Protein Structure Prediction With
Large Neighborhood Constraint Programming Search

Ivan Dotu!, Manuel Cebrian!, Pascal Van Hentenryck!, and Peter Clote?

! Department of Computer Science, Brown University
Box 1910, Providence, R1 02912
2 Biology Department, Boston College
Chestnut Hill, MA 02467

Abstract. Protein structure predictions is regarded as a highly challenging prob-
lem both for the biology and for the computational communities. Many approaches
have been developed in the recent years, moving to increasingly complex lattice
models or even off-lattice models. This paper presents a Large Neighborhood
Search (LNS) to find the native state for the Hydrophobic-Polar (HP) model on
the Face Centered Cubic (FCC) lattice or, in other words, a self-avoiding walk on
the FCC lattice having a maximum number of H-H contacts. The algorithm starts
with a tabu-search algorithm, whose solution is then improved by a combination
of constraint programming and LNS. This hybrid algorithm improves earlier ap-
proaches in the literature over several well-known instances and demonstrates the
potential of constraint-programming approaches for ab initio methods.

1 Introduction

In 1973, Nobel laureat C.B. Anfinsen [2] denatured the 124 residue protein, bovine ri-
bonuclease A, by the addition of urea. Upon removal of the denaturant, the ribonuclease,
an enzyme, was determined to be fully functional, thus attesting the successful reforma-
tion of functional 3-dimensional structure. Since no chaperone molecules were present,
Anfinsen’s experiment was interpreted to mean that the native state of a protein is its
minimum free energy conformation, and hence that protein structure determination is
a computational problem which can in principle be solved by applying a combinatorial
search strategy to an appropriate energy model.

Protein structure prediction is historically one of the oldest, most important, yet
stubbornly recalcitrant problems of bioinformatics. Solution of this problem would
have an enormous impact on medicine and the pharmaceutical industry, since suc-
cessful tertiary structure prediction, given only the amino acid sequence information,
would allow the computational screening of potential drug targets, in that a drug (small
chemical ligand) must dock to a complementary portion of the protein surface (such
as a G-coupled protein receptor, the most common drug target).® of successful drug
Indeed, it has been stated that: “Prediction of protein structure in silico has thus been
the ‘holy grail’ of computational biologists for many years” [39]. Despite the quantity

3 The design of HIV protease inhibitors, first described by Lam et al. [29], was based on knowl-
edge of the target structure.



of work on this problem over the past 30 years, and despite the variety of methods de-
veloped for structure prediction, no truly accurate ab initio methods exist to predict the
3-dimensional structure from amino acid sequence. Indeed, Helles (2008) [24] bench-
marked the accuracy of 18 ab initio methods, whose average normalized root mean
square deviation ranged from 11.17 A to 3.48 A, while Dalton and Jackson (2007) [19]
similarly benchmarked five well-known homology modeling programs and three com-
mon sequence-structure alignment programs. In contrast, computational drug screening
requires atomic scale accuracy, since the size of a single water molecule is about 1.4 A.

In this paper, we describe a combination of constraint programming and Large
Neighborhood Search (LNS) to determine close-to-optimal conformations for the Lau-
Dill HP-model on the face-centered cubic lattice. Before describing our contribution,
we first present an overview of computational methods for protein structure prediction.
In general, methods are classified as homology (comparative) modeling, threading, lat-
tice model, and ab initio. Protein structure prediction is an immense field that cannot be
adequately surveyed in this introduction. Numerous books, such as [50], and excellent
reviews, such as [21] are available. Nevertheless, to situate the contribution of our work
within the broader scope of protein structure prediction, we briefly describe each of the
methods — homology, threading, ab initio — in turn, and focus subsequent discussion on
lattice models.

In homology (aka comparative) modeling, the amino acid sequence of a novel pro-
tein P is aligned against sequences of proteins (), whose tertiary structure is available
in the Protein Data Bank (PDB) [10]. Regions of P aligned to regions of () are assumed
to have the same fold, while non-aligned regions are modeled by interconnecting loops.
Examples of comparative modeling software are SWISS-MODEL, developed by M.
Peitsch, T. Schwede et al., and recently described in [3], as well as MODELER devel-
oped by the Sali Lab [26]. Comparative modeling relies on the assumption that evo-
lutionarily related (homologous) proteins retain high sequence identity and adopt the
same fold.

