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Abstract 

One of the most common approaches for large-scale protein identification is liquid 

chromatography, followed by mass spectrometry (LC-MS). If more than a few proteins 

are to be identified, the additional fragmentation of individual peptides has so far 

been considered as indispensable, and thus, the associated costs, in terms of 

instrument time and infrastructure, as unavoidable. Here, we present evidence to the 

contrary. Using a combination of [1] highly accurate and precise mass 

measurements,[2] modern retention time prediction, and [3] a robust scoring 

algorithm, we were able to identify 257 proteins of Francisella tularensis from a 

single LC-MS experiment in a fragmentation-free approach (i.e., without 

experimental fragmentation spectra). This number amounts to 59% of the number of 

proteins identified in a standard fragmentation-based approach, when executed with 

the same false discovery rate. Independent evidence supports at least 27 of a set of 31 

proteins that were identified only in the fragmentation-free approach. Our results 

suggest that additional developments in retention time prediction, measurement 

technology, and scoring algorithms may render fragmentation-free approaches an 

interesting complement or an alternative to fragmentation-based approaches. 
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1  Introduction 

1.1  Protein identification by HPLC-MS 

One of the key goals of proteomics experiments is the identification of proteins from 

samples of unknown composition. Thanks to continuous efforts in genome 

sequencing, genome and protein sequence information are now available for an 

increasing number of species [1]. For those species, the identification of proteins is 

accomplished by matching the results of Mass Spectrometry (MS) measurements 

against a sequence database of candidate proteins. 

When only few protein are in the sample, a well-established procedure, Peptide 

Mass Fingerprinting (PMF), can be applied for protein identification [2, 3, 4, 5]. The 

protein is digested by an enzyme with known substrate specificity, the masses of the 

resulting peptides are measured by MS and the relevant sequence database is searched 

for proteins which generate a corresponding set of masses after enzymatic cleavage. 

Unfortunately, for a larger number of different proteins in a sample, the combinatorial 

explosion of possible mass combinations prevents reliable identification by PMF. 

Additional information can be obtained by further fragmenting peptide ions 

isolated from the first MS analysis. The fragment masses are commonly determined 

in second MS steps interleaved with the first MS. The series of observed fragments is 

compared to predictions made from the known sequences and the most likely peptide 

candidates are selected [6]. One problem with this strategy is the high number of 

peptide ions generated by the first MS, which precludes their exhaustive analysis by 

fragmentation. This is partly overcome by separating the peptides prior to MS, 

usually on a HPLC column [7]. Most often, Reverse Phase columns are used, which 

separate the peptides mainly on the basis of hydrophobic interactions with the column 

[8]. Although HPLC separation helps alleviate the problem, not all peptides can be 
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analyzed and identified by fragmentation. 

Apart from spreading peptides over the time domain, the preliminary HPLC 

analysis also provides for each of them a retention time (RT). This readily available, 

additional information has so far rarely been exploited for identification. Here we 

demonstrate that, together with highly accurate peptide mass measurements, the 

additional retention time information enables the identification of hundreds of 

proteins even without the use of MS/MS fragmentation. 

 

1.2  Using retention time and accurate peptide 

mass for identification 

Several previous efforts have used HPLC and peptide retention time for the 

identification of proteins. We will briefly discuss some of them. 

 

1.2.1  Theoretical justification 

A recent theoretical study by Norbeck et al. [9] has given insight into the precision of 

mass and retention time determination required for fragmentation-free identification 

of tryptic peptides. The authors evaluated to what extent the determination of mass 

and HPLC retention time allows unique identification of tryptic peptides. In 

particular, they studied the number of uniquely identifiable peptides as a function of 

the precision of mass and retention time and the size of the relevant proteome. The 

theoretical study showed that the addition of the HPLC retention time strongly 

enhances the identification power of MS. For instance, for a peptide mass of around 

2250 Da, in the bacterium Deinococcus radiodurans (3167 proteins), approximately 

20% of the peptides could be uniquely identified at a mass error rate of 5 parts per 

million (ppm). Combining the mass measurement with the HPLC retention time 
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(determined with a 1% error rate) increases the proportion of unique peptides from 

20% to 90%. For a more complex proteome (Homo sapiens) the proportion of unique 

peptides would be 2% at 5 ppm, and would increase to 50% with the additional use of 

retention time prediction with 1% error. The study of Norbeck et al. demonstrates that 

taking into account the retention time of the peptides when searching for matches in 

the database can drastically reduce the number of candidate peptides. It does not, 

however, address practical implemetation aspects of this idea. 

