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Combinatorics of Saturated Secondary
Structures of RNA

P. CLOTE

ABSTRACT

Following Zuker (1986), a saturated secondary structure for a given RNA sequence is a
secondary structure such that no base pair can be added without violating the definition
of secondary structure, e.g., without introducing a pseudoknot. In the Nussinov-Jacobson
energy model (Nussinov and Jacobson, 1980), where the energy of a secondary structure
is −1 times the number of base pairs, saturated secondary structures are local minima in
the energy landscape, hence form kinetic traps during the folding process. Here we present
recurrence relations and closed form asymptotic limits for combinatorial problems related to
the number of saturated secondary structures. In addition, Python source code to compute
the number of saturated secondary structures having k base pairs can be found at the web
servers link of bioinformatics.bc.edu/clotelab/.
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1. INTRODUCTION

In recent years, biologists have discovered that ribonucleic acid (RNA) molecules play a surprising
and important regulatory role in the cell. Apart from well-known messenger RNA and transfer RNA, it

is now understood that RNA performs diverse biological functions, including retranslation of the genetic
code [selenocysteine insertion (Böck et al., 1991; Heider et al., 1992), ribosomal frameshift (Moon et al.,
2004)], post-transcriptional regulation via small interfering RNA and microRNA (Tuschl, 2003; Lim et al.,
2003). In addition, there are conformational switches (Voss et al., 2004), metabolite-sensing riboswitches
which interact with small ligands and up- or down-regulate certain genes (Barrick et al., 2004) and small
nucleolar RNAs which guide the methylation of specific ribosomal nucleotides (Schattner et al., 2004).

The function of the RNA examples just cited is known to depend on RNA 3-dimensional structure, which
itself is largely determined by the secondary structure (Banerjee et al., 1993). Secondary structure, defined
in Section 2, is essentially a well-balanced parenthesis expression in the alphabet {‘(’, ‘)’, ‘.’} consisting
of left and right parenthesis together with a dot. Just as the Catalan numbers correspond to the number
of balanced parenthesis expressions (without dot), the Motzkin numbers correspond to the number of
balanced parenthesis expressions with dot. The number S(n) of secondary structures on sequence 1, . . . , n,
was asymptotically computed by Stein and Waterman (1979), by using generating function theory; see also
Chapter 13 of Waterman (1995).

The recurrence relations developed by Stein and Waterman (1979) have been extended by (Nussinov
and Jacobson, 1980) and especially by Zuker and Stiegler (1981) to dynamic programming algorithms
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which compute the minimum free energy (mfe) secondary structure of a given RNA sequence. Most
current algorithmic work on RNA secondary structure concerns the thermodynamic equilibrium mfe struc-
ture [mfold (Zuker and Stiegler, 1981; Zuker, 2003), RNAfold (Hofacker et al., 1994), RNAstructure
(Mathews et al., 2000)], the low energy ensemble of structures [Sfold (Ding and Lawrence, 2003),
RNAsubopt (Wuchty et al., 1999)], multiple sequence/structure alignment [Foldalign (Havgaard et al.,
2005), Dynalign (Mathews and Turner, 2002)].

Before continuing, we must insert a remark concerning nomenclature. In 1986, Zuker (1986) introduced
the concept of saturated secondary structure, defined to be maximal with respect to inclusion of base
pairs; i.e., secondary structure S for a given RNA sequence is saturated if no base pairs can be added
without violating the definition of secondary structure—see Definition 1. In 2001, Evers and Giegerich
(2001) used the term saturated secondary structure to describe a related, but distinct notion; they defined
secondary structure as saturated if “stacking regions extend maximally in both directions” and there are
no isolated base pairs (i.e., not adjacent to a stacked base pair). With this definition, given 17 nt. RNA
sequence GGGGGUUUUUGGGCCCC, the secondary structure ((......))....... consisting of only base pairs
(1, 10), (2, 9) is saturated in the sense of Evers and Giegerich, though not in the sense of Zuker; indeed,
this secondary structure is not maximal with respect inclusion, since the structure ((......))((...))
consisting of base pairs (1, 10), (2, 9), (11, 17), (12, 16) properly includes it.

While the intent of Evers and Giegerich (2001) was clearly to extend Zuker’s notion of saturated
secondary structure from the Nussinov and Jacobson (1980) energy model to the Turner energy model
(Mathews et al., 1999; Xia et al., 1999), this is technically not quite the case. Consider the 11 nt. RNA
sequence AGGGGUUUUUU, having secondary structure .((.....)). consisting of base pairs (2, 10), (3, 9).
Using version 1.4 of RNAeval from Vienna RNA Package (Hofacker et al., 1994), the free energy for this
secondary structure is +5.2 kcal/mol. While this secondary structure is not saturated in the sense of Evers
and Giegerich, the structure .(((...)))., obtained by adding the base pair (4, 8), is indeed saturated
in the sense of Evers and Giegerich. However, using RNAeval, the free energy for this latter structure is
+5.3 kcal/mol; i.e., by adding a base pair adjacent to a stack, the free energy, according to the Turner
energy model, goes up rather than down.

Aware of Evers and Giegerich (2001), though not of Zuker (1986), we defined, in Clote (2005a), the
notion of locally optimal secondary structure, defined identically as in Zuker’s notion of saturated structure.
In Clote (2005a, 2005b), we additionally defined k-locally optimal structures to be those which are locally
optimal, yet which have k base pairs fewer than that of the Nussinov-Jacobson optimal structure. Given
the historical precedence of Zuker’s notion of saturation, we now rename k-locally optimal structures to be
k-saturated.1 The main result of Clote (2005a 2005b), was a dynamic programming algorithm running in
O(n5) time and O(n3) space to compute the number of k-saturated secondary structures for any given RNA
sequence of length n. With respect to the Nussinov-Jacobson energy model, saturated secondary structures,
defined in the next section, are local minima in the Nussinov-Jacobson energy surface, and hence constitute
kinetic traps in the folding process, assuming that an RNA molecule finds its mfe structure by a Markovian
process of addition and deletion of base pairs.

