unpaired
bases in a hairpin loop, is taken to be 3 [62, 23]. In contrast, a (general) RNA structure S on
s is only required to satisfy the following conditions. (1′) If {i, j} belongs to S, then the ith
and jth nucleotide can form a (possibly noncanonical) base pair. (2) If {i, j} belongs to S,
and i < j then j− i > θ. Hence, a (general) RNA structure, comprising the hydrogen bonded
nucleotide interactions, may contain pseudoknots and base triples. Throughout the paper,
when we refer to RNA structure, we mean general structure, unless we explicitly mention
secondary structure.

RNA secondary structure prediction methods generally employ either (i) thermodynamics-
based dynamic programming approaches, pioneered in Zuker’s algorithm [62], as implemented
in mfold [61], UNAFold [34], RNAfold [22], RNAstructure [35], or (ii) covariance model
approaches, such as the stochastic context free grammar approach implemented in PFOLD
[29] and tRNAscan-SE [32]. The base pair prediction accuracy of thermodynamics-based
methods (comparable with covariance model methods) is at most approximately 70% for
RNA sequences of at most 700 nt [36]; for a comparative benchmarking of a number of
thermodynamics-based and covariance model methods, see the study of Gardner et al. [13].
The most accurate current method of RNA secondary structure prediction uses a hybrid ap-
proach, combining the experimental method of selective 2′-hydroxyl acylation analyzed by
primer extension (shape) with minimum free energy structure prediction using constraints
[10]. This hybrid approach yields secondary structure accuracy of approximately 95%, com-
parable with the manually intensive method of comparative sequence analysis [18].

Figure 1: (a,b) Pseudoknot-free secondary structure of Y RNA with EMBL access code
AAPY01489510/220-119, depicted in panel (a) in Feynman circular form, and in panel (b)
in classical form. (c,d) Pseudoknotted structure for the Gag/pro ribosomal frameshift site of
mouse mammary tumor virus, depicted in panel (c) in Feynman circular form, and in panel
(d) in classical form. The third and fourth panel of this figure illustrate a type-H pseudoknot
(the most common type of pseudoknot), where, for instance, base pair {19, 28} crosses base
pair {25, 40}. Images produced with sofware jViz [58] from structures taken respectively
from Rfam [17] and Pseudobase [53].

The situation is different for pseudoknotted structures containing crossing base pairs {i, j},
{x, y}, such that i < x < j < y, where there is a need to improve structure prediction accuracy.
Figure 1 illustrates a type-H pseudoknot (the most common type of pseudoknot), where base
pair {19, 28} crosses base pair {25, 40}. Indeed, in the case that an RNA structure contains
such non-nested base pairs, there is no universally accepted criterion even to define which
base pairs form part of the secondary structure and which base pairs form pseudoknots. In
fact, given an RNA X-ray structure, different methods surveyed in [47] may yield predictions
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of different pseudoknotted regions! Another difficulty in pseudoknot structure prediction is
the fact that there are no experimentally determined free energies for pseudoknot formation,
although Cao and Chen have described a computational method to approximate loop en-
tropies for type-H pseudoknots [7]. Moreover, Lyngsø and Pedersen [33] have shown that
minimum free energy pseudoknot structure prediction is an NP-complete problem. This situ-
ation is unfortunate, since pseudoknots often play critical biological roles, such as promoting
a programmed −1 ribosomal frameshift [51]. For additional biologically important examples
of pseudoknot, consult the pseudobase database of pseudoknots [53, 50].

Pseudoknot prediction algorithms include the genetic algorithm of [1], the maximum
weight matching approach of [49], the thermodynamics-based methods of [44, 11, 41, 43] which
handle certain subclasses of pseudoknots, the Monte Carlo approaches of [38, 37], heuristics
like position specific scoring matrices on tree structures [46] and ProbKnot [2], and the exact
(exponential-time) methods using tree-width decomposition [60], branch-and-bound [6, 4] and
integer programming [40, 45]. Furthermore, using tree-width decompositions, Huang et al.
[25] developed fast and accurate genomic search for non-coding RNA pseudoknot structures.

1.1 Preliminaries

A (general) RNA structure uniquely corresponds to a particular contact map [55], or adjacency
matrix [19], A = (ai,j), where ai,j = 1 if the ith and jth nucleotide form a hydrogen bond,
and otherwise ai,j = 0. By analyzing the distance and geometry between atoms in the X-ray
crystal structure of an RNA molecule, the software RNAview [59] determines the collection of
hydrogen bonds, including noncanonical bonds [31]. Thus for the purposes of this paper, an
RNA structure can be considered as the output of the program RNAview.

When depicting both secondary structures and (general) RNA structures, we may add
additional edges {i, i+1}, for 1 ≤ i < n, which correspond to the covalent backbone; however,
these edges do not formally belong to the structure. At times we will consider an RNA
structure S to be a collection of base pairs satisfying only conditions (1′, 2) given immediately
after the definition of a secondary structure in Section 1. At other times, we will variously
consider S to be the corresponding graph just defined, or adjacency matrix, or circle graph,
which latter is defined in Definition 2. Moreover, since much of the work in this paper
concerns the combinatorics of laying out, or decomposing, an RNA structure into a disjoint
union of secondary structures, the identity of the nucleotides is not essential, hence will not
be mentioned. In particular, we let S(n) denote the set of all (general) RNA structures on
positions (or bases) 1, . . . , n.