 

1.2.2  Determining peptide retention time 

HPLC peptide retention times can be used for peptide identification by comparing 

experimentally obtained retention times with retention times that have been predicted, 

or previously measured. 

Measuring retention time 

A straightforward approach to obtain the retention times of a small number of 

peptides in a given HPLC separation system is to measure them: Synthetic peptides 

with the desired sequences are injected and detected when they exit from the column 

(see for instance [10]). However, this approach is limited to peptides that can be 

synthesized or highly purified and can thus not provide the hundreds or thousands of 

retention times required for protein identification from complex mixtures. With the 

advent of LC-MS/MS methods, the retention times of peptides selected for analysis 

by fragmentation after HPLC became available in very large amounts. These 

retention times can then be used directly or serve as training examples for diverse 

retention time prediction algorithms. But to account for unavoidable experimental 

variability, the retention times need to be normalized. For this purpose Strittmatter et 

al. [11], for instance, obtained data from individual runs and normalized the retention 

times by affine transformations optimized over the whole dataset. Still, the intrinsic 
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variability of HPLC places a limit on the precision that can be obtained for retention 

time. 

Predicting retention time  

An alternative to measuring peptide retention times is to predict them. Methods to 

predict peptide retention times from their primary sequences have been extensively 

reviewed recently by Baczek and Kaliszan [8]. 

One early approach was based on data from few injected synthetic peptides [10]. 

This work was limited by the amount of data available at the time, but introduced the 

idea that the hydrophobic interaction of a peptide with the matrix of the column could 

be predicted from the amino-acid composition by a linear model. 

Later, other work relied on the idea of such a linear model, either using data from 

a rather small dataset of synthetic peptides [12] or on naturally occurring tryptic 

peptides [13]. Other peptides properties (e.g.its length [14]) have also been used with 

the linear model. 

Other approaches have used artificial neural networks [15, 16] on a very large 

number of peptides (345000 peptides) or support vector machines [17, 18] on a much 

smaller dataset to obtain predictive models. 

Krokhin’s SSRCalc tool [19], develops the idea of a linear model further by 

employing different hydrophobicity coefficients for the amino acids close to the 

termini of the peptide, and by taking into account the length of the peptide, its likely 

secondary structure and effects between neighboring aminoacids. Contrary to many 

other models, SSRCalc does not require experiment or platform-specific training of 

the model. For each peptide, SSRCalc provides a hydrophobicity index which can be 

converted into a predicted retention time by an affine transformation. 

1.2.3  Using retention time for peptide/protein identification 

Regardless of how retention times are determined, several strategies have been 
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developed for their use in peptide and protein identification. 

The Accurate Mass and Time tag (AMT) strategy, introduced by the group of 

R.Smith [11], uses the retention times of the peptides recorded in MS/MS 

experiments. Simultaneous matching of the mass and the retention times are then 

used to identify the peptides in a specific database and, subsequently, the proteins. 

The advantages of this method are high proteome coverage (at least for small 

proteomes like Deinococcus radiodurans) and short analysis time (3 hours, i.e. the 

typical duration of a HPLC-MS run). But this strategy requires that the retention 

times of thousands of peptides are recorded before the identification phase. 

Strittmatter et al. [11], for instance, recorded the retention times of more than 12000 

peptides from 1067 runs of MS/MS experiments. 

Instead of using previously measured retention times, only available for peptides 

characterized in previous experiments, several authors have used retention times 

predicted from the primary peptide sequence. Retention time predictions are generally 

available for every peptide, but the accuracy of this prediction will naturally be 

limited by the underlying model. 

