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Abstract

Given an input PDB file for a protein or RNA molecule, LocalMove is a web
server that determines an on-lattice representation for the input biomolecule.
The web server implements a Markov Chain Monte-Carlo (MCMC) algorithm
with simulated annealing to compute an approximate fit for either the coarse-
grain model or backbone model on either the cubic or face-centered cubic lat-
tice. LocalMove returns a PDB file as output, as well as dynamic movie of
3-dimensional images of intermediate conformations during the computation.
The LocalMove server is publicly available at

http://bioinformatics.bc.edu/clotelab/localmove/.

Running Title: Computing best on-lattice-fits using LocalMove.
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Introduction

Predicting the structure of biopolymers is one of the most important and well-studied
computational problems of the 20th century — a problem, that despite enormous
advances, remains only partially solved. In an effort to minimize the number of con-
formations to be explored, coarse-grain lattice models (beads on a string) have been
studied by many authors (1, 2, 3, 4) while coarse-grain off-lattice models have been
used in discrete molecular dynamics (5). In this paper, we present the LocalMove
web server, which implements a Markov Chain Monte-Carlo (MCMC) algorithm to
compute an approximate cubic or face-centered cubic lattice fit of either the coarse-
grain or backbone model for an input Protein Data Bank (PDB) (6) file for a protein
or RNA molecule.

Finding a self-avoiding walk on the cubic lattice that minimizes the coordinate
root mean square deviatiorm with the original PDB file, after normalization to en-
sure unit distance between successive monomers, is known to be NP-complete (7).
Thus various heuristic approaches (8, 9, 10, 11, 12, 13) have been proposed to
approximately solve this problem, including Hopfield nets, self-consistent field op-
timization, integer programming etc. Unfortunately, none of these methods are
publicly available, so that LocalMove is the only publicly available tool for on-
lattice fit of biopolymers, allowing users to postprocess certain threading energies
(aka knowledgs-based potentials) for structure classification and prediction.

The method LocalMove, presented in this paper, performs a Monte-Carlo explo-
ration of the on-lattice conformational landscape through a sequence of local mowves,
which generalize the single-monomer end and corner moves, and the 2-monomer
crankshaft moves used in (14) for the cubic lattice. At each step, a measure of sim-
ilarity, distance root mean square deviation (dRMS B)is evaluated and the candidate
move is either accepted or stochastically rejected, according to the Metropolis crite-
rion. Different levels of representation are supported by LocalMove, scaling from the
coarse-grain monomer model (C, for amino acids, Cy/ for RNA nucleotides, or al-
ternatively nucleotide centers of mass), to all backbone atoms. LocalMove supports
the cubic and face centered cubic (FCC) lattices. Various termination conditions
can be defined for the walk.

There appears to be little data on the quality, in terms of coordinate root mean
square deviation, cRMS, of on-lattice fits, an exception being the data of Reva et al.

LGiven sequences pi,...,pn and qi,...,qn of 3-dimensional points, the coordinate root mean

square deviation, denoted rms or cRMS, is /> .., (pi — ¢i)?/n.
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(15) for approximate cubic lattice fits of Cy-atom traces of proteins from a small
representative sample. See Tables|1 and 2 for a comparison of LocalMove with the
method of Reva et al. (15, 16) on the only published data of on-lattice fits that we
could find.

Materials and Methods

LocalMove addresses the problem of finding the best on-lattice fit for the coarse-
grain model or backbone model for proteins and RNA, with a number of parameter
choices for the user. Lattice type can be either the cubic or face-centered cubic
(FCC) lattice, described later.

LocalMove applies the Monte-Carlo algorithm (17, 18) where energy is defined
as follows. Given a conformation P = pi,...,pn, where each p; € R3, define the
distance matriz D(P) = (d; ), where d; ; is the Euclidean distance between p; and
pj. Define the distance root mean square deviation (dRMS) between two conforma-
tions P = py,...,pp and Q' = q1,...,q, by dRMS(P,Q) = \/21§i<j§2753li’j_ei"j)2
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where D(P) = (d;;) and D(Q) = (e;;) are the corresponding distance matrices.
To determine approximate on-lattice fit, define the energy E(C') of a given lattice
conformation by dRMS(C, P), where P, is the normalized conformation of monomers
Cy or Cys in the coarse-grain model, or backbone atoms, as depicted in Figure 1]in
the backbone model. The off-lattice conformation P, is normalized so that distance
between successive atoms is 1.