Having clarified previous confusion in the literature concerning the term of saturated secondary structure,
we now briefly mention additional results related to the topic of this paper. In Cupal et al. (1996), a
O(n3m2) time and O(n2m) space algorithm was described to compute the density of states of RNA
secondary structures for a given RNA molecule. Here, n is the length of the RNA sequence, and m is the
number of energy bins. In Hofacker et al. (1998), asymptotic limits were established for the number of
base pairs, number of hairpins, etc. with respect to the collection of all secondary structures of random
RNA. In Evers and Giegerich (2001), a dynamic programming algorithm was given to compute the number
of secondary structures which are saturated in the sense of Evers and Giegerich, given any RNA sequence.
In Nebel (2002), by using generating function techniques, closed form expressions for the asymptotic
number of base pairs, hairpins, etc. were given, where the asymptotic limit was taken over all secondary
structures of random RNA, In Clote et al. (2005b), an asymptotic limit was proved to exist for the number

1The notation LO(n, k) is introduced later in this paper to represent the number of saturated secondary structures
on a sequence of length n having k base pairs. Symbols such as LO, an acronym for locally optimal, are kept in the
formal development, since they were used in a draft of this manuscript prior to knowledge of Zuker (1986).
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of base pairs in the Nussinov-Jacobson minimum free energy structure of random RNA. This result was
extended in Clote et al. (2005a) to an asymptotic limit of the Turner minimum free energy of random
RNA; moreover asymptotic limits were established for all higher order moments for the distribution of
free energy in kcal/mol for the Turner minimum free energy secondary structures of random RNA. Note
that while Hofacker et al. (1998) and Nebel (2002) concern asymptotic limits taken over all secondary
structures of random RNA, the Clote et al. (2005b, 2005a) studies concern asymptotic limits with respect to
the minimum free energy structure of random RNA. Although unrelated to asymptotic properties of random
RNA, we mention the recent article (Clote et al., 2005) which describes new algorithms to compute the
minimum free energy and partition function over all k-point mutants of a given RNA sequence.

In this paper, we employ generating function methods to provide an asymptotic limit for the number
of saturated secondary structures, as well as the number of 0-saturated and 1-saturated structures. Sec-
tion 2 presents the formal definition of secondary structure, saturated secondary structure, and introduces
necessary notation to formalize our results. In Section 3, recurrence relations are given to compute the
number LO(n, k) [resp. MO(n, k)] of saturated structures for a sequence of length n, with k base pairs
[resp. additionally with no visible positions]. By dynamic programming, these relations give rise to an
algorithm running in time O(n4) and space O(n3) to compute LO(n, k) and MO(n, k) (source code in
Python is available at the web servers link of bioinformatics.bc.edu/clotelab/). Section 4 establishes a func-
tional identity for the generating functions associated with the number LO(n) [resp. MO(n)] of saturated
secondary structures for a sequence of length n. Subsequent application of a general tool from generating
function theory, known as Bender’s Theorem (Bender, 1974; Meir and Moon, 1989), yields an asymptotic
limit for LO(n) and MO(n).2 While Section 3 yields an algorithm to compute the number LOk(n) of
k-saturated secondary structures for a sequence of length n, it is as yet unclear whether LOk(n) is small
(polynomial in n) or large (exponential in n) for fixed values of k. In Section 5, we settle this question
for the most important values k = 0, 1. From a physics standpoint, where saturated secondary structures
form kinetic traps in the folding process, 0-saturated structures have energy close to that of the minimum
free energy structure. Knowledge of the number and distribution of saturated secondary structures is thus
important to understand a simplified model for RNA folding.

2. NOTATION

We begin by recalling the formal definition of a secondary structure for a given RNA sequence.

Definition 1. A secondary structure S on RNA sequence s1, . . . , sn is defined to be a set of ordered
pairs (i, j), such that 1 ≤ i < j ≤ n and the following are satisfied.

1. Watson-Crick or GU wobble pairs: If (i, j) belongs to S, then pair (si, sj ) must be one of the following
canonical basepairs: (A, U), (U, A), (G, C), (C, G), (G, U), (U, G).

2. Threshold requirement: If (i, j) belongs to S, then j − i > θ , where θ , generally taken to be equal
to 3, is the minimum number of unpaired bases in a hairpin loop; i.e., there must be at least θ unpaired
bases in a hairpin loop.

3. Nonexistence of pseudoknots: If (i, j) and (k, �) belong to S, then it is not the case that i < k < j < �.
4. No base triples: If (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j) belong to S, then i = k.

In this paper, we are interested in the asymptotic number of saturated secondary structures of a sequence
of length n, in the same sense that Stein and Waterman (1979) [see also Chapter 13 of Waterman (1995)]
provided an asymptotic limit for the number of all secondary structures of a sequence of length n. For
such purposes, we assume that any position i can base-pair with any any position j , provide only that

2We are indebted to an anonymous referee for pointing out that a counterexample to Bender’s Theorem was given
in Canfield (1984), and that Meir and Moon (1989) subsequently proved a result, based on Bender’s underlying idea,
which suffices for our asymptotic limit result in Section 4. Note that the result of Stein and Waterman (1979) on
asymptotic number of secondary structures was similarly obtained using Bender’s theorem. It follows that similar care,
using Meir and Moon’s correction of Bender’s theorem, is necessary for the Stein-Waterman result.
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|j − i| > θ ; i.e., condition (1) of Definition 1 is dropped. From this point on, we will speak of a secondary
structure S on the sequence 1, . . . , n, rather than on the nucleotide sequence s1, . . . , sn. For brevity, we
may say that S is a secondary structure on n. Since the nature of the nucleotide or base si located at
position i is not pertinent to the combinatorial study in this paper, by abuse of notation, we may say that
i is a base.

A position i ∈ {1, . . . , n} is visible in a secondary structure S if for all base pairs (x, y) ∈ S, it is not
the case that x ≤ i ≤ y. A visible position is said to be external to all base pairs of S. The base pair
(i, j) ∈ S is an external base pair in S if there is no base pair (x, y) ∈ S, such that x < i < j < y. If S

is a secondary structure on sequence 1, . . . , n, and 1 ≤ x ≤ y ≤ n, then the restriction of S to {x, . . . , y},
denoted by S |̀ {x, . . . , y}, is defined by {(i, j) ∈ S : x ≤ i < j ≤ y}.

We now come to the main notion studied in this paper. A secondary structure S for sequence 1, . . . , n is
saturated if no base pairs can be added without violating the definition of secondary structure, by adding a
pseudoknot for instance, i.e., for any 1 ≤ i < j ≤ n, if (i, j) �∈ S then S ∪ {(i, j)} is not a valid secondary
structure. A secondary structure S is defined to be k-saturated, if S is saturated and additionally S contains
k fewer base pairs than the maximum possible number of base pairs.

Define mbpθ(n) = �n−θ
2 �. It is easy to see that the structure S0 = {(k, n + 1 − k) : 1 ≤ k ≤ �n−θ

2 �} has
the maximum number mbpθ(n) of base pairs, hence is 0- saturated. Thus it follows that mbpθ(n) is the
maximum number of base pairs on sequence 1, . . . , n. More generally, a saturated secondary structure S

on n is k-saturated, if |S| = mbpθ(n) − k.
Let LO(n, k) [resp., MO(n, k)] denote the number of saturated secondary structures on sequence 1, . . . , n,

which have k base pairs [resp. and there are no visible bases]. At times, we may ambiguously refer to
LO(n, k) and MO(n, k) as sets of secondary structures, rather than the cardinality of these sets. With this
ambiguous use of term, structures in MO(n, k) are simply those in LO(n, k) which additionally have no
visible bases.

Let LOk(n) denote the number (or ambiguously, the set) of k-saturated secondary structures on 1, . . . , n,
and let MOk(n) denote the number (or ambiguously, the set) of k-saturated secondary structures on 1, . . . , n,
such that there are no visible bases. It follows from definitions that LOk(n) = LO(n, mbpθ (n) − k) and
MOk(n) = MO(n, mbpθ (n) − k).