Palmblad et al. [13] used their composition-based, linear, retention time predictor. 

The deviation from predicted mass and retention time is combined into a Euclidean 

distance after separate normalization in each dimension. The quality of the peptide 

match and the identification is estimated from the value of this distance. In later work 

the mass and retention time determinations were combined using a likelihood-based 

method [20]. 

Similarly, using their Support Vector Machine predictor, Pfeifer et al. [17, 18] 

added to the fragmentation-based detection a filter based on the deviation of the 

predicted retention times from the observed and normalized values. In this approach, 

a potential peptide match detected on the basis of fragmentation spectra is excluded if 

the deviation between the observed and predicted peptide retention times is above a 
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given threshold. The threshold value itself is determined via a parametrized linear 

model that allows the acceptable absolute deviation to increase with normalized 

observed retention time. 

Krokhin et al. [19] used their variant of the linear predictor in two different 

methods. MART analysis is based on fragmentation data from HPLC-MS/MS and 

uses predicted retention time to progressively eliminate peaks from the spectra, and 

thus speed up the computational identification process [21]. A second method is based 

only on HPLC-MS data. It first identifies the proteins compatible with all peptide 

masses detected in the MS data using the PMF search program Profound [5]. It then 

uses the extent of the correlation between predicted and measured retention times of 

the peptides belonging to each single protein to filter the results of PMF protein 

identification (see http://hs2.proteome.ca/SSRCalc/OKrokhin_ASMS07.pdf). 

 

1.3  A novel fragmentation-free approach 

Except for Krokhin’s correlation method, all identification strategies discussed above 

depend upon previously measured fragmentation spectra, which are required either to 

directly establish peptide-specific retention times, or to train predictive models. Thus, 

one way to improve these methods is to rely on more reproducible HPLC or more 

accurate predictions. However the reproducibility of HPLC and the precision of 

predictions are limited, depend on the particular experimental setup, and cannot be 

improved beyond the intrinsic variability of the HPLC procedure. 

Therefore, we designed a new approach which reduces the dependency on the 

retention time precision. Our approach relies on the retention order of the peptides 

rather than their retention time. By substituting the retention times by the retention 

order, we extract a more robust characterization of the retention process. Furthermore, 

we do not seek to identify isolated peptides, but rather groups of peptides coming 
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from the digest of the same protein: Each peptide will be identified from the 

experimental data only if other predicted peptides from the same candidate protein are 

also found in their predicted order. Unlike most of the methods described above, the 

proposed approach identifies proteins in one single step and not by first finding 

peptides and then proteins. 

These ideas have been implemented in an alignment method (detailed in Methods 

2.3.2) at the core of our identification strategy based on what we have called the 

Ordered Peptide Match score (OPM score). 

2  Material and methods 

2.1  Principle 

The principle of the new method is illustrated by Figure 1. For each protein in the 

relevant sequence database we first predict the peptides resulting from its enzymatic 

digest. In a second step, the HPLC retention time predictions for the peptides are 

obtained and the peptides are sorted by predicted retention time. In a third step we 

attempt to assign each predicted peptide for a given protein to a peak in a spectrum in 

the predicted order. We solved this alignment problem by dynamic programming. 

 

 

Figure 1 near here 

 

2.2  Experimental data 

Experimental data were obtained from the species Francisella tularensis subsp. 

novicida, a Gram negative bacterium that is a causative agent of the human and 
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animal disease tularemia1.  

2.2.1  Sample preparation 

Bacteria were grown in rich medium, harvested by centrifugation during the 

exponential growth phase and were broken with ultrasound after several rounds of 

freezing in dry ice-ethanol and thawing in a water bath at 12oC. Membrane-bound 

and soluble proteins were separated by centrifugation. Aliquots of both preparations 

were solubilised in 6M urea, reduced with tris(2-carboxyethyl)phosphine (TCEP) and 

alkylated with iodoacetamide. Samples were then treated with DTT and digested with 

trypsin. Samples were desalted on C18 reverse phase columns and analyzed by 

HPLC-MS/MS. For more details see [23]. 