Definition 1 (Page number) The page number of a structure S ∈ S(n), denoted by π(S),
is the minimum number n, such that S can be written as a disjoint union of n secondary
structures; i.e. S = S1 ∪ · · · ∪ Sn, where each Si is a secondary structure, and Si ∩Sj = ∅ for
distinct i, j.

An equivalent graph theoretic formulation of page number is as follows. Let A = (ai,j) be the
contact map (adjacency matrix) corresponding to a given structure S for the RNA sequence
s = s1, . . . , sn. the page number is the minimum number k such that k colors suffice to color
all base pairs, with the constraint that if distinct base pairs {i, j} and {x, y} have the same
color, then it is not the case that i ≤ x ≤ j ≤ y.∗

∗Note that Definition 1 requires that base pairs from a triple be placed on separate pages; i.e. base pairs
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RNA page k structures generalize the notion of bisecondary structure, defined in [20] to
be the disjoint union of at most two secondary structures; i.e. page number at most 2. We
note that if S is known to be a bisecondary structure, then by adapting the result of Micali
and Vazirani [39], we can describe an algorithm with run time O(n3/2) which computes the
decomposition of S into at most 2 pages.

A k-page RNA structure for sequence s = s1, . . . , sn can be visualized by writing the
vertices 1, 2, . . . , n along the spine of a book, where each of the k pages contains a (planar)
secondary structure with no crossing edges or base triples. For instance, Figure 2 depicts a
3-page decomposition of an RNA structure.

1

2

3S

S

S

Figure 2: An RNA structure represented in three pages.

Before proceeding, we mention that an obvious greedy algorithm does not necessarily
produce the optimal page decomposition for a given RNA structure S. The greedy algorithm
proceeds as follows: (1) enumerate the base pairs of S as b1, b2, . . . , bm and then place b1 into
the first secondary structure S1. Assume, by induction, that the first i base pairs b1, b2, . . . , bi

have already been placed into disjoint sets S1,S2, . . . ,Sj . Given the next base pair bi+1

1. either for some r = 1, 2, . . . , j there is no base pair in Sr that crosses b, in which case
we place bi+1 into the first such set Sr,

2. otherwise, we create a new secondary structure Sj+1 := {bi+1} with bi+1 as its only
element.

In this fashion, secondary structures S1,S2, . . . ,Sk are constructed, with π(S) ≤ k. The
following example shows that the greedy algorithm is not optimal. To see this take ten bases
numbered 1, 2, . . . , 10. Consider the following five base pairs

1 = {7, 10},2 = {3, 6},3 = {1, 5},4 = {2, 8},5 = {4, 9}

and suppose that the base pairs are being considered in this order. The greedy algorithm
will output S1 = {{7, 10}, {3, 6}}. Since {1, 5} crosses one of the base pairs of S1 we must
have that S2 = {{1, 5}}. Since {2, 8} crosses base pairs in both S1 and S2 we have that
S3 = {{2, 8}}. Finally, since {4, 9} crosses base pairs in S1,S2 and S3 we must have that
S4 = {{4, 9}}. Therefore the greedy algorithm allocates four pages. Nevertheless three pages
are sufficient, namely

S1 = {{7, 10}, {1, 5}},S2 = {{3, 6}, {2, 8}},S3 = {{4, 9}},

of the form {i, j}, {i, k} ∈ S or {i, j}, {k, j} ∈ S are required to be placed on distinct pages. This replies to a
question of one of the anonymous referees.
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Figure 3: Example of an RNA structure with ten bases and page number three, but for which
the greedy algorithm allocates four pages.

and the page number of this RNA structure is three. In the appendix, we show that the
greedy algorithm may in fact assign O(log n) pages for an RNA structure, which only requires
a constant number of pages.

RNA structures are related to a class of graphs known in the literature as circle graphs
[26], which are defined as the intersection graph of the chords of a circle.

Definition 2 (Circle graphs) Let I = {1, . . . , n} be the index set, considered to constitute
a circle consisting of n points, arranged counter-clockwise in order along the periphery of a
circle. A circle graph G = (V,E) consists of vertices v ∈ V , which are chords {i, j} in the
circle, for distinct positions i, j ∈ I, and of undirected edges e ∈ E formed when two chords
overlap; i.e. e = {v, w} is of the form {{i, j}, {k, `}}, where v = {i, j} and w = {k, `} are
distinct, and crossing in the sense that where i ≤ k ≤ j ≤ `, and i < j, k < `.

Observe that a circle graph G may contain edges of the form {i, j}, {i, k} or of the form {i, `},
{k, `} or of the form {i, j}, {j, k}; in each such case, the edges are considered to be crossing.

To each RNA structure S we associate its corresponding circle graph GS . It follows that
RNA structures can be viewed as constituting a subset of circle graphs. A circle graph G
may not correspond to an RNA structure for three reasons.

1. It can happen that there is no way to label positions by nucleotides A,C,G,U such that
for each vertex v = {i, j} of G, the ith and jth nucleotide can form hydrogen bond.
This could happen, if we restrict hydrogen bonds to only canonical (Watson-Crick and
wobble) interactions, whenever there are triangles, i.e. a clique of interactions {i, j},
{i, k}, {j, k} of size 3.