Recall again that throughout this paper, we assume that any position i can base-pair with any other
position j , provided only that |j − i| > θ . The value θ is a fixed constant, often explicitly omitted when
clear from context. Results in Section 3 hold for arbitary θ ≥ 1.

3. COMPUTING SATURATED STRUCTURES WITH k BASE PAIRS

In this section, we provide recurrence relations to compute the number of k-saturated secondary struc-
tures. In Clote (2005a), a substantially more complicated algorithm is given, which directly computes by
dynamic programming the number of k-saturated secondary structures for a given RNA sequence s1, . . . , sn
(respecting requirement 1 of Definition 1).

To study asymptotics, in this paper we have dropped requirement 1 of Definition 1, thus obviating the
use of two complicated visibility predicates necessary for the algorithm of Clote (2005a). Additionally, we
follow a suggestion of R. Bundschuh and D. Mathews (personal communication), and first compute the
number of saturated secondary structures having k base pairs. It then follows that the number LOk(n) of
k-saturated secondary structures on a sequence of length n is equal to LO(n, mbpθ (n) − k).

While it is biologically unrealistic to drop requirement 1 of Definition 1, by doing so we obtain elegant
asymptotic results, which provide information on the potential kinetic traps in the RNA folding process.

Fix θ ≥ 1. Throughout the remainder of this section, we suppress explicit notational reference to θ .
We now define M(n, k) and L(n, k) simultaneously by double induction on n, k; i.e., outermost induction
on n, and for n fixed by inner induction on k. Thus after having defined M(n, k) and L(n, k) for all k by
induction on k, we define M(n+ 1, 0), L(n+ 1, 0), M(n+ 1, 1), L(n+ 1, 1), etc. In Theorem 2, we show
that LO(n, k) = L(n, k) and MO(n, k) = M(n, k). Using the recurrence relations for M(n, k) and L(n, k),
by dynamic programming it is straightforward to compute numerical values for the number LO(n, k) [resp.
MO(n, k)] of saturated secondary structures on n having k base pairs [resp. saturated secondary structures
on n with no visible positions and having k base pairs].
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FIG. 1. Contribution to M(n, k) in Equation (1), namely M(i − 1, k0) · L(n − i − 1, k − k0 − 1), for some 1 ≤ i ≤
n−θ −1. Note that if i = 1, then M(i −1, k0) is 0 unless k0 = 0, in which case M(i −1, k0) ·L(n− i −1, k −k0 −1)

equals L(n − 2, k − 1), i.e., the contribution when there is a base bair (1, n).

For the base case, define

M(n, k) =

⎧⎪⎨
⎪⎩

1 if n = 0, k = 0

0 if 1 ≤ n ≤ θ + 1, k = 0

0 if k ≥ mbpθ(n)

and for the inductive case, define

M(n, k) =
n−θ−1∑

i=1

mbpθ (i−1)∑
k0=0

M(i − 1, k0) · L(n − i − 1, k − k0 − 1). (1)

Figure 1 depicts a typical term of Equation (1), where the existence of a base pair (i, n) divides the set
MO(n, k) of secondary structures into two regions. The contribution from the left region is MO(i − 1, k0)

for some k0 ∈ {0, . . . , mbpθ (i−1)}, while the contribution from the right region is LO(n−i−1, k−k0−1).
There are k0 base pairs in the left region, k − k0 − 1 base pairs in the right region, and one base pair
contributed by base pair (i, n). Since the left and right regions are independent, the terms MO(i − 1, k0)

and LO(n − i − 1, k − k0 − 1) are multiplied. For the base case of L(n, k), define

L(n, k) =
{

1 if 0 ≤ n ≤ θ + 1, k = 0

0 if k ≥ mbpθ(n)

and for the inductive case, define

L(n, k) =
n−1∑

r=n−θ−1

M(r, k) +
n−θ−1∑

i=1

mbpθ (i−1)∑
k0=0

L(i − 1, k0) · L(n − i − 1, k − k0 − 1). (2)

The set LO(n, k) of saturated secondary structures on n, having k base pairs, can be divided into two
groups: (i) those, in which position n is not base-paired, and (ii) those, in which n is base-paired. In the
former case, if r is the rightmost base-paired position, then r ≥ n−θ −1; indeed, otherwise, r < n−θ −1,
and the base pair (r + 1, n) could be added since n − 1 − (r + 2) + 1 = n − r − 2 ≥ θ satisfies condition
(2) of Definition 1. The left panel of Figure 2 depicts the case (i).

FIG. 2. (i) Left panel: Contribution to L(n, k) by the first term of Equation (2), namely M(r, k), for some n−θ −1 ≤
r ≤ n − 1. Note that in this case r must be strictly less than n, for otherwise, there would be a base pair (1, n), which
case is considered in the second term of Equation (2). (ii) Right panel: Contribution to L(n, k) by the second term
of Equation (2), namely L(i − 1, k0) · L(n − i − 1, k − k0 − 1), for some 1 ≤ i ≤ n − θ − 1. Note that if i = 1, then
L(i − 1, k0) is 0 unless k0 = 0, in which case L(i − 1, k0) · L(n − i − 1, k − k0 − 1) equals L(n − 2, k − 1), i.e., the
contribution when there is a base bair (1, n).
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The right panel of Figure 2 depicts the case (ii), where the base pair (i, n) divides every remaining
structure in LO(n, k) into two regions. The contribution from the left region is LO(i − 1, k0) for some
k0 ∈ {0, . . . , mbpθ (i − 1)}, while the contribution from the right region is LO(n − i − 1, k − k0 − 1).
There are k0 base pairs in the left region, k − k0 − 1 base pairs in the right region, and one base pair
contributed by base pair (i, n). Since the left and right regions are independent, the terms LO(i − 1, k0)

and LO(n − i − 1, k − k0 − 1) are multiplied. Finally, an inductive proof, carried out in Theorem 2, then
shows that MO(n, k) = M(n, k) and LO(n, k) = L(n, k) for all n, k.

Theorem 2. For all 0 ≤ k ≤ n, it is the case that MO(n, k) = M(n, k) and LO(n, k) = L(n, k).

Proof. We establish LO(n, k) = L(n, k) and MO(n, k) = M(n, k) by by simultaneous double induction
on n, k.

Base Case. When 0 ≤ n ≤ θ + 1, due to requirement 2 of Definition 1, the only secondary structure is
the empty structure. This structure is saturated and has no base pairs, so LO(n, 0) = 1. Since there are no
structures having any base pairs, LO(n, k) = 0 for k > 0. Additionally, all bases are visible in the empty
structure, if 1 ≤ n ≤ θ + 1, then MO(n, k) = 0 for all k. There are at most mspθ(n) = �n−θ

2 � base pairs
in a secondary structure on sequence 1, . . . , n, so LO(n, k) = 0 = MO(n, k) if k > msp(n).