Threading [40, 31], though known to be NP-complete [30], is a promising de novo
protein structure approach, which relies on threading portions a;, . .., a; of the amino
acid sequence ag,...,a, onto a fragment library, which latter consists of frequently
adopted partial folds. Pseudo-energy (aka knowledge-based potential) is computed from
the frequency of occurrence of certain folds with certain types of amino acid sequence.
Impressive results have been obtained with the Skolnick Lab program I-TASSER [47]
with web server [51], which yielded the best-ranked structure predictions in the blind
test CASP-7 (Critical Assessment of Techniques for Protein Structure Prediction) in
2006. Success of threading hinges on two things: energetics, i.e., that the PDB is rela-
tively saturated and contains occurrences of almost all protein folds, and search strat-
egy, i.e., usually Monte-Carlo or some type of branch-and-bound algorithm. According
to a study of Zhang and Skolnick [52], the PDB is currently sufficiently saturated to
permit adequate threading approaches, albeit with insufficient accuracy for the require-
ments of computational drug design.*

* According to [52], using the TASSER algorithm, “in 408 cases the best of the top five full-
length models has a RMSD < 6.5 Angstroms.”



Fig. 1. Lattices used in protein structure modeling. (a) Points (x, y, z) in cubic lattice, satisfying
0 < z,y,z < 1. (b) Points (z,y, z) in FCC lattice, satisfying 0 < z,y,z < 2. (c) Points
(z,y, z) in tetrahedral lattice, satisfying 0 < z,y,z < 1. (d) Points (z,y, z) in 210 (knight’s
move) lattice, satisfying 0 < z,y, z < 2.

Despite advances in comparative modeling and threading, there is an interest in ab
initio protein structure prediction, since this is the only method that attempts to un-
derstand protein folding from basic principles, i.e., by applying a search strategy with
(generally) a physics-based energy function. Moreover, only ab initio methods can be
applied for proteins having no homology with proteins of known structure. In molecu-
lar dynamics (MD), protein structure is predicted by iteratively solving Newton’s equa-
tions for all pairs of atoms (possibly including solvent) using mean force potentials,
that generally include pairwise (non-contact) terms for Lennard-Jones, electrostatic,
hydrogen bonding, etc. Well-known MD software CHARMM [14] and Amber [20], as
well as variant Molsoft ICM [1], the latter employing internal coordinates (dihedral an-
gle space) and local optimization, are used to simulate protein docking, protein-ligand
interactions, etc. since molecular dynamics generally is too slow to allow ab initio fold-
ing of any but the smallest proteins. Other ab initio methods include the Baker Lab
program Rosetta [12], benchmarked in [24] with comparable accuracy as the Skolnick
Lab program I-TASSER [47]. Search strategies of ab initio methods include molecular
dynamics simulation, Metropolis Monte-Carlo (Rosetta [12]), Monte-Carlo with replica
exchange (I-TASSER [47]), branch-and-bound (ASTROFOLD [27]), integer linear pro-
gramming (ASTROFOLD [27]), Monte-Carlo with simulated annealing, evolutionary
algorithms, and genetic algorithms.

2 Problem Formalization

A lattice is a discrete integer approximation to a vector space, formally defined to be
the set of integral linear combinations of a finite set of vectors in Z™; i.e.,

k
L= {Zaivi:aiGZ} 1)
i=1

where v1, ..., vy € Z™. If k is the minimum value for which (1) holds, then v, ..., v
form a basis, and k is said to be the dimension (also called coordination or contact
number) of L. Two lattice points p,q € L are said to be in contact if ¢ = p + v;
for some vector v; in the basis of L. Historically, many different lattices have been
considered, some of which are depicted in Figure 1. For more details on properties of
these and other lattices, see the book by Conway and Sloane [16]. In this paper, we
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Fig. 2. Energy for HP- and HPNX-model.