 

2.2.2  Sample analysis 

Samples were loaded on a C-18 200Å pore size precolumn and separated on a C-18 

100Å pore size microcolumn (75 µm × 11 cm, 5 µm)(Magic C-18 AQ beads, 

Michrom Bioresources, CA). Retention was achieved by a 60 min long linear gradient 

from 10% to 45% of solvent B (100% acetonitrile) in solvent A (0.1% formic acid, 

5% acetonitrile) at a flow rate of 200nl/min. The spectra were obtained in a LTQ-FT-

ICR-MS (Linear Trap Quadrupole-Fourier Transform-Ion Cyclotron Resonance Mass 

Spectrometer, Thermo Electron, San Jose, CA). Ions with m/z between 400 and 1800 

were analyzed by FT-ICR. The most intense ions were fragmented by CID (Collision 

Induced Dissociation) and analyzed by LTQ. The nucleotide and protein sequences 

for Francisella tularensis subsp. novicida are publicly available from NCBI under the 

accession number NC_008601.1. 

 

                                                 
1   Francisella tularensis is considered a potential bioterrorism agent, see [22]. 
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2.3  Computational methods 

2.3.1  Data reduction 

In a first data analysis step, experimental data were preprocessed. The aim of this step 

was to reduce the spectra to mono-isotopic, mono-charged spectra. A method adapted 

from Matthiesen for his software VEMS [24] was applied, with the main difference 

that each spectrum was treated independently from the others. 

Deisotoping was carried out as follows: a global maximum charge was chosen for 

the ions. The spectrum was searched for peaks with intensities above a set threshold, 

starting with low values of the mass/charge ratio. When found, such peaks were 

considered as putative mono-isotopic peaks and a series of matching isotopic peaks 

with m/z spacing of 1/(charge±tolerance) was searched. If found, such a series was 

removed from the spectrum, stored with the corresponding charge value, and the 

search was continued. When the higher end of the spectrum was reached, the process 

was repeated from the lower end with the next lower value of the ion charge. The 

resulting list of mono-isotopic, mono-charged peaks was stored and used for 

searching the predicted peptides from the protein digest. 

To reduce the effect of experimental noise we only considered peaks with 

intensities in the top 24.5% quantile of each spectrum. In our experimental data this 

threshold was found to remove low intensity noise efficiently. 

2.3.2  Computation of Ordered Peptide Match score (OPM) 

The complete in silico digest was performed on all proteins predicted by the database. 

Only peptides at least four amino acids long were kept. For each protein these 

peptides were sorted according to their predicted order of retention from the HPLC 

column. For the results reported here we have used the hydrophobic predictions in 

TFA of the SSRCalc software, version 3.2, available on-line at 
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http://hs2.proteome.ca/SSRCalc/SSRCalc32.html [21, 25] . 

For each protein, the algorithm described in Figure 2 computes the optimal 

alignment of the predicted peptides with the ions found in the experimental spectra. 

This maximizes the OPM score. The score optimized in the alignment is defined as 

follows: the mass of each predicted peptide is compared to the closest mass in each 

spectrum after deisotoping and decharging. If ∆, the difference between the two 

masses is less than a given threshold, the contribution of the match to the score is +1, 

otherwise a penalty is counted (-1). The alignment is then built in a progressive way, 

as shown by Figure 2. A value of 0.008 Da for the mass threshold has been chosen 

because 95% of the peptides detected by fragmentation are within this distance from 

the true mass (see below 2.4). 

For the particular choice of scoring function used here, the optimal OPM score is 

an affine transform of the number of predicted peptides matched to the experimental 

data. Therefore in the rest of the text we use this property to simplify the analysis and 

the figures by using the number of matching peptides. 

Figure 2 near here 

 

2.3.3  Interpretation of the Ordered Peptide Match scores 

To evaluate the statistical significance of the OPM scores obtained for the proteins 

from the sequence databases, they were compared to the OPM scores of decoy 

proteins obtained by random permutation of the sequences of the real ones. Each of 

these decoy proteins had the same length, number of tryptic peptides and amino acid 

composition as its naturally occurring counterpart. In the database the number of 

proteins with the largest content of digest peptides was low. To obtain a sufficiently 

accurate estimate of the quantile limits for these large proteins (with more than 56 
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peptides), several permutations were performed for each of them. 