Inductive Case. By the induction hypothesis, assume that MO(n′, k′) = M(n′, k′) and LO(n′, k′) =
L(n′, k′), for all n′ < n and all k′. The set MO(n, k) of all saturated secondary structures on sequence
1, . . . , n, which have k base pairs and which have no visible base, can be partitioned into MO(n, k) =
S1 ∪ S2, where S1 = {S ∈ MO(n, k) : (1, n) ∈ S}, S2 = {S ∈ MO(n, k) : ∃i[1 < i < n − θ ∧ (i, n) ∈
S ∧ S |̀ {1, . . . , i − 1} ∈ MO ∧ S |̀ {i + 1, . . . , n − 1} ∈ LO}. This is easily seen as follows.

Let S be a saturated secondary structure on sequence 1, . . . , n, which has no visible bases. Then one of
the following two cases holds.

Case 1. The base pair (1, n) ∈ S and S0 = S |̀ {2, . . . , n − 1} is saturated and has k − 1 bases. Note
that S0 may have visible bases, which however are rendered invisible in S because of the external base
pair (1, n).

Case 2. For some 1 < i < n − θ , the base pair (i, n) ∈ S and S0 = S |̀ {1, . . . , i − 1} has k0 base pairs,
S1 = S |̀ {i + 1, . . . , n − 1} has k1 base pairs, where k = k0 + k1 + 1, and S0 ∈ MO and S1 ∈ LO. Note
that S1 may have visible bases, since these are made invisible in S because of the external base pair (i, n).

The contribution for Case 1 is given by L(n − 2, k − 1), while that of Case 2 is given by
∑n−θ−1

i=2∑mbpθ (i−1)

k0=0 M(i − 1, k0) · L(n − i − 1, k − k0 − 1). As discussed in Figure 1, when i = 1, M(i − 1, k0) is
nonzero only when k0 = 0, in which case M(i −1, k0) ·L(n− i −1, k−k0 −1) = M(0, 0) ·L(n−2, k−1).
Thus both Case 1 and Case 2 are taken into account in Equation (1). This establishes the inductive case
that MO(n, k) = M(n, k). We now establish that LO(n, k) = L(n, k).

The set LO(n, k) of all saturated secondary structures on sequence 1, . . . , n, which have k base pairs
can be partitioned into LO(n, k) = S1 ∪S2, where S1 = {S ∈ LO(n, k) : (1, n) ∈ S}, S2 = {S ∈ LO(n, k) :
∃i[1 < i < n − θ ∧ (i, n) ∈ S ∧ S |̀ {1, . . . , i − 1} ∈ LO ∧ S |̀ {i + 1, . . . , n − 1} ∈ LO}. This is easily seen
as follows.

Let S be a saturated secondary structure on sequence 1, . . . , n. Then one of the following three cases
holds.

Case 1. The base pair (1, n) ∈ S and S |̀ {2, . . . , n − 1} is saturated and has k − 1 bases. Note that S0
may have visible bases, which however are rendered invisible in S because of the external base pair (1, n).

Case 2. The bases r +1, . . . , n are all visible in S, for some n− θ −1 ≤ r < n, and there are no visible
bases in S0 = S |̀ {1, . . . , r}. Thus S0 ∈ MO and must have k base pairs.

Case 3. The base pair (i, n) ∈ S and S0 = S |̀ {1, . . . , i−1} has k0 base pairs, S1 = S |̀ {i+1, . . . , n−1}
has k1 base pairs, where k = k0 + k1 + 1, and S0 ∈ LO and S1 ∈ LO. Note that S0 may have visible bases,
which then remain visible in S.

The contribution for Case 1 is given by L(n − 1, k − 1), while that of Case 2 is given by M(r, k), for
r ∈ {n−θ −1, . . . , n−1}, and that of Case 3 by

∑n−θ−1
i=2

∑mbpθ (i−1)

k0=0 L(i −1, k0) ·L(n− i −1, k−k0 −1).
As discussed in Figure 2, when i = 1, L(i − 1, k0) is nonzero only when k0 = 0, in which case
L(i − 1, k0) ·L(n− i − 1, k − k0 − 1) = L(0, 0) ·L(n− 2, k − 1). Thus Cases 1, 2, 3 are taken into account
in Equation (2).

This establishes the inductive case that LO(n, k) = L(n, k), and so the theorem is proved.
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4. ASYMPTOTIC NUMBER OF SATURATED STRUCTURES

In this section, we establish a functional identity for generating functions associated with the number
LO(n, k) [resp. MO(n, k)] of saturated secondary structures on n [resp. having no visible positions] with
exactly k base pairs. This then implies our main asymptotic limit result, Theorem 9. Though stated for
θ = 1, it nevertheless is clear how to generalize all results in this section for any fixed θ > 1.

For a fixed value of θ , define an(θ) to be the number of distinct saturated secondary structures for a
sequence of length n. Additionally, define bn(θ) to be the number of distinct saturated secondary structures
for a sequence of length n, with no visible positions. Clearly, by definition, an(θ) = ∑

k LO(n, k) and
bn(θ) = ∑

k MO(n, k) (Fig. 3).

Proposition 3. For non-negative integer n, the following recurrence relation holds:

an(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ n ≤ θ + 1

n−θ−1∑
k=1

ak−1(θ) · an−k−1(θ) +
θ+1∑
k=1

bn−k else
(3)

Proof. The proof is by induction on n. Define a0 = 1. This allows us to simplify the recurrence relation
in the else-clause of Equation (3).

For 1 ≤ n ≤ θ + 1, since the threshold requirement, clause (2) of Definition 1, requires at least θ

unpaired bases in a hairpin loop, the only possible secondary structure for a sequence of length n is the
empty set. Due to the threshold requirement, no base pairs can be added to the empty structure for a
sequence of length n, where 0 ≤ n ≤ θ + 1, the empty structure is saturated. Thus for 1 ≤ n ≤ θ + 1, we
have an = 1.

When n > θ + 1, partition the collection LO(n) of saturated secondary structures for a sequence of
length n into two disjoint sets, LO(n) = S0 ∪ S1, corresponding to the following cases.

Case 1. S0 is the set of saturated secondary structures on a sequence of length n, where n does not
base pair. Let S ∈ S0. In this case, let k0 ∈ {0, . . . , θ} be the largest value k such that each position
n − k, n − k + 1, . . . , n is visible. Note that if k > θ and n − k, . . . , n are all visible in S, then the base
pair (n − k + 1, n) could be added to S, and so S would not be saturated. By choice of k0, the restriction
S |̀ {1, . . . , k0 − 1} of S to the sequence 1, . . . , k0 − 1, has no visible positions.