In LocalMove, if C’ denotes the temporary conformation obtained by replacing
a k-monomer segment in the current conformation C, then C’ becomes the next
configuration, provided that C’ is a self-avoiding walk and either E(C") < E(C) or
a random real z is less than e~ (E(C)~=E(C)/RT { o the Metropolis criterion holds.
Details and parameter choices for the user are suggested below. Algorithmic details,
computational experiments for various parameters, and extensive benchmarking will
appear in a companion methods paper in preparation.

Models
Backbone representation

For protein, on-lattice models have historically considered the coarse-grain represen-
tation where each residue is represented by a single point, yielding the Cy-trace. For
proteins, this level of granularity seems reasonable, since the average distance be-
tween consecutive C,, carbons in proteins extracted from the Nucleic Acid Database
(NDB) (19) yields an average of 3.8A with a low standard deviation of 0.04A. In
the case of RNA, a coarse-grain model is less able to capture the essence of an RNA
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Figure 1: Backbones of protein (left) and RNA (right). Note that residue resp.
nucleotide positions increase from the bottom of the figure towards the top.

conformation, since the average distance between successive Cy atoms is 6.1A with
a standard deviation of 0.46A. In the case of RNA, the backbone model thus appears
to be a better representative of the conformation than is the coarse-grain model.

While it is beyond the scope of the current paper to answer the question of
choosing the best representation of biopolymers backbone for general on-lattice ap-
plications, we tried to offer the user the choice of a suitable representation. Namely,
our algorithm extracts a subset of the atoms in the model/chain of interest, and per-
forms its search for the best fit of this selection. The different levels of representation
currently supported by LocalMove are:

Proteins RNA
Full Backbone | N-Cy-C | P-Og/-Cs-Cy-Cs-Os
Coarse-grain | C, or Ciy, N, Por u

where in the RNA coarse-grain model, the user can select among the carbon Cy/- or
nitrogen N-atom, both adjacent to the glycosidic bond, the backbone phosphorus
or the center of mass of the nucleotide, denoted by p.

Lattices

LocalMove supports the cubic and face-centered cubic (FCC) lattice. The latter,
well-known to crystallographers as one of the Brawvais lattices, has contact number
12, meaning that each lattice point has 12 immediate neighbors; see Figure2. Covell
and Jernigan have shown that the FCC lattice is the most appropriate 3D lattice



(b) Face-centered cubic lat- (¢) Numbers of self-

(a) Cubic lattice tice avoiding walks on FCC
Size | Number
1 12
2 132
3 1,428
4 15,108
5) 157,812
6 1,635,396

Figure 2: Neighbors of a point under various lattice models: (left) 3-
dimensional cubic lattice, (middle) 3-dimensional face-centered cubic lattice, (right)
Numbers of self avoiding walks of various sizes on FCC. The FCC lattice can be rep-
resented as the set of all integral coordinates (z, y, z), such that (z+y+2) mod 2 = 0.
If p=(x,y,2) and ¢ = (a,b, c), then p, g are immediate neighbors if |x —a|+ |y —b|+
|z —¢c| =0mod 2, and |z —al, |y — b|, |z — ¢|] < 1. Note that immediate neighbors on
the FCC lattice are at Euclidean distance /2 from each other, hence comparisons
with PDB data are made after normalization that ensures unit distance between
successive monomers.

for fitting protein C,-atoms as a self-avoiding walk; i.e. cRMS values are smaller for
the FCC than for the cubic, body-centered cubic and tetrahedral lattices.

Algorithm
Simulated annealing

LocalMove implements the Monte-Carlo Markov Chain (MCMC) algorithm, as well
as simulated annealing, and the user can set an initial temperature, terminal thresh-
old temperature and temperature scaling factor ¢ (i.e. temperature is periodically
decreased by T' = ¢-T'). Alternatively, a greedy descent (no Metropolis step) and
a Fixed Metropolis probability strategy are implemented.