consider the face-centered cubic (FCC) lattice which is generated by the following 12
basis vectors (identified with compass directions [46]):

N :(1,1,0) S:(~1,-1,0) W:(-~1,1,0)
E:(1,-1,00 NW,:(0,1,1) NW_:(0,1,—1)
NE;:(1,0,1) NE_:(1,0,_1) SE,:(0,—1,1)
SW, : (—1,0,1) SE_: (0,—1,—1) SW_: (—1,0,—1).

It follows that the FCC lattice consists of all integer points (x, y, z), such that (z +y +

z) mod 2 = 0, and that lattice points p = (x,y, 2) and ¢ = (2/,y’, 2’) are in contact,
denoted by co(p,q), if (x — ')+ (y —¢') + (¢ — 2 )mod 2 = 0, |z — 2| < 1,
ly—vy'| <1,and |z — 2’| < 1. We will sometimes state that lattice points p, g are at unit
distance, when we formally mean that they are in contact. Since the distance between
two successive alpha-carbon atoms is on average 3.8A with a standard deviation of
0.04A, a reasonable coarse-grain approach is to model an n-residue protein by a self-
avoiding walk pq, ..., p, on a lattice.

In 1972, Lau and Dill [32] proposed the hydrophobic-hydrophilic (HP) model, which
provides a coarse approximation to the most important force responsible for the hy-
drophobic collapse which has been experimentally seen in protein folding. Amino acids
are classified into either hydrophobic (e.g. Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, Val)
or hydrophilic (e.g. Arg, Asn, Asp, Cys, Glu, Gln, His, Lys, Ser, Thr, Tyr) residues. In
the HP-model, there is an energy of —1 contributed by any two non-consecutive hy-
drophobic residues that are in contact on the lattice. For this reason, the HP-model is
said to have a contact potential, depicted in the left panel of Figure 2, where ‘H’ des-
ignates hydrophobic, while ‘P’ designates polar (i.e., hydrophilic). To account for elec-
trostatic forces involving negatively charged residues (Asp, Glu) and positively charged
residues (Arg, His, Lys), the HP-model has been extended to the HPNX-model, with hy-
drophobic (H), positively charged (P), negatively charged (N) and neutral hydrophilic
(X) terms. The right panel of Figure 2 depicts the HPNX-potential used in [11].

Though Lau and Dill [32] originally considered only the 2-dimensional square lat-
tice, their model allowed the formulation of the following simply stated combinatorial
problem. For a given lattice and an arbitary HP-sequence, determine a self-avoiding
walk on the lattice having minimum energy, i.e., a minimum energy lattice conforma-
tion. This problem was shown to be NP-complete for the 2-dimensional square lattice
by [17] and for the 3-dimensional cubic lattice by Berger and Leighton [9].



3 Related Work

Approaches to the HP Model We first survey some search strategies for the HP-model.
In [48], Yue and Dill applied “constraint-based exhaustive search™ to determine the
minimum energy conformation(s) of several small proteins including crambin, when
represented as HP-sequences on the cubic lattice. Necessarily, any exhaustive search
is limited to very small proteins, since the number of conformations for an n-mer on
the 3-dimensional cubic lattice is estimated to be approximately 4.5™ [33]. In [43],
Unger and Moult described a genetic algorithm for the HP-model on the 2-dimensional
square lattice, where pointwise mutation corresponds to a conformation pivot move.
This approach was extended in Backofen, Will, and Clote [6] to a genetic algorithm on
the FCC lattice, in order to quantify hydrophobicity in protein folding.

In [7, 4], Backofen applied constraint programming to the HP-model and Backofen
and Will applied constraint programming to the HPNX-model [5], thus providing an ex-
act solution for small HP- and HPNX-sequences beyond the reach of exhaustive meth-
ods. In [45, 8], Will and Backofen precomputed hydrophobic cores, maximally compact
face-centered cubic self-avoiding walks of (only) hydrophobic residues. By threading
an HP-sequence onto hydrophobic cores, the optimum conformation could be found
for certain examples; however, if threading is not possible (which is often the case), no
solution is returned.