Such restrictions account for the term bn−(k0+1), hence altogether Case 1 accounts for

θ∑
k0=0

bn−(k0+1) =
θ+1∑
k=1

bn−k

many saturated secondary structures on {1, . . . , n}.
Case 2. S1 is the set of saturated secondary structures such that position n is base paired. Let S ∈ S1, and

let k0 ∈ {1, . . . , n − θ − 1} be such that (k0, n) ∈ S. Since Item (3) of Definition 1 disallows pseudoknots,
S consists of the base pair (k0, n), together with S|{1, . . . , k0 − 1} and S|{k0 + 1, . . . , n− 1}. Applying the
induction hypothesis to each of the latter, it follows that there are ak0−1 many saturated secondary structures
on {1, . . . , k0−1} and an−1−(k0+1)+1 = an−k0−1 many saturated secondary structures on {k0+1, . . . , n−1}.
This accounts for the term

n−θ−1∑
k=1

ak−1(θ) · an−k−1(θ)

of Equation (3).
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FIG. 3. (i) Left panel: Ratio of the number LO(n) of saturated secondary structures on a sequence of length n

divided by the asymptotic value a∗
n . (ii) Right panel: Ratio of the number S(n) of secondary structures on a sequence

of length n divided by the asymptotic value S∗(n). Convergence is rapid. Superposition of both curves suggests the
same rate of convergence of an

a∗
n

→ 1 and S(n)
S∗(n)

→ 1, although this should be considered a conjecture in the absence

of information about precise rate of convergence.

Proposition 4. For non-negative integer n, the following recurrence relation holds:

bn(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if n = 0

0 if 1 ≤ n ≤ θ + 1

n−θ−1∑
k=1

bk−1(θ) · an−k−1(θ) else

(4)

Proof. The proof is by induction on n. Define b0 = 1. This allows us to simplify the recurrence relation
in the else-clause of Equation (4).

For 1 ≤ n ≤ θ + 1, since the threshold requirement requires at least θ unpaired bases in a hairpin loop,
the only possible secondary structure for a sequence of length n is the empty set. However, since n is
positive, there are visible positions. It follows that there are no saturated structures on a sequence of length
n, having no visible positions. Thus bn = 0 for 1 ≤ n ≤ θ + 1.

Suppose that n > θ+1, and that S is a saturated secondary structure on a sequence of length n, which has
no visible positions. Let k0 ∈ {1, . . . , n− θ −1} be such that (k0, n) ∈ S. By nonexistence of pseudoknots,
it follows that S consists of the base pair (k0, n) together with the restrictions S |̀ {1, . . . , k0 − 1} and
S |̀ {k0 + 1, . . . , n − 1}.

By the induction hypothesis, there are bk0−1 many saturated secondary structures on {1, . . . , k0 − 1}
with no visible positions. Additionally, there are an−1−(k0+1)+1 = an−k0−1 many saturated secondary
structures on {k0 + 1, . . . , n − 1}, where there may or may not be any visible positions. Hence altother,
there are

∑n−θ−2
k=1 bk−1(θ) · an−k−1(θ) many saturated secondary structures on {1, . . . , n} with no visible

positions.

At this point, we take the minimum number θ of unpaired bases in a hairpin loop to be 1. Small
modifications of the following can be undertaken for the general case of arbitrary fixed value θ . When
θ = 1, we write an resp. bn in place of an(θ), resp., bn(θ). Define the variables y, z and generating
functions f, g as follows:

y = f (x) =
∞∑

n=0

anx
n (5)

z = g(x) =
∞∑

n=0

bnx
n. (6)
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Proposition 5. x2yz = z − 1 + x2z.

Proof.

xy =
∞∑

n=0

anx
n+1 =

∞∑
n=1

an−1x
n;

xz =
∞∑

n=0

bnx
n+1 =

∞∑
n=1

bn−1x
n.

Thus

x2yz =
( ∞∑

n=1

an−1x
n

)
·
( ∞∑

n=1

bn−1x
n

)
=

∞∑
n=2

(
n−1∑
k=1

bk−1 · an−k−1

)
xn

=
∞∑

n=2

(bn + bn−2 · a0) xn =
∞∑

n=2

(bn + bn−2) xn

=
∞∑

n=2

bnx
n +

∞∑
n=2

bn−2x
n = (z − b1x − b0) + x2z

= z − 1 + x2z

The first part of line is by definition, and the second part of line 1 follows by distributing the sums
according to power of x. In the second line, we use the fact that bn = ∑n−θ−1

k=1 bk−1(θ) · an−k−1(θ) from
Proposition 4 and that a0 = 1 from Proposition 3. By distributing the sums and applying the definition of
variable z, the result follows.

Proposition 6. x2y2 = y(x2 + 1) − z(x2 + x) − 1.

Proof. Since

xy =
∞∑

n=0

anx
n+1 =

∞∑
n=1

an−1x
n

we have

x2y2 =
( ∞∑

n=1

an−1x
n

)
·
( ∞∑

n=1

an−1x
n

)
=

∞∑
n=2

(
n−1∑
k=1

ak−1 · an−k−1

)
xn

=
∞∑

n=2

(
an−2 · a0 +

n−2∑
k=1

ak−1 · an−k−1

)
xn

=
∞∑

n=2

(
an−2 + an −

2∑
k=1

bn−k

)
xn

=
∞∑

n=2

(an + an−2 − bn−1 − bn−2) xn
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=
∞∑

n=2

anx
n +

∞∑
n=2

an−2x
n −

∞∑
n=2

bn−2x
n −

∞∑
n=2

bn−1x
n

= (y − a1x − a0) + x2y − x2z − x(z − b0)

= (y − x − 1) + x2y − x2z − x(z − 1)

= y(x2 + 1) − z(x2 + x) − 1

The first equation follows by definition, telescoping and rearranging sums in terms of powers of x, The
third line uses the facts that a0 = 1 and

an =
n−2∑
k=1

ak−1 · an−k−1 +
2∑

k=1

bn−k

from Proposition 3—here, recall that we assume θ = 1. All remaining lines are straightforward to justify.
It follows that x2y2 = y(x2 + 1) − z(x2 + x) − 1.

Note that it immediately follows from Proposition 5 that

z = 1

x2 − x2y + 1
. (7)

Let

F(x, y) = x2y2 − y(x2 + 1) + x2 + x

x2 − x2y + 1
+ 1 + y. (8)

Rewriting, we have

F(x, y) = 1 + x(1 + x)

1 − x2(y − 1)
− x2y + x2y2. (9)

Note that

∂

∂y
F (x, y) = x2

(
−1 + x(1 + x)

(−1 + x2(y − 1))2
+ 2y

)
. (10)

Additionally, note that

∂

∂x
F (x, y) = 1 + x2(y − 1) − 4x3(y − 1)2y + 2x5(y − 1)3y + 2x(y2 − y + 1)

(−1 + x2(y − 1))2
(11)

and

∂2

∂y2
F(x, y) = 2x2 + 2x5(1 + x)

(1 − x2(y − 1))3
. (12)

Theorem 7. Let F(x, y) be given as in Equation (8). Then F(x, y) = y holds.

Proof. By Equation (7), z = 1
x2+1−x2y

. Substitute this expression for z in the equation x2y2 =
y(x2 + 1) − z(x2 + x) − 1 from Proposition 6 to obtain x2y2 = y(x2 + 1) − x2+x

x2−x2y+1
− 1 hence yielding

F(x, y) = y.
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Meir-Moon’s rectification of Bender’s theorem. By A(f, F, S), we denote the following collection
of assumptions.