2. There could exist a vertex v = {i, j} of G, with i < j ≤ i + 3.

3. There could exist vertices u1 = {i, j}, u2 = {i, k} with j 6= k, or vertices v1 = {i, j},
v2 = {k, j} with i 6= k.

Two base pairs b = {i, j} and b′ = {i′, j′}, with i < j and i′ < j′, are said to cross if either
i < i′ < j < j′ or i′ < i < j′ < j.

Definition 3 (Chromatic number) The chromatic number of an RNA structure S, de-
noted by χ(S), is defined to be the minimum number n of colors, such that each base pair
can be colored in a manner such that crossing base pairs have distinct colors; i.e. n is the
chromatic number χ(GS) of the graph GS .
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Clearly, the chromatic number of a structure is the same as the page number π(S). In the
sequel, we abuse notation and use χ(S) to denote the chromatic number χ(GS) of GS .

Definition 4 (Clique number) If S is an RNA structure, then let ω(S) denote the maxi-
mum number s of base pairs b1, b2, . . . , bs in S such that bi crosses bj, for all i 6= j.

Clearly, ω(S) is the same as the size of the largest clique in GS . Figure 4 depicts a structure
S such that ω(S) = 2 < π(S) = 3.

4
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Figure 4: An RNA structure S on 10 bases with 5 base pairs, having clique number ω(S) = 2
and page number π(S) = 3.

1.2 Related work and outline of paper

In graph theory, a book embedding of a graph consists of a linear ordering of the vertices along
the “spine of a book” and a planar embedding of its edges on the “pages of the book”, i.e.
such that no two edges on the same page intersect. The minimum number of pages in which
a graph can be embedded is its page number. Page number plays a role in circuit design,
in the sense that VLSI circuits are created in several layers, or pages [21]. The notion of
page number considered in this paper differs from graph theoretic concept of page number,
in that the vertices of the graph (in our case the nucleotides) are in fixed positions given by
the primary structure. See [9] for additional work on this topic.

Another rigorous classification of pseudoknotted structures uses the notion of topological
genus g, which in our case corresponds to the the minimum number of handles of a topological
surface on which a given RNA structure can be depicted without crossing edges [56, 57].†

The genus g of a given RNA structure can be computed by a simple application of depth
first search, since g = P−L

2 , where P is the number of base pairs and L the number of closed
loops [5]. Vernizzi et al. [56] developed recurrence relations to compute the number of genus
g structures of a given RNA sequence, and Bon et al. [5] computed the genus of RNA X-ray
structures, using the hydrogen bonding information provided by the program RNAview [59].
In [6, 4], Bon and Orland described a novel RNA energy model depending on topological
genus, and using this energy model developed a branch-and-bound algorithm to compute the

†Yet another classification of pseudoknotted structures involves the notion of k-noncrossing structure, de-
fined by Chen et al. [8], in which no base pair crosses more than k other base pairs. In [24], Huang et al.
describe a novel algorithm to compute the minimum free energy, 3-noncrossing, canonical RNA structure,
where a structure is defined to be 3-noncrossing if it does not contain three or more mutually crossing base
pairs, and canonical, if each base stack has size at least two. See also Jin and Reidys [27], who analyze the
asymptotic number of k-noncrossing structures. Note that crossing number is a local property, hence easily
computable, while page number appears to be a global property, shown here to be NP-complete.
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minimum energy pseudoknotted structure for a given RNA sequence. Recently, Reidys et
al. [42] developed a dynamic programming algorithm to compute the minimum free energy
structure and partition function over all structures of genus at most 1, where the energy model
differs from that of Bon and Orland in several respects, the most important of which concerns
the assignment of distinct positive free energies for each of four primitive [4] (irreducible [42])
genus 1 pseudoknots.

As is the case with page number, where the notion used in this paper differs from the
standard graph theoretic concept due to the ordering 1, . . . , n of the nodes (nucleotides), there
is a difference between the notion of genus of RNA structure [56] and the (general) treatment
of genus for unordered graphs. In the latter case, Thomassen [52] has shown that computing
the genus is NP-complete, although Filotti et al. [12] have described an algorithm to compute
the genus of a (general, unordered) graph in nO(g) time, where n is the number of vertices
and g is the genus.

This paper is organized as follows. Section 2 shows that the problem of computing the
page number is NP-complete for arbitrary structures with pseudoknots. Faced with NP-
completeness, following standard practice in the theory of algorithms, we then give an ap-
proximation algorithm to bound the page number of a given structure; in particular, we show
that ω(S) ≤ π(S) ≤ ω(S) · log n, where ω(S) denotes the clique number of S. In the context of
the theory of algorithms, this result is known as a logarithmic approximation of page number.
Finally, Section 4 describes an exact algorithm to compute the page number and associated
layout of base pairs on various pages; in addition, the (optimal) page number is computed
for a collection of RNA tertiary structures considered in Bon et al. [5], where the topological
genus is computed.

2 NP-completeness of Computing the Page Number

We now show NP-completeness of page number by a polynomial time reduction to the NP-
completeness of chromatic number of circle graphs.