Dal Palu et al. [18] use secondary structure and disulfide bonds used as constraints
using constraint logic programming over finite domains to compute a predicted struc-
ture on the face-centered cubic lattice. They describe tests ranging from the 12 residue
fragment (PDB code 1LEO) with RMSD of 2.8 A achieved in 1.3 seconds, to the 63
residue protein (PDB code 1YPA) with RMSD of 17.1 A in 10 hours. Further optimiza-
tion was performed after the alpha-carbon trace was replaced by an all-atom model
(presumably using well-known Holm-Sander method [25]), thus achieving an all-atom
prediction of the 63 residue protein (PDB code 1YPA) with RMSD of 9.2 A within
116.9 hours computation time. This study suggests that protein structure prediction
might best proceed in a hierarchical fashion, first taking into account secondary struc-
ture on a coarse-grain lattice model and subsequently performing all-atom refinement.

Beyond the HP Model The HP-model can be viewed as a coarse approximation of
more complex contact potentials. In [35], Miyazawa and Jernigan introduced two kinds
of contact potential matrices, i.e., 20 x 20 matrices that determine a residue-dependent
energy potential to be applied in the case that two residues are in contact (either on the
lattice, or within a fixed threshold such as 7 Afrom each other). Recently, Pokarowski
et al. [37] analyzed 29 contact matrices and showed that in essence all known contact
potentials are one of the two types they introduced in [35]. Their first contact potential is
given by the formula e(i, j) = h(#) + h(j), where 1 < ¢ < 20 ranges over the 20 amino
acids and £ is a residue-type dependent factor that is highly correlated with frequency of
occurrence of a given amino acid type in a non-redundant collection of proteins. Their
second contact potential is given by the formula e(i, j) = co — h(i)h(j) + q(i)q(4),
where cg is a constant, h is highly correlated with the Kyte-Doolittle hydrophobicity

> Despite the name, the method of Yue and Dill did not did not involve constraint programming.



scale [28], and a residue-type dependent factor ¢ is highly correlated isoelectric points
pl. The “knight’s move” 210 lattice was used by Skolnick and Kolinski [41] to fold the
99-residue beta protein, apoplastocyanin, to within 2 Aof its crystal structure with PDB
accession code 2PCY.

4 Why Constraint Programming?

Our earlier work [13] applied a tabu-search algorithm to obtain approximate solutions
for protein folding for the HP-model on FCC lattice. The goal of this paper is to eval-
uate a similar model using a large neighborhood search based on constraint program-
ming, both to improve earlier results and to assess their quality. The improvements
obtained by the CP-based LNS indicate that this approach provides significant bene-
fits over a pure local search algorithm. More generally, as explained in the introduction,
protein structure prediction can be viewed as the application of a search engine (Monte-
Carlo, Monte-Carlo with replica exchange, genetic algorithm, integer programming, ...)
to a physics-based or knowledge-based energy function. This paper evaluates CP-Based
large neighborhood search on the Harvard instances, a standard benchmark for assess-
ing accuracy of structure prediction for the HP-model. Our successful application of
LNS to the face-centered cubic lattice suggests the potential of using this constraint-
programming strategy in a hierarchical manner with successive refinements to perform
all-atom structure prediction — a task for future research.

5 The Implementation

5.1 The CP Model

The CP model receives as input a sequence of binary values H; (0 < i < n) denoting
whether aminoacid ¢ is hydrophobic (H; = 1). Its output associates each aminoacid i
with a point (x;, y;, z;) in the FCC lattice. Recall that the FCC lattice is the closure of
12 vectors V' = {wvo, . .., v11 } defined as follows:

vo ={1,1,0} vy = {-1,-1,0} vo = {-1,1,0} w3 ={1,-1,0}
v ={1,0,1} vs = {~1,0,—1} v = {—1,0,1} vy = {1,0,—1}
vg = {O, 1, 1} Vg = {O, —1, —1} V10 = {O, —1, 1} V11 = {O, 1, —1}.