1. The generating function y = f (x) = ∑∞
n=1 cnx

n is a function of complex variable x, such that all
coefficients cn are real and non-negative.

2. There is a functional relation F , satisfying F(x, y) = y, which is analytic in complex variables x, y, and
whose power series F(x, y) = ∑

i+j≥1 fi,j x
iyj converges absolutely in some neighborhood of (0, 0).

3. For each i, there exists j ≥ 2 such that fi,j > 0.
4. If k = min{i : fi,0 �= 0}, then fk,0 > 0.
5. f0,1 �= 1.

Let S denote the set of points (ρ, τ ), where both ρ, τ are real and positive, such that the following
conditions hold.

1. There exist ε, δ > 0, such that F(x, y) converges absolutely for all x, y satisfying |x| < |ρ| + ε,
|y| < |τ | + δ.

2. F(ρ, τ) = τ .
3. 1 = ∂

∂y
F (ρ, τ ).

The following theorem is due to Meir and Moon (1989), and immediately follows from Lemma 2 of
Meir and Moon (1989) and Darboux’s theorem cited in that paper. First, following standard convention,

we denote ∂2

∂y2 F(x, y) by Fyy , and ∂
∂x

F (x, y) by Fx .

Theorem 8 (Meir and Moon, 1989). Suppose that A(f, F, S) holds, and that there exists a point
(ρ, τ ) ∈ S such that

F(ρ, τ) = τ

Fy(ρ, τ ) = 1

Fy,y(r, t) > 0

Fx(r, t) > 0

holds for all 0 < r ≤ ρ and 0 < t ≤ τ . Then ρ is the radius of convergence of the power series
f (x) = ∑

n≥1 cnx
n, f (ρ) = τ , and

cn ∼
√

rFx(ρ, τ )

2πFyy(ρ, τ )
. n−3/2 ρ−n

Here, recall that cn ∼ dn means asymptotic equivalence, i.e.

lim
n→∞

cn

dn

= 1.

Let (ρ0, σ0), with σ0 > 1, be the simultaneous solution to F(x, y) = y and Fy(x, y) = 1, as defined in
Equations (8) and (10). Using the function FindRoot from Mathematica, with initial parameters x0 = 0.5,
y0 = 1, we obtain the (approximate) solution ρ0 ≈ 0.424687 and σ0 ≈ 2.656896. A computation shows

that the expression
√

rFx(ρ0,σ0)
2πFyy(ρ0,σ0)

approximately equals 1.0742707.

Theorem 9. Let an denote the number of saturated secondary structures on a sequence of length n,
as defined in Proposition 3. Let

a∗
n =

√
rFx(ρ0, σ0)

2πFyy(ρ0, σ0)
· n−3/2 · ρ−n

0

Then an ∼ a∗
n .
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Table 1. Ratio L(n)/S(n) of Asymptotic Number L(n) of Saturated Secondary Structures
with Respect to Asymptotic Number S(n) of All Secondary Structures for

Biologically Relevant Values of Length n

n L(n)/S(n) n L(n)/S(n) n L(n)/S(n) n L(n)/S(n)

50 0.00373174 300 1.49154e-15 550 5.96154e-28 800 2.38277e-40
100 1.23668e-05 350 4.94288e-18 600 1.97562e-30 850 7.89635e-43
150 4.09827e-08 400 1.63804e-20 650 6.54708e-33 900 2.6168e-45
200 1.35814e-10 450 5.42837e-23 700 2.16966e-35 950 8.67193e-48
250 4.50081e-13 500 1.79893e-25 750 7.19014e-38 1,000 2.87383e-50

Values obtained by P. Clote’s implementation in Python.

Proof. A computation shows that Fx(x, y) > 0 and Fyy(x, y) > 0 holds for all 0 < x ≤ ρ0 and
0 < y ≤ σ0. Indeed, it is straightforward to see that for 0 ≤ x ≤ 0.5 and 0 ≤ y ≤ 3, it suffices to show
that the sum of the third and fifth term in the numerator of Equation (11) is greater than 0, in order to
ensure that Fx(x, y) > 0. For this, it suffices that

y2 − y + 1 > 2x2(y − 1)2y. (13)

Since x ≤ 0.5, inequality (13) holds if 2(y2 − y + 1) > (y − 1)2y; the latter is easily seen to hold, so it
follows that Fx(x, y) > 0 for 0 ≤ x ≤ ρ0 and 0 ≤ y ≤ σ0.

For the case of Fyy(x, y), it is easy to see that x2(y − 1) < 1 for 0 ≤ x ≤ 0.5 and 0 ≤ y ≤ 3, hence
the expression in the denominator of Fyy(x, y) is positive in this region. It follows that Fyy(x, y) > 0 for
0 ≤ x ≤ ρ0 and 0 ≤ y ≤ σ0. The result now follows from Proposition 5, Proposition 6 and and Theorem 8.
Note that

a∗
n ≈ 1.07427068741 · n−3/2 · 0.424687310420272−n

= 1.07427068741/n−3/2 · 2.35467360447n.

In a similar manner, we can attempt to compute the asymptotic limit of bn, as defined in Proposition 4.
By Proposition 5 we have y = (z − 1 + x2z)/x2z and so define G(x, z) to be equal to z plus the result of
replacing y by (z − 1 + x2z)/x2z in

y(x2 + 1) − z(x2 + x) − 1 − x2y2. (14)

Thus

G(x, z) = −1 + −1 + z

x2z2
+ 1

z
+ z − xz − x2z

∂

∂x
G(x, z) = 2 − 2z

x3z2
− z − 2xz

∂

∂z
G(x, z) = −2 + (1 + x2)z + x2(−1 + x + x2)z3

x2z3

∂2

∂z2
G(x, z) = 2(−3 + z + x2z)

x2z4

We find using Mathematica that a root (ρ1, σ1), of G(x, z) = z and ∂G/∂z = 1 is ρ1 = 0.424687,
σ1 = 1.426201. In particular, using Mathematics, ρ1 is not just approximately equal to ρ1, but is exactly
equal. However, we were unable to satisfy the conditions of Theorem 8, or indeed of other theorems in
Meir and Moon (1989), and hence are currently unable to rigorously obtain an asymptotic limit for the
number of bn. (Note that ρ1 = 3.2131, σ1 = 0.412773 is another common solution of G(x, z) = z,
Gz(x, z) = 1, for which we at present are unable to verify applicability of the method of Meir and Moon.)
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By way of comparison, recall the following.

Theorem 10 (Stein and Waterman, 1979).

S(n) ∼
√

15 + 7
√

5

8π
n−3/2

(
3 + √

5

2

)n

Currently we have no information concerning the rate of convergence of an. By way of comparison,√
15+7

√
5

8π
≈ 1.104366 and 3+√

5
2 ≈ 2.618034, hence S(n) is asymptotically approximately equal to 1.104366

n3/ ·
2.618034n.