Three strategies are implemented in LocalMove to choose an initial self-avoiding
configuration: Random, a random 3D self-avoiding walk is generated; Straight
line; Rounded (greedy). By rounding, we mean a greedy, iterative procedure to
place the next monomer (or atom) of a growing chain on the closest lattice point
to the previous monomer (or atom), while guaranteeing a self-avoiding walk. If
this strategy does not produce a self-avoiding walk, which sometimes happens, then



LocalMove chooses a random self-avoiding walk as the initial on-lattice conforma-
tion.

LocalMove performs local k-monomer moves, generalizing the move set of Sali et
al. (14). Given a current self-avoiding walk p1, ..., p,, LocalMove randomly chooses
positions 4, j, and replaces the intermediate k-monomer walk p;y1,...,p;—1, where
k =j—i—1, by a different k-monomer walk p;_,, ... ,p;;l having the same vector
difference. Three types of strategies are proposed regarding self-avoidance: Strict,
where the self-avoidance of the resulting walk is tested in linear time and the move
is rejected if the test is failed; Local, where only a subset of points adjacent to the
insertion point are tested; None, where self-avoidance is not enforced. depending
of the option. The relevant parameters handled by LocalMove for such moves are
the local move size, the self-avoidance strategy and the strategy for picking
a new local move at random.

LocalMove simulations can be stopped for some of the different following reasons:
Either a limit temperature is bypassed during the simulated annealing; a distance
threshold is reached; the maximal number of steps have been performed; or the
simulation is stalled for too long, leaving few hope for improvement. In the latter,
the required improvement over a user-defined period of time can be either relative
or absolute.

Additional features

In addition to the features described above, our webserver gives its user the possi-
bility to follow in realtime the lattice fitting process. After the beginning of the
lattice fitting process, the user’s browser is redirected to a webpage featuring an
experiment player based on the popular JMol. Additionally, an email is sent to the
user, featuring an unique identifier for the ongoing experiment. Through entering
this identifier at any time during or after completion of the experiment, the user can
access its results or follow its progress. Results are kept until about one week after
the end of the experiment, and are then deleted. Even if such is the case, the user
is proposed to repeat the experiment, using the same parameters or is allowed
to modify them in a prefilled version of the webserver form. This allows for a
quick and easy modification of an already run experiment.

Finally, movies can be generated automatically after the lattice fitting process
is over. To that purpose, snapshots of the molecule are rendered using PyMol each
500 steps of the Monte-Carlo algorithm, and assembled using FFMpeg.



Results

Preliminary results are given in Tables [1 and 2, to compare LocalMove (greedy
strategy, rounded initial conformation, self-avoiding walk test for intermediate con-
formations) with the method of Reva et al. (15) (optimal parameters A=10, T ~ 0.1
—see p. 7 of (15)). Although the method of Reva et al. is clearly superior for cubic
lattice fits, it is not publicly available. In contrast, LocalMove provides acceptable
approximate lattice representations for cubic and face-centered cubic lattices, for
various coarse grain and backbone models of both protein and RNA.

Tables/T/and 2|respectively list the best scores and average scores for cubic lattice
fits of 17 protein chains of various sizes. Scores for the method of Reva et al. (15)
are values of RMS in lattice units, while those of LocalMove are values of RMSDc
in lattice units — i.e. pdb files are scaled to have distance 1.0 between successive
monomers (or atoms) when superimposing structures. RMS, as measured in (15),
is approximately the same as RMSDc; however there is a technical difference, ex-
plained as follows. In Reva’s method, a cubic orthonormal lattice is projected onto
the C,-trace of a protein, self-consistent field is approximated, followed by dynamic
programming. It is unclear from (15) whether the (stochastic) cubic orthonormal
lattice is defined from any 3 randomly chosen orthogonal basis vectors emanating
from origin (0,0,0), or whether the origin is randomly chosen as well. In contrast,
given the C,, traces p1,...,pn and q1, . . ., ¢n, BioPython computes RMSDc by super-
imposing the centers of mass, then computing optimal rotation matrix to return the
Cy-trace ri,...,r, obtained by qi, ..., ¢, by the computed translation and rotation.
The value of RMSDc is then />, [Ipi — 7:[[2/n.