Decision Variables Although the output of the model maps each aminoacid ¢ into a
FCC lattice point, the model uses move vectors as decision variables. These vectors
(m¥,mY,m?) specify how to move from point ¢ — 1 to point 7 in the self-avoiding
walk. The use of move variables greatly simplifies the problem statement.

The Domain Constraints Each move variable (m?, m?, m?) has a finite domain con-
sisting of the FCC lattice vectors {v, ..., v11}, that is

(mi,m{,m7) € {vo,...,vn1}.

7

Each coordinate x;, y;, and z; in the 3D point (z;,y;, z;) associated with aminoacid ¢
has a finite domain 0..2n.



The Lattice Constraints The lattice constraints link the move variables and the points
in the FCC lattice. They are specified as follows:

VO<i<n: z=xi1+mi &y =vyi—1+mi &z =z_1+mi.
The model also uses the redundant constraints
(z; +y; +2;) mod2 =0
which are implied by the FCC lattice. In addition, the initial point is fixed.

The Self-Avoiding Walk Constraints To express that all aminoacids are assigned differ-
ent points in the FCC lattice, the model uses a constraint

abs( Z m3) + abs( Z my) + abs( Z mi)#0

k€i..j k€i..j k€i..j

for each pair (¢, j) of aminoacids, ensuring the moves from the position of aminoacid @
do not place j at the same position as . Indeed, the two points (x;, y;, z;) and (z;, y;, 2;)
are at the same position if each of the sums in the above expression is zero.

The Objective Function The objective function maximizes the number of contacts be-
tween hydrophobic aminoacids

Z (dijZZ)XHZ'XHj

i,4i4+1<y
where d;; denotes the square of Euclidean distance between aminoacids ¢ and j, i.e.,
2 2 2
dij = (zi —x5)° + (i — ;)" + (2 — 25)°.

Since the minimal distance in the FCC lattice is v/2, the condition d; ; = 2 holds when
there exists a contact between aminoacids ¢ and j.

5.2 The Search Procedure

The search procedure assigns positions to the aminoacids in sequence by selecting
moves in their domains. The only heuristic choice thus concerns which moves to se-
lect, which uniquely determines the position of the next aminoacid. In the course of this
research, a number of move selection heuristics were evaluated. Besides the traditional
lexicographic and random value selections, the heuristics included

1. Minimizing the distance to the origin: Choosing the move minimizing the dis-
tance of the corresponding aminoacid to the origin.

2. Minimizing the distance to the centroid: Choosing the move minimizing the dis-
tance of the corresponding aminoacid to the centroid.

3. Maximizing density: Choosing the move maximizing the density of the structure.



4. Maximizing hydrophobic density: Choosing the move that maximizing the den-
sity of the structure consisting only of the hydrophobic aminoacids.

Note that the centroid of the conformation is defined as

1 n—1 1 n—1 1 n—1
(ﬁ ;Zi; n ;ym n ;Zz)

Most of the dedicated heuristics bring significant improvements in performance, al-
though those minimizing the distance to the origin and the centroid seem to be most
effective. Our implementation randomly selects one of the two heuristics.

5.3 Strengthening the Model During Search

We now describe a number of tightenings of the model which are applied during search.
Their main benefit is to strengthen the bound on the objective function.

Linking FCC Moves and Distance Constraints In the model described so far, the dis-
tance between two aminoacids ignores the fact that the points are placed on the FCC
lattice. The model may be improved by deriving the fact that two aminoacids are neces-
sarily placed at a distance greater than /2 and thus cannot be in contact. Such derived
information directly improves the bound on the objective function.