Definition 5 (Minimum page number problem) The minimum page number problem,
abbreviated MPN, is the optimization problem of finding the smallest positive integer p such
that a given pseudoknotted structure can be represented on p pages.

More specifically we consider the following decision problem on RNA structures with param-
eters p (number of pages) and n (number of bases).

MPN(n, p)
Instance: RNA structure S with pseudoknots on n bases;

positive integer p.
Question: Is π(S) ≤ p?

We prove the main result of this section by describing a polynomial time transformation
of a given circle graph into an RNA structure with the same chromatic number.

Theorem 1 MPN is NP-complete.

Proof. It is known that computing the chromatic number of circle graphs is NP-complete [14].
A circle graph may not be an RNA structure either because (i) there is no labeling of positions
1, . . . , n along the periphery of a circle by A,C,G,U for which the ith and jth nucleotide can
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form a (possibly noncanonical) base pair for each chord in the circle graph. there is a base
pair {i, j} with |j − i| ≤ θ = 3, or (ii) there is a base pair {i, j} with |j − i| ≤ θ = 3, or
since they may have vertices of degree ≥ 2. Finally, it should be mentioned, that although
our definition of general RNA structure allows vertices (nucleotides) to have arbitrary degree
(e.g. {x, y1}, {x, y2}, . . . , {x, yr} for any 0 ≤ r ≤ n), there are physical constraints in the three
dimensional structure of RNA that effectively prevent arbitrarily large degree r. For any given
circle graph G = (V,E) over index set I = {1, . . . , n}, we will associate a new circle graph
G′ = (V ′, E′) over an index set I ′ of size 2n2, in which if chord {i, j} ∈ V ′, then |j−i| > θ = 3.
Moreover, we will ensure that if {i, j} and {k, `} are distinct vertices in V ′, then i, j, k, ` are all
distinct. This will allow us to unambiguously assign nucleotides G, C respectively to positions
i, j, for each vertex {i, j} ∈ V ′. It then follows that G′ is the circle graph representation GS
for a (general) RNA structure, in which each nucleotide i has a base pair with at most one
other nucleotide j, and conditions (1,2,4) are satisfied in the definition of secondary structure
given in Section 1. Finally, we show that the chromatic number of G equals that of G′.
Hence, if the page number for RNA structures can be computed in polynomial time, then the
chromatic number for circle graphs can be computed in polynomial time, contradicting the
NP-completeness of chromatic number for circle graphs. Details for the construction of G′

and of the chromatic-number preserving embedding Φ : G → G′ now follow.

u

1

2

d

u

2
d1

u u
1 d

2

.....

.....

Figure 5: Polynomial time transformation of an arbitrary circle graph G (left panel) into
a graph of the form GS (right panel), for some pseudoknotted RNA structure, such that
χ(G) = χ(GS).

Let G = (V,E) be a given circle graph, having index set I = {1, . . . , n}. We consider the
elements of the index set to be laid out in counter-clockwise along the periphery of a circle,
in which the vertices of G are chords. Define as follows a new circle graph G′ = (V ′, E′) of
the same chromatic number.

• Index set: Define index set I ′ of size 2n2 by

I ′ = {(x, i) : x, i ∈ I} ∪ {(x, n + i) : x, i ∈ I}.

The set I ′ of positions is ordered lexicographically; i.e. (a, b) < (x, y) if either a < x or
(a = x and b < y). The intent is that to each position x ∈ I, we associate 2n positions
(x, 1), . . . , (x, n), (x, n + 1), . . . , (x, n + n) in I ′.
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Define the one-to-many association Φ : I → I ′ by

Φ(x) =


(x, 1) if x is not incident to any chord of G
(x, y) if x is incident to the chord {x, y}< of G
(x, n + y) if x is incident to the chord {y, x}< of G

Here, the notation {x, y}< means that x < y. Although Φ is not a function, since it is
many-to-one, we extend Φ to a well-defined injection mapping from vertex set V of G
into vertex set V ′ of G′. By abuse of notation, we will then extend Φ to a well-defined
bijection from the set E of edges of G onto the set of edges E′ of G′.

• Vertices: Define Φ : V → V ′ by

Φ({x, y}) =
{
{(x, y), (y, n + x)} if x < y

It follows that Φ({x, y}) = {Φ(x),Φ(y)}.

• Edges: If {{x, y}, {a, b}} is an edge of G, then {Φ({x, y}),Φ({a, b})} is an edge of G′.
Edges of G′ are defined by crossing chords; i.e. {{u, v}, {a, b}} are distinct chords of G,
such that u ≤ a ≤ v ≤ b and u < v, a < b.

See Figure 5 for an example of the transformation just defined. Clearly the transformation
Φ : G → G′ is computable in polynomial time, since the number of edges of G is at most
O(n2). Since the degree of each position i ∈ I ′ is at most one, we can assign nucleotide G
resp. C to position x resp y for chord {x, y}<. It follows that G′ is the representation of an
RNA structure GS , whose bases correspond to positions 1, . . . , n′ along the periphery of the
circle corresponding to G′.