To illustrate the stability of our approach, we ran LocalMove on all RNA mod-
els/chains found in the NDB. Namely, we fit the backbone atoms Oz ,P,03/,Cs, Cy,
C3 on the FCC lattice. We rescaled the resulting models and superimposed them
with the original NDB backbone data, normalized so that adjacent atoms were
at distance v/2, the distance between adjacent lattice points in the FCC lattice.
Superimposition was performed using Biopython http://biopython.org/. After
removal of 17 spurious values the cRMS values obtained when superimposing the
1735 on-lattice RNA models/chains on (normalized) backbone data from the NDB,
we obtain mean cRMS is 0.554169 with standard deviation 0.145392. Similarly, we
obtained LocalMove fits of backbone atoms (IV,C,, C) of monochain proteins from
PDBselect25 (20), a nonredundant protein database, where pairwise sequence iden-
tity is at most 25%. When on-lattice fits were superimposed on original (normal-
ized) backbone off-lattice data from PDBselect25, the cRMS had mean of 0.612181
and standard deviation of 0.161009.

For these experiments with both NDB and PDBselect25, LocalMove was run for
1 million steps, using the greedy (Monte Carlo with zero probability for Metropolis
moves) strategy with at most 3-monomer moves. In this case, the greedy strategy
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pdbID | size | Reva | greedy RMSD 4 | greedy RMS 4 | fixed RMSD 4 | anneal RMSD 4
lepg 53 | 0.573 0.731 0.795 0.819229 0.63175
20vo 56 | 0.612 0.634 0.895 0.901008 0.556876
lacb:I 63 | 0.630 0.751 1.059 1.034372 0.620289
2ctx 71 | 0.666 0.842 1.164 1.065386 0.723368
1fkf 107 | 0.658 0.658 0.767 1.15722 0.686337
3sic 107 | 0.654 0.720 0.877 1.169239 0.655475
ledp 108 | 0.653 0.644 0.798 0.761084 0.757177
2trx 108 | 0.678 0.682 0.919 0.87416 0.868124
lhmd | 113 | 0.628 0.908 1.494 0.797958 0.79189
1ppa 121 | 0.670 0.817 1.747 0.924893 0.917508
1rat 124 | 0.698 0.955 1.186 1.493441 1.26029
2aza 129 | 0.703 0.740 0.869 1.743398 0.699028
1lifb 131 | 0.736 0.801 0.980 1.185644 0.733953
lmyg | 153 | 0.683 1.273 1.347 0.871547 0.870891
2fer 173 | 0.693 0.711 1.036 0.972334 0.975169
1fdl 218 | 0.714 0.791 1.169 1.348602 0.891129

Ttim:A | 247 | 0.718 0.886 1.108 1.110148 1.106702

RMSDc | 122 | 0.669 0.797 1.071 1.072 0.809
Time - - 76.240 66.830 70.39 128.18

Table 1: Comparison of best scores out of 100 runs. Scores are RMS for the optimized
method of Reva et al. (15) (A=10,T =~ 0.1, shells 1,2), while remaining scores are
RMSDc using various strategies with LocalMove. (See text for distinction between
RMS and RMSDc.) Four strategies of LocalMove are displayed, in order from left
to right: greedy method to minimize RMSDd, greedy method to minimize RMS,
Monte Carlo with fixed probability of 20% in Metropolis step to minimize RMSDd,
Monte Carlo with simulated annealing to minimize RMSDd. For each strategy of
LocalMove, the maximum number of monomers moved is 4, and the intitial self-
avoiding walk is determined by rounding if possible. In the simulated annealing,
initial temperature T = 10, stopping temperature T = 0.1, temperature scaling
factor ¢ = 0.95, (artificial) Boltzmann constant k& = 4.699 x 1075. Reva et al. (15)
study the effect of parameters A, T and number of shells on the accuracy and time
of their method. Accuracy in this table is given for A = 10, T' =~ 0.1 taking first
and second shells, for which Reva et al. report a run time of approximately 30 sec.
Average LocalMove run time in seconds for each of the four strategies is respectively
76.24, 66.83, 70.39, and 128.18. (Shorter run times with less accuracy found when
minimizing RMSDc instead of RMSDd, and when maximum number of monomers
moved is 3, rather than 4.