See Table 1 for a sense of how much larger the collection of all secondary structures is than the collection
of all saturated secondary structures.

5. 0- AND 1-SATURATED STRUCTURES

We now turn to the question of the number of 0-saturated and of 1-saturated secondary structures on
n, for which we show that there are polynomially many 0- and 1-saturated structures. All results in this
section assume that θ = 1. We begin by the following observation.

A base or position i in sequence 1, . . . , n is unpaired in secondary structure S, if there is no base pair
(x, y) ∈ S, with i ∈ {x, y}. The number of unpaired bases is n−2|S|. If S is a saturated structure, then any
unpaired base is (topologically) isolared. Inductively counting 0- and 1-saturated structures comes down
to distribution isolated points in certain regions of 1, . . . , n.

Remark 11. Let S be a 0-saturated secondary structure on sequence 1, . . . , n. If n is odd, then there
is exactly one unpaired base, while if n is even, then there are exactly two unpaired bases. Now, let S be a
1-saturated secondary structure on sequence 1, . . . , n. If n is odd, then there are 3 unpaired bases, while
if n is even, then there are 4 unpaired bases.

Theorem 12. LO0(0) = LO0(1) = LO0(2) = LO0(3) = 1 and for m ≥ 2,

LO0(2m) = LO0(2m − 2) + m (15)

LO0(2m + 1) = 1 (16)

Proof. Consider Equation (15), where n = 2m is even. The collection S of all 0-saturated secondary
structures on sequence 1, . . . , n can be partitioned into S = S1∪S2∪S3∪S4, where S1 = {S ∈ S : (1, n) ∈
S}, S2 = {S ∈ S : (1, n − 1) ∈ S}, S3 = {S ∈ S : (1, n − 2) ∈ S}, S4 = {S ∈ S : ∃k[1 < k ∧ (k, n) ∈ S}.
Clearly |S1| = LO0(2m− 2). We claim that |S2| = LO0(2m− 3) = 1, since for any S ∈ S2, the restriction
of S to 2, . . . , 2m − 2 must be 0-saturated. The number of elements in 2, . . . , 2m − 2 is odd and by
Remark 11 has only one 0-saturated structure, thus |S2| = 1. Since positions 2m − 1, 2m are unpaired in
any structure of S2, and at least one additional base in {2, . . . , 2m − 3} must be unpaired, it follows that
|S2| = 0.

If S ∈ S4, then there is 1 < k ≤ n − 2, such that the base pair (k, n) ∈ S. By Remark 11, if S is
0-saturated, then since n = 2m is even, there must be 2 unpaired bases in 1, . . . , n, hence the restriction
of S to {1, . . . , k − 1} must be 0-saturated, as well as the restriction of S to {k + 1, . . . , n − 1}. If k is
odd, then k − 1 is even and any 0-saturated secondary structure on 1, . . . , k − 1 must have two unpaired
bases. This situation is not possible, so we can only consider values k = 2i which are even. In such cases,
the region k + 1, . . . , 2m − 1 contains 2m − k − 1 elements, an odd number, for which there is only one
0-saturated structure. It follows that

|S4| =
m−1∑
i=1

LO0(2i − 1) · LO0(2m − 2i − 1) =
m−1∑
i=1

1 = m − 1
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Taking each of the preceding four cases into account, the number |S| of 0-saturated secondary structures
on 1, . . . , 2m is equal to

LO0(2m) = LO0(2m − 2) + m (17)

where LO0(0) = LO0(1) = LO0(2) = LO0(3) = 1. This establishes (15). Finally, Equation (16) follows
immediately from Remark 11 since there is only one 0-saturated secondary structure on a sequence of odd
length.

Corollary 13. LO0(0) = LO0(1) = LO0(2) = LO0(3) = 1 and for m ≥ 2,

LO0(n) =
{
n(n + 2)/8 if n is even
1 if n is odd.

Proof. Easy solution of recurrence relation (15) yields LO0(2m) = m(m+1)/2. Substitution of n = 2m

in this case yields n(n + 2)/8.

Theorem 14. LO1(0) = LO1(1) = LO1(2) = 0, LO1(3) = 1 and for m ≥ 2,

LO1(2m + 1) = LO1(2m − 1) + LO0(2m − 2) + LO0(2m − 3) (18)

+
m−1∑
i=1

LO0(2i − 1) · LO0(2m − 2i)

+
m−1∑
i=1

LO0(2i) · LO0(2m − 2i − 1)

LO1(2m) = LO1(2m − 2) + LO1(2m − 3) + LO0(2m − 4) (19)

+
m−1∑
i=1

(LO1(2i − 1) + LO1(2m − 2i − 1))

+
m−2∑
i=1

LO0(2i) · LO0(2m − 2i − 2)

Proof. The collection S of all 1-saturated secondary structures on sequence 1, . . . , n can be partitioned
into S = S1 ∪ S2 ∪ S3 ∪ S4, where S1 = {S ∈ S : (1, n) ∈ S}, S2 = {S ∈ S : (1, n − 1) ∈ S},
S3 = {S ∈ S : (1, n − 2) ∈ S}, S4 = {S ∈ S : ∃k[1 < k ∧ (k, n) ∈ S}. We consider S1 in Case 1, S2 in
Case 2, S3 in Case 3, S4 in Case 4; additionally Case 4 has four subcases.

Case 1. If S ∈ S1 is 1-saturated, then the restriction of S to 2, . . . , n − 1 must be 1-saturated. The term
LO1(2m − 1) in Equation (18) [resp. LO1(2m − 2) in Equation (19)] arises from all 1-saturated secondary
structures containing the base pair (1, 2m + 1) [resp. (1, 2m)].

Case 2. If S ∈ S2 is 1-saturated, then the restriction of S to 2, . . . , n − 1 must be 1-saturated when n is
even and 0-saturated [sic] when n is odd. This difference arising from parity of n follows from Remark 11.
Indeed, if n is unpaired, and (1, n − 1) is base-paired, then 2, . . . , n − 2 has an odd number of elements
when n is even, and an even number of elements when n is odd. If S ∈ S1 is 1-saturated, then S has 4
unpaired bases when n is even, and 3 unpaired bases when n is odd.

The term LO0(2m − 2) in Equation (18) arises from all 1-saturated secondary structures in which
n = 2m+ 1 is unpaired, and which contain the base pair (1, 2m). Since the region 2, . . . , 2m− 1 enclosed
within the base pair (1, 2m) contains an even number of elements, the restriction S |̀ {2, . . . , 2m−1} must
be 0-saturated. There are 2 unpaired bases in the region 2, . . . , 2m − 1, which together with the unpaired
base n = 2m + 1 makes the required 3 unpaired bases.