However computing the possible distances between two aminoacids is quite com-
plex in general. As a result, our constraint-programming algorithm only generates rele-
vant distances each time a new aminoacid is positioned. More precisely, assuming that
aminoacid ¢ has just been positioned on the FCC lattice, the algorithm determines which
unassigned aminoacids cannot be in contact with already placed aminoacids (only for
H-type aminoacids). The key idea is to compute the shortest path sp;; in the FCC lattice
between aminoacid ¢ and an already placed aminoacid j: It then follows that unassigned
aminoacids ¢ + 1,...,4 + sp;; — 2 cannot be in contact with j. Formally, after placing
aminoacid ¢, the model is augmented with the constraints

VO<j<i—=2,i+1<1<i+spy;—2:dj; >2
which ensures that aminoacids j and / cannot be in contact.

Bounding the Number of Contacts The expression of the objective function also does
not take into account how the aminoacids are placed in the FCC lattice. As a result, it
typically gives weak bounds on the objective value. This section shows how to bound
the objective value at a search node more effectively.

The key idea to bound the objective value is to compute the maximum number of
contacts for each unassigned aminoacid independently, thus ignoring their interactions
through the self-avoiding walk. Consider a node of search tree where the sequence can
be partitioned into the concatenation A :: U, where A is the subsequence of already
positioned aminoacids in which 7 is the last assigned one (also, we only consider a €
A||Hg, == 1and k € U||Hj, == 1). The objective function can then be bounded by

obj < contact(A) + Z man(mazContact(k), beontact(k, A) + feontact(k,U))
kinU



where contact(A) denotes the number of contacts in subsequence A, becontact(k, A)
bounds the number of contacts of an aminoacid k € U with those aminoacids in A, and
feontact(k, U) bounds the number of contacts of k with those aminoacids in U occur-
ring later in the sequence. The contacts of each aminoacid k € U, mazContact(k), are
bounded by 10, since a point in the FCC lattice has 12 neighbors and there cannot be any
contact between two successive aminoacid in the sequence. However, if K == n — 1,
i.e., if k is the last aminoacid of the sequence then maxContact(k) == 11, since that
k has no successor aminoacid.

To bound the contact of aminoacid k& with A, the idea is to consider the neighbors
of each aminoacid a € A and to find the one maximizing the contacts with k, i.e.,

beontact(k, A) = max,ea becontact(k,a, A)
beontact(k,a, A)=#{j € A | je€ N(a) AN j€ R(k,a)}.

where N (a) denotes the neighbors of aminoacid a and R(k, a) denotes the aminoacid
in A reachable from £, i.e.,

R(k,A) ={a € A | spa; < (k—i) +1}.

Recall that 7 is the last aminoacid assigned. Finally, to bound the number of contacts of
k with those aminoacids occurring later in the sequence, we use

feontact(k,U) = Z H,
EU:I>k+2

to count the number of hydrophobic aminoacids occurring later in U that can be in
contact with k.

This bound can be computed in time O(n?) and is quite tight when the number of
aminoacids in U is reasonably small.

5.4 Large Neighborhood Search

Structure prediction is a highly complex combinatorial optimization problem. As a re-
sult, constraint programming search may spend considerable time in suboptimal regions
of the search space. To remedy this limitation, our algorithm uses the idea of large
neighborhood search (LNS) [38] which focuses on reoptimizing subparts of a solution.
Given a feasible walk o, the idea is to solve the structure prediction problem for a subse-
quence of the original sequence, assuming that the remaining aminoacids are positioned
like in 0. More precisely, given an interval ¢..j, an LNS optimization step consists of
solving the original model with the additional constraints

VE:0<k<i:z,=0(i) Nyi=0(y) N 2z =0(z)

and
Vk:j<k<n:zi=0c(x) Nyi=0(y) N 2z =o0(%)

where o () denotes the value of variable x in solution o.



1. LNS_PSP(0)

2 limit «— limito

3 fraction < fractiong

4. for m iterations do

5. uniform select ¢ € 1.n — 1

6 size < n - fraction

7 ] «— 1+ size

8 (o*, explored) = CPSolve(o, i..7, limit)

9. if o™ # L then

10. oc—o"

11. limit «— limito

12. fraction «— fractiong

13. else if explored then

14. fraction «— fraction + A fraction
15. else

16. limit «— limit + Alimit

17. return o

Fig.3. LNS for Protein Structure Prediction (limito=500 failures, fractiono =

Afraction = 1555 and Alimit=100 failures).