We now observe that GS satisfies conditions 1,2,4 of the definition of a secondary structure,
hence is a general RNA structure. Condition 1 is satisfied, since base pairs are all of the form
G-C. If {x, y} is a vertex in G, with |y − x| ≤ θ = 3, then {(x, y), (y, n + x)} is the image
vertex {Φ(x),Φ(y)} in G′, and the positions (x, y + 1), . . . , (x, n), (x, n + 1), . . . , (x, n + n) as
well as (x+1, 1), . . . , (x+1, 2n), . . . , (y, 1), . . . , (y, x−1) lie between the image positions Φ(x)
and Φ(y) of G′, hence certainly |Φ(y) − Φ(x)| > 3. Thus condition 2 is satisfied. Finally,
by construction, each position x ∈ I ′ has degree at most one, so there are no base triples;
condition 4 is satisfied.

We establish a series of claims showing that chord {x, y} crosses chord {a, b} in G if and
only if chord {Φ(x),Φ(y)} crosses chord {Φ(a),Φ(b)} in G′. It then follows that the chromatic
number of G equals that of G′.

Suppose that chord {x, y} crosses chord {a, b} in G, so that x ≤ a ≤ y ≤ b, and that
chords {x, y},{a, b}) are distinct; i.e. this means that |{x, y, a, b}| ≥ 3.
case 1: If x < a < y < b, then the corresponding images in G′ satisfy (x, y) < (a, b) <
(y, n + x) < (b, n + a), since the positions I ′ are ordered lexicographically.
case 2: If {x, a}, {x, b} are vertices in G with x < a < b, then the corresponding images in G′

are {(x, a), (a, n+x)}, {(x, b), (b, n+x)}, which satisfy (x, a) < (x, b) < (a, n+x) < (b, n+x).
case 3: If {a, x}, {b, x} are vertices in G with a < b < x, then the corresponding images in G′

are {(a, x), (x, n+a)}, {(b, x), (x, n+ b)}, which satisfy (a, x) < (b, x) < (x, n+a) < (x, n+ b).
case 4: If {a, x}, {x, b} are vertices in G with a < x < b, then the corresponding images in G′

are {(a, x), (x, n + a)}, {(x, b), (b, n + x}, which satisfy (a, x) < (x, b) < (x, n + a) < (b, n + x).
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It follows that whenever chords {x, y} and {a, b} cross in G, then chords {x, y} and {a, b})
cross in G′; moreover the crossing in G′ is proper, in the sense that Φ(x) < Φ(a) < Φ(y) <
Φ(b). Since Φ maps the chords of G onto those of G′ in an injective or 1-1 fashion, as shown
above, the mapping is in fact an isomorphism, from which it follows that the chromatic
number of G equals that of G′; i.e. χ(G) = χ(G′). This completes the proof of Theorem 1.

A related problem concerns the size of the page number of an RNA structure. In [30] it
is proved that χ(S) ≤ 2ω(S). It is an interesting open question to determine necessary and
sufficient conditions which guarantee that the number of pages needed to represent an arbi-
trary RNA structure can be bounded by a constant independent of the size of the structure.
Surprisingly, there is a bound on page number if the circle graph GS of a given RNA structure
S has no triangles (clique of size 3; if there do not exist three distinct, mutually crossing base
pairs in S.

Theorem 2 Pseudoknotted structures without any triangles can be represented on at most
five pages.

Proof. If the RNA structure S has no triangles then [28] has shown that χ(S) ≤ 8. This
was later improved to χ(S) ≤ 5 by Melnikov (see [26] for additional details).

3 Approximation Algorithm for the Page Number

Theorem 1 states that computing the page number of an arbitrary RNA structure is NP-
complete. Following standard practice in the theory of algorithms, in this section, we provide
an upper bound for page number within a factor of log n.

Theorem 3 There is a log n approximation algorithm producing a decomposition of an RNA
structure S on n bases into O(π(S) log n) pages. Furthermore, the time required to produce
the decomposition is O(n log n).

Proof. It is clear that a given RNA structure requires at least ω(S) pages, where ω(S) is the
clique number of S. Thus ω(S) ≤ π(S). We now give a page decomposition algorithm and
prove that

π(S) ≤ ω(S) · log n

from which the theorem follows.
The idea of the proof is to use a divide and conquer approach. Look at the bases

bn/2c, bn/2c + 1 of the structure depicted in Figure 6, where for simplicity, we assume that
n is even.

1 nn/2 n/2+1

Figure 6: Using divide and conquer to produce a logarithmic approximation for page number
of an RNA structure.
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Consider all the base pairs {i, j} such that i ≤ bn/2c ≤ bn/2c+1 ≤ j. These base pairs can
be colored with at most ω(S) colors, thus resulting in at most ω(S) pages. This coloring can
be found in time O(n log n). Indeed, the graph induced on the set of edges connecting bases
between 1, . . . , bn/2c and bn/2c+ 1, . . . , n has the property that each of its edges crosses the
vertical dashed line depicted in Figure 6, and as such is a permutation graph (see [16]). Now
remove all the base pairs crossing this vertical line. Two RNA structures result, the first from
1, . . . , bn/2c, and the second from bn/2c + 1, . . . , n. Since the base pairs of 1, . . . , bn/2c and
bn/2c + 1, . . . , n do not interfere with each other, the original structure can be colored with
the ω(S) colors required to color the base pairs crossing the vertical line plus the maximum
of the number of colors required to color the RNA structures in 1, . . . , n/2 and n/2+1, . . . , n.
If χ(n) is the minimum number of colors required to color an RNA structure on n bases then
it follows that

χ(n) ≤ ω(S) + max{χ(bn/2c), χ(n− bn/2c)}.