Because the alignment scores depend on the number of tryptic peptides (see 

Section 3.1 and Figure 3), and in the absence of a substantial theoretical 

justification for the use of a particular parametric distribution model, we decided to 

apply quantile regression [26, 27] to describe the empirical distribution of scores for 

the decoy proteins. Briefly, for each value of the variable (here, the number of tryptic 

peptides in the protein) quantile regression uses a weighting function to construct a 

local score distribution for the randomized proteins. The score of each real protein 

was compared to that local distribution for the same number of tryptic peptides, and 

the corresponding quantile was reported as the significance of the match. 

2.3.4  Estimation of the false discovery rate 

The observed distribution of scores for real proteins is modeled as a mixture 

generated by drawing from two populations: the proteins absent from the sample and 

those present. Since neither the relative contributions of each group nor the actual 

distribution of scores for proteins in the sample are known, we applied the following 

approximation. For each quantile limit, we considered that all proteins with scores 

below the limit were absent from the sample. We assumed a score distribution for 

these absent proteins identical to that of the decoy proteins, and that no real protein 

effectively present in the sample had a score below the quantile limit. This amounts to 

a conservative choice of the largest possible number of absent proteins for a given 

total number of proteins. Based on this distribution we calculated the number of 

absent real proteins expected to have a score above the quantile limit (false positives). 

For each quantile limit this allowed us to estimate the false discovery rate (FDR) as 

the proportion of false positives among the total positives with scores above the limit. 
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2.4  Comparison with fragmentation 

As the experimental data we used also included fragmentation spectra, we were able 

to compare the set of proteins identified by the OPM method with the set of proteins 

obtained by the standard fragmentation-based approach on the same experiments. 

Note that this analysis is likely to slightly underestimate the power of a pure OPM 

approach: If no time were devoted to the acquisition of fragmentation spectra, the 

additionally acquired MS spectra could be expected to improve the performance of 

the OPM method. Since this effect may not be very large, and since the comparison 

on the same dataset avoids statistical differences in all other respects, we chose to use 

the same dataset to evaluate both approaches. Fragmentation spectra were analyzed 

with the Mascot software [4]. Version 2.2.0 was used with the following parameters: 

sequence database: Francisella NC_008601 (NCBI), mass type: monoisotopic, fixed 

modifications: Carbamidomethyl (C), no variable modifications, enzyme: Trypsin, no 

missed cleavages, peak mass tolerance: 0.6, precursor mass tolerance: 1.2. For 

comparability, the false discovery rate (FDR) of Mascot was estimated by using a 

decoy database as described by [28] and the number of positive proteins retained 

from Mascot was set at 436 to obtain a FDR equal to that of the OPM method (5.7%). 

3  Results 

3.1  Correlation of peptide number and score 

Figure 3 shows, for each Francisella protein and each decoy protein, the OPM scores 

as a function of the number of their tryptic peptides (data in Table 1). The basis of the 

analysis is the comparison between the scores of the proteins encoded by the genome 

of the bacteria (1719 real proteins) and the decoy database made of 2205 fictive 
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proteins. 

For both groups of proteins, the score is, in a first approximation, proportional to 

the number of tryptic peptides in the protein. However, the slope of the associated 

least-squares regression line is higher for the real proteins (slope: 0.164 ± 0.003) than 

for the randomized ones (0.116 ± 0.002). This reflects the fact that the number of 

peptides matching with the experimental data is higher for the real proteins than for 

the decoy proteins. Also noteworthy is the larger deviation from linearity of scores for 

real proteins (R2 = 0.567) than for the decoy proteins (R2 = 0.673). This reflects the 

presence of real proteins with a large number of matching peptides and a high score 

absent from the decoy database. 