The term LO1(2m−3) in Equation (19) arises from all 1-saturated secondary structures in which n = 2m

is unpaired and which contain the base pair (1, 2m−1). Since the region 2, . . . , 2m−2 within the base pair
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(1, 2m − 1) contains an odd number of elements, the restriction S |̀ {2, . . . , 2m − 2} must be 1-saturated.
There are 3 unpaired bases in the region 2, . . . , 2m − 2, which together with the unpaired base n = 2m

makes the required 4 unpaired bases.
Case 3. If S ∈ S3, then (1, n − 2) ∈ S and n − 1, n are unpaired. Suppose first that n = 2m + 1 is odd.

Then the inner region 2, . . . , n − 3 is odd, and any 0-saturated secondary structure on 2, . . . , 2m − 2 must
have 1 unpaired bases. These, along with the unpaired bases n − 1, n makes a total of 3 unpaired bases.
Thus arises a contribution of LO0(2m − 3) in (18). Now suppose that n = 2m is even. Similar reasoning
shows that there is a contribution of LO0(2m − 4) in Equation (19).

Case 4. There exists k in 2, . . . , n − 2, such that (k, n) ∈ S.
Subcase 1. Assume n = 2m + 1 odd, k = 2i even, and that S is 1-saturated on 1, . . . , n and contains

base pair (k, n).

LO1(2m + 1) =
m−1∑
i=1

LO0(2i − 1) · LO0(2m − 2i)

By assumption, k = 2i base-pairs with n = 2m + 1, as 2i takes the values 2, 4, . . . , 2m − 2. Note that
there is an odd number 2i − 1 of elements in the region 1, . . . , 2i − 1 to the left of the base pair (2i, n)—
denote this region as the left region. Similarly, there is an even number 2m − 2i of bases in the region
2i + 1, . . . , n − 1 occurring within the base pair (2i, n) and to the right of 2i—denote this region as the
right region.

By Remark 11, any 1-saturated secondary structure S on 1, . . . , n which includes base pair (k, n) must
have 0-saturated restriction in the left region 1, . . . , 2i − 1 as well as the right region 2i + 1, . . . , n − 1.
This justifies the previous claim.

Subcase 2. Assume n = 2m + 1 odd, k = 2i + 1 > 1 odd, and that S is 1-saturated on 1, . . . , n and
contains base pair (k, n).

LO1(2m + 1) =
m−1∑
i=1

LO0(2i) · LO0(2m − 2i − 1)

By assumption, k = 2i + 1 base-pairs with n = 2m + 1, as 2i takes the values 2, 4, . . . , 2m − 2. For S to
be 1-saturated, it follows by Remark 11 that the restriction of S to both the left region 1, . . . , 2i and to
the right region 2i + 2, . . . , n − 1 must be 0-saturated.

Subcase 3. Assume n = 2m even, k = 2i even. and that S is 1-saturated on 1, . . . , n and contains base
pair (k, n).

LO1(2m) =
m−1∑
i=1

LO1(2i − 1) · LO0(2m − 2i − 1)

+ LO0(2i − 1) · LO1(2m − 2i − 1)

=
m−1∑
i=1

LO1(2i − 1) + LO1(2m − 2i − 1)

By assumption, k = 2i base-pairs with n = 2m, as 2i takes the values 2, 4, . . . , 2m − 2. For S to be 1-
saturated, it follows by Remark 11 that the restriction of S to the left region 1, . . . , 2i must be 1-saturated
and to the right region must be 0-saturated, or alternatively the restriction of S to the left region 1, . . . , 2i

must be 0-saturated and to the right region must be 1-saturated. This will ensure that there are 4 unpaired
bases, as required in a 1-saturated secondary structure on a sequence of even length n. Finally, since
2m − 2i − 1 and 2i − 1 are odd, and the number of 0-saturated secondary structures on an odd sequence
is 1, it follows that LO0(2m − 2i − 1) = 1 = LO0(2i − 1).



SATURATED SECONDARY STRUCTURES 1655

Subcase 4. Assume n = 2m even, k = 2i + 1 > 1 odd, and that S is 1-saturated on 1, . . . , n and
contains base pair (k, n).

LO1(2m) =
m−2∑
i=1

LO0(2i) · LO0(2m − 2i − 2)

By assumption, k = 2i + 1 base-pairs with n = 2m, as 2i takes the values 2, 4, . . . , 2m − 4. For S to be
1-saturated, it follows by Remark 11 that the restriction of S to both the left region 1, . . . , 2i and to the
right region 2i + 2, . . . , n − 1 must be 0-saturated. This establishes the theorem.

Corollary 15. LO1(0) = LO1(1) = LO1(2) = 0, LO1(3) = 1 and for m ≥ 2,

LO1(2m + 1) = LO1(2m − 1) + m(m − 1)/2 + 1

+
m−1∑
i=1

((m − i)(m − i + 1)/2 + i(i + 1)/2)

LO1(2m) = m(m − 1)/2 + 1 + (m − 2)(m − 1)/2

+
m−1∑
i=1

(LO1(2i − 1) + LO1(2m − 2i − 1))

+
m−2∑
i=1

i(i + 1)(m − i − 1)(m − 1)

4
.

Proof. Immediate from the previous theorem by replacing terms of the form LO0(k) by their corre-
sponding value from Theorem 12.

Although it would be indeed tedious to solve the recurrence relation given in Corollary 15, it is never-
theless clear that LO1(n) is bounded by a polynomial in n.

6. CONCLUSION

In this paper, we have studied combinatorial problems associated with the new concept of saturated
secondary structure. Saturated structures form natural kinetic traps in the folding process, and hence the
combinatorial results in this paper shed some light on the the distribution of (local) energy minima in
the energy surface for secondary structures of length n RNA sequences. We have established an expo-
nential asymptotic limit for the number of saturated secondary structures, and shown that if n is even
there are exactly n(n + 2)/8 many 0-saturated structures, while the number of 1-saturated structures is
polynomial in n. Additionally, we have used the recurrence relation for the number of saturated secondary
structures as the basis of a dynamic programming algorithm to compute the number LO(n, k) of saturated
secondary structures having k base pairs. The number LOk(n) of k-saturated secondary structures is then
LO(n, �n−θ

2 � − k).
Application of the (erroneous) theorem of Bender allows one to evaluate the asymptotic limit of bn =∑
k MO(n, k), where bn is the number of saturated stuctures on length n sequence for threshold θ = 1

(see Proposition 4). If Bender’s theorem were correct, then asymptotically bn is equal to an exponential
expression with the same exponential base as that of an. However, at the present time, it does not seem
that the (correct) theorem of Meir and Moon (1989) can be applied. It would be of interest to rigorously
derive the asymptotic limit of bn.

An unexplored problem which may be tractable is to apply generating function theory to compute
formulas, or asymptotic limits, for the number LO(n, k) of saturated structures on a length n sequence
with k base pairs. By using the correspondence between secondary structures and linear trees, given by
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Schmitt and Waterman (1994) [see also Chapter 13 of Waterman (1995)], it is straightforward to define a
one-one correspondence between LO(n, k) and a class of linear trees with the property that are at most 2
children of each node which are leaves, and in the case that there are 2 leaf children, they are adjacent. It
may be possible to develop a closed formula or asymptotic limit for this class of trees.
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