Applying this technique recursively, we derive that π(S) ≤ ω(S) log n, as desired.
Concerning the time required to produce the decomposition, observe that each step of the

divide and conquer algorithm is required to find a clique in a permutation graph consisting
of the base pairs connecting the bases of the structures 1, . . . , bn/2c and bn/2c + 1, . . . , n.
Algorithms for finding such a clique are known and require time O(n log n) (see [16] for more
details on algorithms for permutation graphs).

4 Exact Computation of Page Number

Here we present an algorithm using Constraint Programming [54] to find the page number for
a given RNA tertiary structure. Our approach is divided into three different steps:

1. Given a set S of (possibly noncanonical) base pairs {i, j}, we collapse S into a set H of
helices {hi}, where each hi is represented by the closing base pair {h`

i , h
r
i }, where h`

i is
the 5′ or left position, which is paired with hr

i , the 3′ or right position.

2. We generate a graph G = (V,E) in which the set of vertices V is equal to the set of
helices H from the previous step, and in which the set of edges is E = {(hi, hj) : h`

i <
h`

j < hr
i < hr

j}; i.e. there is an edge between crossing base pairs (h`
i , h

r
i ) and (h`

j , h
r
j).

3. In this final step we solve the minimum vertex coloring problem on G using Constraint
Programming.

For the sake of speed we merged the first two steps in our implementation. The details of
these phases are given in the following.

4.1 Collapsing helices

Given a set S of (possibly noncanonical) base pairs {i, j} from the tertiary structure of some
RNA, as could be computed using the program RNAview [59], we collapse base pairs into
helices and create a graph G in which each vertex is a helix and each edge represents a
pseudoknot between two helices. Formally, given two helices hi and hj characterized by their
closing base pairs {h`

i , h
r
i } and {h`

j , h
r
j}, we say they represent a pseudoknot if and only if:

h`
i < h`

j < hr
i < hr

j .
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1. collapseAndConstructGraph(S)
2. S∗ = list of S in lexicographic order
3. V = ∅
4. E = ∅
5. n = |S∗|
6. lastbp = S∗[0] first element of S∗

7. forall bp ∈ S∗ − {lastbp}
8. if lastbp, bp are not consecutive
9. V = V ∪ {lastbp}
10. forall h ∈ V
11. if pseudoknot(h,bp)
12. E = E ∪ {h, h(bp)}
13. lastbp = bp
14. G = (V,E)
15. return G

Figure 7: Algorithm to collapse base pairs and construct graph.

Figure 7 depicts the algorithm for collapsing the base pairs and constructing the graph G.
It scans the list of base pairs in lexicographic order, creating a new vertex/helix each time a
base pair is not consecutive with respect to the previous one, where two base pairs {i, j} and
{x, y}, with i < x < y < j are defined to be consecutive if, and only if:

x ∈ {i + 1, i + 2} ∧ y ∈ {j − 1, j − 2}.

In other words, two base pairs are consecutive if they are either stacked, or separated by
a bulge of size 1 or an internal loop of size 2. The algorithm selects the lexicographically
least base pair from each helix, where a helix (or stem) is a maximal collection of consecutive
base pairs. After a new helix is “closed”, we check with all other previously “closed” helices
to determine if they form a pseudoknot with the the one we have just scanned. If so, we
create an edge between that helix and the one we are just “opening”, denoted by h(bp) in the
pseudocode.

As can be seen, this algorithm has a worst time complexity of O(m2) where m is the
number of base pairs in S.

4.2 Solving the minimum vertex coloring using CP

Constraint Programming Constraint programming is one the main methodologies for
solving hard combinatorial optimization problems. The salient features of CP are its rich
modeling language and its computational model based on branch and prune. At the mod-
eling level, CP models a complex application in terms of decision variables, domains which
specify the possible values for the variables, and constraints which capture its combinatorial
substructures, giving the underlying solver significant information on the application struc-
ture.

The computational model of constraint programming is branch and prune. Constraints
are used to filter the variable domains by removing values that cannot appear in any soluion.
In fact, each constraint is associated with two algorithms: (1) a feasibility algorithm which

12



determines if a constraint can be satisfied in isolation given the current variable domains; (2)
a filtering algorithm that removes values from the variable domains that cannot satisfy the
constraints given the current domains.

Graph Coloring In graph theory, vertex coloring of an input graph G [15] is a special case
of graph labeling in which labels, traditionally called “colors”, are assigned to the vertices
of G, in a manner such that no two adjacent vertices share the same color. The minimum
vertex coloring problem is to determine, given an input graph G, the minimum number of
colors necessary for a vertex coloring of G. The vertex coloring problem is well-known to be
NP-complete [15]. Coloring the graph constructed in the previous subsection with a minimum
number of colors is of course equivalent to finding the page number of a given RNA tertiary
structure. The number of colors used to color the graph is indeed the page number.