3
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The complete LNS algorithm is depicted in Figure 3. It receives as input a high-
quality solution produced by the tabu-search algorithm described in [13] and uses a
subroutine CPSolve(o,i..j,1) which solves augmented models using constraint pro-
gramming and terminates after at most l¢mit failures had occurred or when the entire
search space has been explored. It returns a pair (o*, exzplored), where o* is either a
new best solution or L if no such solution was found, and explored is a boolean which
is true when the entire search space has been explored for the augmented model. Lines
2-3 initialize two parameters: the limit on the number of failures and the fraction of
the subsequence to (re)-position on the FCC lattice. Line 8 is the call to the constraint-
programming solver. After this call there are three possibilities. First, that the search is
successful: then the best solution is updated and the parameters are re-initialized (lines
9-12). Second, that the search space has been explored entirely with no improvement;
the fraction of the sequence to re-position is increased at a certain rate A fraction
(lines 13—14). Finally, that CPSolve reached limit without an improvement: the num-
ber of failures is increased in Alimit to give it more time for to succeed in the next trial
(lines 15-16).

6 Experimental Results

All the results presented in this section have been produced by a COMET [44, 34] im-
plementation of the LNS algorithm, run on a single core of a 60 Intel based, dual-core,
dual processor, Dell Poweredge 1855 blade server. Each blade has 8G of memory and
a 300G local disk, and each execution was carried out on a single core. Each of the
considered benchmarks was run for about 48 hours.



Seq.|Lowest LS E|median time|Lowest LNS E time|Improvement %
Hl1 -68 114 sec. -69| 5.32 sec. 1.47
H2 -69 265 sec.| Not improv. 0
H3 -68 72 sec. -71]28.64 sec. 441
H4 -66 44 sec. -69]26.55 sec. 4.55
H5 -66 53 sec. -67| 4.18 sec. 1.52
H6 =70 149 sec.| Not improv. 0
H7 -68 8 sec. -69| 9.86 sec. 1.47
H8 -64| 10 milisec. -65| 18.3 sec. 1.56
H9 -69 89 sec.| Not improv. 0
H10 -66 30 sec. -67(9.74 mins. 1.52

Table 1. Results for the Harvard instances.

Seq.|Native E|Lowest LS E|median time|Lowest LNS E time|Improvement %
S1 -357 -325| 15.98 min. -346| 1.61 hour 6.46
S2 -360 -315| 19.18 min. -343| 4.48 hours 8.89
S3 -367 -307| 1.14 min. -341|54.18 mins. 11.07
S4 -370 -318| 13.14 min. -340| 7.4 hours 6.92
R1 -384 -284  2.09 min. -337| 1.3 hours 18.66
R2 -383 -290(  18.8 min. -325| 7.67 hours 12.07
R3 -385 -282|  6.45 min. -317| 2.08 hours 12.41

Table 2. Results for the Will’s instances.

6.1 The Harvard Instances

Reference [49] contains a comparison of several methods to fold 10 different proteins,
called the “Harvard instances”, on the cubic lattice. The cubic lattice has been heavily
studied as pointed out in the introduction, but the FCC lattice has been shown to admit
the tightest packing of spheres [15], indicating that it allows for more complex 3D
structures. The first results for these instances on the FCC lattice were presented in [13]
and confirmed that the FCC lattice allows for structures with much lower energy than
the cubic lattice. Table 1 depicts the results of our hybrid algorithm, starting with a
local-search algorithm and improving the result with LNS. Note that the energy shown
in the table corresponds to minus the number of HH contacts. The LNS step improves
7 out of 10 solutions quickly. Since no complete search algorithms have been applied
to these instances on the FCC lattice, the energy of the optimal structure is not known.
However, given the consistency in the energies of all the sequences (which all have 48
aminoacids and 24 hydrophobic aminoacids), it is probably the case that these results
are near-optimal.