pdbID size Reva | Greedy RMSD 4 | Greedy RMS 4 | Anneal RMSD 4 | Fixed RMSD 4
lepg 53 0.682 1.435 1.358 0.807 0.873
2o0vo 56 0.691 0.713 0.824 0.675 0.942
lacb:I 63 0.707 0.767 0.951 0.744 1.071
2ctx 71 0.762 0.798 0.897 0.960 1.094
1fkf 107 0.784 0.852 0.996 0.807 1.195
3sic 107 0.757 0.761 0.900 0.768 1.193
ledp 108 0.699 0.953 1.086 0.770 0.807
2trx 108 0.744 0.694 0.801 0.895 0.899

1hmd 113 0.709 0.946 1.117 0.799 0.832
1ppa 121 0.722 0.855 0.856 0.955 0.960
1rat 124 0.773 0.986 1.192 1.587 1.507
2aza 129 0.789 1.012 1.771 0.846 1.767
1ifb 131 0.802 1.108 1.203 0.824 1.200

1lmyg 153 0.724 0.772 0.962 0.874 0.891
2fcr 173 0.749 1.160 1.516 0.981 0.995
1fdl 214 0.863 0.921 1.082 1.087 1.358

Ttim:A 247 0.761 0.954 1.193 1.111 1.117

Average 122 0.748 0.923 1.100 0.911 1.100

Table 2: Comparison of average scores out of 100 runs, for method of Reva et al.
(15) and the four strategies of LocalMove, as explained in Table [1.

attempts to minimize dRMS; i.e. LocalMove accepts a randomly proposed k-monomer
move, for k < 3, provided that the dRMS score of the proposed move is lower. The
initial on-lattice structure determined by rounding. We allow early termination when
relative improvement is less than 0.01%; i.e. after every 15,000 steps, if the relative
difference between best score and that of an ancestor 15,000 steps prior to current
step is less than 0.0001, (recall that score means dRMS) then computation terminates.
Technically, this means that we compute whether % < 0.0001, where sg denotes
the ancestor score 15,000 steps before, and s; denotes the current move.

Discussion

In this paper, we present a new web server, LocalMove, capable of determining ap-
proximate on-lattice fits of protein and RNA 3-dimensional conformations on the
cubic and the face-centered cubic lattice. LocalMove returns the PDB file of the ap-
proximate on-lattice fit, and interactively displays a dynamic movie of 3-dimensional
images of intermediate conformations during the computation. In Tables [1] and 2,
we benchmark LocalMove against what appears to be the only publicly available
data set for previous on-lattice fits. To the best of our knowledge, no other method
is publicly available to compute on-lattice fits of protein and RNA molecules. Reva’s



FCC fit of NDB FCC fit of NDB

0.06 - 1 o1l
0.04 - N
005 |
0.02 - B
0 . | L N ol — 1 . I —

0.2 04 06 08 1 12 14 0 0.2 0.4 0.6 08 1 12 14 16 18 2
RMSDc in lattice units RMSDc in lattice units

Figure 3: (Left) Distribution of cRMS for LocalMove best on-lattice fits for the
backbones (Os,P,03,C5, Cy, Cy) of 1735 RNA models/chains from the NDB,
superimposed with the (normalized) NDB files. Statistics for RMSDc: mean is
0.554169, standard deviation is 0.145392, both measured in lattice units. (Right)
Distribution of cRMS for LocalMove best on-lattice fits for the backbone (N,Cy,C) of
1733 (monochain) proteins from PDBselect25 (20), a nonredundant protein database
(pairwise, proteins have at most 25% sequence identity), superimposed with the
(normalized) original PDB files. Statistics for RMSDc: mean is 0.612181, standard
deviation is 0.161009.

method and most of the earlier methods handle only the cubic lattice, known not to
be optimal for biopolymer folding, while LocalMove handles cubic and FCC lattices
with a variety of coarse grain and backbone models for both protein and RNA.

We believe that the new server, LocalMove, as well as our previous 3-dimensional
RNA motif detection server, DIAL, described in Ferre et al. (21), will contribute to
better detection and classification of RNA motifs, essential ultimately for predicting
tertiary structure, catalytic sites and function of RNA.
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Figure 4: FCC lattice fits for the full backbone of two ribozymes models (PDB IDs
1SJ3:R and 1GID:A) superimposed with their original models.
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Figure 5: Screen shot of LocalMove web server.
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