CP model To solve the minimum coloring problem, we use a traditional CP formulation
which consists of the following components:

• Variables: There is a variable ci for each vertex vi in the graph, which represents the
color to be assigned to that vertex. There is a variable k, which represents the maximum
number of colors used (colors are coded as integers so that calculations of minimum and
maximum are possible).

• Domains: Letting V represent the set of vertices of the graph G constructed above, we
define the domains for all variables ci to be D = {0, . . . , |V | − 1}, and the domain for k
to be D(k) = {1, . . . , |V |}.

• Constraints: There is a constraint for each edge in E such that, for an edge between
vertices vi and vj , there is a constraint ci 6= cj . There is also a constraint for each vertex
vi of the form ci < k, that ensures that k is greater than any “color” used.

• Objective: minimize the number of colors used, i.e. minimize k.

4.3 Results

In [5], Bon et al. defined the notion of topological genus of a pseudoknot, and classified a
number of RNA tertiary structures from the Protein Data Bank [3] according to genus. In this
section we present comparable results with respect to page number for the same RNA tertiary
structures considered in [5]. The results from Table 1 were obtained by our implementation of
the above-described Constraint Programming algorithm in the Comet programming language
[54].

Given an RNA tertiary structure in PDB file format, our program computes the list of
lexicographic least base pairs of each helix belonging to a single page, for pages 0,1,2, etc.
and then the optimal page number structure is displayed, using different types of bracket
(parentheses, square brackets, curly brackets, etc.) for distinct pages. For instance, given the
PDB file 6TNA [48] for the 76 nt yeast phenylalanine transfer RNA, we have the following
page layout:

0 : (6,65),(18,55),(29,39)

1 : (12,21),(52,60)
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GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

(((((((..[[[[.....(..]]]].((((.........)))).....[[[[[..)....]]]]])))))))....

Notice that there is a single pseudoknot at (19,56), between the D-loop and the TΨC-loop.
Rather than perform a page layout where base pair (19, 56) is depicted by a square-bracket,
with all other base pairs depicted by round-brackets, our program output the previously
displayed, equivalent form. Using jViz [58], the 2-page pseudoknotted structure of 6TNA,
computed by our program is displayed in Figure 8. Although the determination that 6TNA
has page number 2 is trivial, this can hardly be said of the 2922 nt sequence of 23S ribosomal
RNA with PDB code 1KC8:A (A chain of 1KC8), depicted in Figure 9. As mentioned in
Table 1, the only page 4 structure we found in the collection studied by Bon et al. was the
chain A of the file with PDB accession code 1KC8, corresponding to the 2922 nt sequence
of 23S ribosomal RNA. The (optimal) page number structure for this and all other RNAs
appearing in Table 1 can be found at our web server. Each computation took less than one
second.

Figure 8: Pseudoknotted structure of the 76 nt yeast phenylalanine transfer RNA with PDB
code 6TNA [48]. This example is trivial, since there is only one pseudoknot. Image produced
using jViz [58].

5 Conclusion and Discussion

In this paper, we have proven that that computing the page number π(S) of general pseudo-
knotted RNA structures is NP-complete. We have observed that an explicit ≤ 2-page layout
for structure S can be determined in time O(n3/2), provided that it is known that π(S) ≤ 2;
i.e. S is a bisecondary structure. Since it is standard policy in the theory of algorithm to
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Page Number PDB file
2 6tna, 4tra, 4tna, 437d, 2tra, 2tpk, 2g1w, 2fk6, 2csx-C,

2a43, 2a2e, 1znn, 1ymo, 1yl4-A, 1yg3, 1yfg, 1y27 1y26,
1x8w, 1voz, 1voy-B, 1vox, 1vov, 1vou-B, 1vos, 1voq,

1vc7, 1vc6, 1vc5, 1vc0, 1vbz, 1vby, 1vbx, 1u8d, 1u6b-B,
1ttt-D, 1tra, 1tn2, 1sz1-E, 1sjf, 1sj4, 1sj3, 1ser, 1qu3,
1qu2, 1qtq, 1qru, 1qrt, 1qrs, 1qf6, 1pnx, 1o0c, 1o0b,
1n77-C, 1n36, 1n34, 1mzp, 1mj1-D, 1l3d, 1l2x, 1kpz,

1kpy, 1kpd, 1jgq-D, 1jgp-D, 1jgo-D, 1j1u, 1il2-C, 1i9v,
1i97, 1i95, 1gtr, 1grz-A, 1gix-C, 1gix-B, 1g59-B, 1fka,

1fir, 1fg0, 1ffz, 1ffy, 1fcw-A, 1f7v, 1f7u, 1exd, 1euy, 1eiy,
1ehz, 1drz, 1cx0, 1c2w, 1c0a, 1asz-S, 1asz-R, 1asy-S,

1asy-R, 1b23
3 2d3o, 2awb-B, 2aw7, 2aw4-B, 2avy, 2aar, 2a64, 1yl3-A,

1yjw-0, 1yjn-0, 1yj9-0, 1yit-0, 1yij-0, 1yi2-0, 1yhq-0, 1y69-0,
1y0q, 1xnr-A, 1xnq-A, 1xmq-A, 1xmo-A, 1xbp-0, 1vqp-0,
1vqo-0, 1vqn-0, 1vqm-0, 1vql-0, 1vqk-0, 1vq9-0, 1vq8-0,
1vq7-0, 1vq6-0, 1vq5-0, 1vq4-0, 1vp0, 1vow-B, 1sm1-0,
1s72-0, 1s1i-3, 1s1h, 1qvg-0, 1qvf-0, 1q86-A, 1q82-A,
1q81-A, 1q7y-A, 1pny-0, 1pnu-0, 1pns-A, 1p9x, 1ond,
1nwy-0, 1nwx-0, 1nkw-0, 1njp-0, 1njo, 1njn, 1njm-0,