6.2 Other Instances

We also evaluated our algorithm with the only FCC foldings available in the literature.
Table 2 depicts a comparison for 7 instances found in [46]. All instances contain 100 H
aminoacids, and the R instances have a total of 200 aminoacids, while the S instances



(a) Lowest E. Config. (LS) (b) Low. E. Con. (LS+LNS) (c) Native Configuration

Fig. 4. Lowest energy configurations achieved for Will’s instance S2.

range between 130 and 180 aminoacids. Table 2 also shows optimal energies for these
instances.® The results demonstrate that LNS significantly improves the local search al-
gorithm, with improvements ranging from 6% to 18%. The largest improvements occur
on the R instances, which is explained by the lower quality of local search for these in-
stances. The results on the S instances are within 8% of the optimal solution, while the
algorithm is within 18% of the optimal solutions on the R instances. Figure 4 depicts
a 3D view of the best configuration found for S2 for the local search in [13], the LNS
algorithm, and the native state.

It is also important to stress how the optimal solutions were obtained in [46]. Will’s
algorithm solves a substantially different problem which consists of threading a se-
quence into a pre-calculated H core. The algorithm relies on a set of precomputed (op-
timal and suboptimal) cores and tries to map the protein on these cores. Such threading
for the protein may not exist for any of these cores or may not be found within the
given time limit, in which case the threading algorithm may not provide any solution.
There is thus a fundamental conceptual difference between the algorithm presented in
this paper and the hydrophobic-core constraint-programming method of Will and Back-
ofen [45, 8], which can be captured using the concepts of Monte-Carlo and Las Ve-
gas algorithms from theoretical computer science [36]. Monte-Carlo algorithms always
converge, but have a (small) probability of error in the solution proposed; in contrast,
Las Vegas algorithms always return the correct solution, but have a (small) probability
of not converging. By analogy, our approach (LNS with constraint programming) is
akin to a Monte-Carlo method, in that an approximate solution is always returned. In
contrast, hydrophobic-core constraint programming is akin to a Las Vegas method, in
that any solution returned is an exact (optimal) solution; however, in many cases, the
hydrophobic-core method fails to return any answer. Reference [46, p. 129] includes a
table indicating that the threading algorithm only solves 50% of the instances with an H
core of size 100 within the given time limit. The instances for which they report a solu-
tion are those which can be threaded in an optimal H core. These instances are heavily
biased against our algorithm and none of the other sequences are available. Thus, a
fair comparison of the algorithms is not possible at this stage, since only the above 7
sequences are available and they belong to the 50% the threading algorithm can solve.

% Personal Communication with Sebastian Will.



(a) Behaviour over 5 hours of LS + LNS (b) Zoom on LNS behaviour

Fig. 5. Algorithm Behavior over Time for Will’s instance S2.

It is also important to mention that Will’s algorithm relies heavily on the definition
of energy and it is hard to generalize to other energy models. Our algorithm solves the
problem ab-initio and has the potential of obtaining near-optimal solution for general
proteins. In addition, our approach is completely general and may encompass different
notions of energies at very small cost of implementation. Moreover, some preliminary
results indicate that it can be applied to problems such as RNA structure prediction with
minimal modifications.

Finally, figure 5 depicts the improvement of the solutions of our algorithm over time.
The algorithm exhibits a steep descent, followed by a long plateau, and then another
steep descent. It is interesting to see how the local search, the LNS (on their own) and
the complete process (local search + LNS), they all present the same behavior.

7 Conclusions and Future Work

This paper presented an LNS algorithm for finding high-quality self avoiding walk for
the Hydrophobic-Polar (HP) energy model on the Face Centred Cubic (FCC) lattice.
The algorithm relies on a local search initial solution which is then improved by a
constraint-programming LNS strategy. Experimental results on the standard Harvard
instances show improvements over previously presented results, while significant im-
provements are achieved in other larger instances. The result shows work shows that
the hybridization of local search and constraint programming has great potential to ap-
proach the highly combinatorial problem of structure prediction.
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