1nji-A, 1n8r-A, 1n33-A, 1n32-A, 1m90-A, 1m1k-A, 1kqs-0,
1k9m-A, 1k8a-A, 1k73-A, 1kd1-A, 1k01, 1jzz, 1zy, 1jzx,

1jj2-0, 1j5e, 1j5a, 1ibm-A, 1ibl, 1ibk, 1i96, 1i94, 1hr0, 1hnz,
1hnx, 1hnw, 1fjg, 1ffk-0, 1et4-A, 1ddy-A

4 1kc8-A

Table 1: Page number of all RNA tertiary structures, for which Bon et al. [5] computed
the topological genus. In each case, the exact page number was computed by our Constraint
Programming algorithm within one second.
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Figure 9: Pseudoknotted structure of the 2922 nt sequence of 23S ribosomal RNA with PDB
code 1KC8:A (A chain of 1KC8). Minimum page number layout produced by the Constraint
Programming method described in this section; image produced using jViz [58].

provide an approximation algorithm when faced with NP-completeness, we have a logarithmic
approximation, implying that ω(S) ≤ π(S) ≤ ω(S)·log n, where the clique number of S, ω(S),
denotes the maximum number of base pairs that pairwise cross each other. Finally, we have
described a constraint program (CP) which computes the page number of any given RNA
structure. Though the CP runs in exponential time, since it implements a branch-and-prune
technique, the optimization programming language comet [54] used in our implementation
is extremely efficient, and the page number can be computed for RNA structures from the
Protein Data Bank [3] within one second.

The application of topological genus was introduced in the context of RNA structure in
[56, 57], and subsequently used in [5] to classify tertiary RNA structures from the Protein
Database [3]. In [6, 4], Bon and Orland introduced an energy model for RNA structures, which
includes a pseuodoknot penalty according to genus, and computed the minimum free energy
(MFE) pseudoknotted structure (of arbitary genus, or of genus bound by a user-specified
input) using a branch-and-bound algorithm. Reidys et al. [42] gave a dynamic programming
algorithm to compute the MFE structure of genus at most 1, where the energy model involved
penalties for each of four specific primitive [4] (irreducible [42]) genus 1 pseudoknots.

Since genus is a topological notion, that does not take into account stericity or other
molecular constraints, one might consider whether page number provides a better classifica-
tion of RNA structures. Unfortunately, results from this paper suggest that no reasonable
energy model involving page number may exist, since page number is an NP-complete prob-
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lem.‡ Table 1 shows that very few biologically relevant structural RNA molecules have large
page number, at least among those whose structure is deposited in the Protein Data Bank.
It is natural to wonder whether random pseudoknotted structures have higher page number.
In the Erdös-Renyi model of random graphs, where there is an edge between distinct vertices
i, j with fixed probability p, we can show§ that the expected page number of a random pseu-
doknotted structure Sn on nucleotide positions 1, . . . , n is large and roughly close

√
n; i.e.

E[π(Sn)] ∈ Ω(
√

n/ log n) and E[π(Sn)] ∈ O(
√

n log n). Comparing the page number of bio-
logically functional RNA molecules with that of random pseudoknotted structures, we infer
that the Erdös-Renyi model of random graph is an unrealistic model for random pseudoknot-
ted structures. This situation is similar to the realization made in systems biology, where it is
understood that the small-world graphs arising from metabolic pathways and protein-protein
interaction networks are different in nature from Erdös-Renyi random graphs.
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Appendix

The following example shows that the greedy algorithm may assign O(log n) pages for an
RNA structure, which only requires a constant number of pages. The sets of base pairs are
constructed recursively in stages S0,S1, . . . ,Sn. Initially, S0 consists of one base pair. Assume
that Sn has been constructed. Then the set Sn+1 is constructed by appending a copy of Sn

to itself plus the addition of a base pair which 1) surrounds the second copy of Sn, 2) crosses
the first copy of Sn, 3) its leftmost base is enclosed inside the rightmost innermost base pair
of the first copy of Sn. The resulting structure is depicted in Figure 6 for n = 0, 1, 2.

Figure 10: Example of the sequence of sets of base pairs S0,S1,S2.

The number Bn of base pairs introduced by the nth step satisfies the recursion Bn =
2Bn−1 + 1 with initial condition B0 = 1. Solving the recursion we see that Bn = 2n+1 − 1.
Now we look at the number of pages being used by the greedy algorithm. Enumerate the base
pairs by occurrence of their leftmost base, say b0, b1, b2, . . .. At the kth step, a new page is
introduced only if the base pair bk crosses a previously placed base pair in each of the pages
introduced so far; in this case a new page is introduced on which bk is placed. It is easy to
see that the optimal algorithm requires n pages and so does the greedy algorithm.
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