Figure 3 near here 

 

3.2  Detection of proteins and false discovery rate 

In this section we make use of the OPM score described above to classify proteins as 

either present or absent from the experimental sample. Because the alignment scores 

depend on the number of peptides in the proteins we could not use it directly for this 

purpose. Therefore, we used a quantile regression method. By building a conditional, 

empirical, local distribution of the scores for each number of peptides in the proteins, 

quantile regression allows the comparison of scores for real proteins with those of 

corresponding randomized proteins. The proteins from the experiment shown in 

Figure 3 were classified as described in methods (section 2.3.3 and see quantile 

assignment in Table 1). For several quantile values, the number of proteins with score 

above the quantile threshold is indicated in Table 2, top. Table 2 shows that the 

number of detected proteins (real proteins in the table) is much larger than the 

corresponding number from randomized proteins (random proteins in the table). The 
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proportion of randomized proteins above each threshold (random proteins) is 

consistent with the corresponding quantile limit, thus showing the absence of any 

large systematic bias in the local quantile estimator. 

Estimates of the FDR, the proportion of false positives among the positives, are 

also shown in Table 2. This estimated proportion decreases with the stringency of the 

detection from 34% for a quantile of 80% (721 proteins detected) to 5.7% for 99% 

(257 proteins detected). 

 

Table 2 near here 

 

3.3  Comparison of ordered and unordered 

peptide scores. 

When compared to classical peptides mass fingerprinting (PMF), the OPM scoring 

approach introduced here additionally considers the degree of consistency between 

the orders of measured and predicted retention times. The rationale for the present 

work is the idea that the order of elution of peptides based on their predicted retention 

times will introduce additional discriminatory power for matching the peptides. To 

verify the impact of this additional element, we performed the same analysis as 

above, but without taking into account the elution order of the peptides. Specifically, 

we created a fictive data set, where all experimental peaks retained after decharging 

and deisotoping (cf. Section 2.3.1) were present in every spectrum. The alignment 

procedure was then performed against this new data set, effectively neutralizing the 

order information present in the original data. 

As with the ordered peptides, the scores are proportional to the number of tryptic 

peptides. As expected, the alignment scores obtained (unordered peptide match 
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(UPM) scores) were larger than the OPM scores computed before. They were higher 

for the real proteins (slope: 0.427 ± 0.005) than for the randomized ones (slope: 0.356 

± 0.003). The deviation from proportionality is less than that for the ordered peptides 

(R2 = 0.807 for real proteins, R2 = 0.858 for randomized). In summary, the score 

difference between the real and the randomized proteins, which is the basis for the 

protein recognition procedure introduced here, is much weaker without the order than 

with it. 

This is also reflected in the detection of proteins as shown at the bottom of Table 

2. In this table we can see that for every value of the quantile limit, the number of real 

proteins labelled as present in the sample is lower than that obtained with the ordered 

peptides match score. In addition, the estimated FDR is larger. This is further 

illustrated in Figure 4 A, where the FDR is plotted against the number of detected 

proteins: For almost all numbers of recognized proteins (obtained by varying the 

quantile limit) the estimated FDR is substantially smaller when based on the OPM 

score than the UPM score. 

 

Figure 4 near here 

 

 

3.4  Comparison of ordered peptide matched score 

with fragmentation based identification. 

We determined how many of the proteins identified using the OPM method based on 

retention time and mass were also detected by Mascot on the basis of the 

fragmentation and MS/MS data from the same experiment. With our Mascot settings 

(see Methods), 436 proteins were identified in the experiment, out of 1719 annotated 
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in the genome of F. tularensis (see Table 3). Figure 4B shows the ROC curves 

obtained by comparing the identification results based on ordered or unordered 

peptide match scores to the proteins identified by Mascot. It can be seen that order 

information consistently improves the performance of the protein detector for values 

of the false positive rate (FPR) up to FPR = 0.4 (corresponding to a True Positive 

Rate of 0.91, at the low quantile limit of 0.66 (OPM), 0.654 (UPM)). This 

improvement is coupled to a significant reduction in the estimated false discovery rate 

(cf Figure 4A.). Table 2, Top also shows that the OPM method can detect proteins not 

identified from the fragmentation data: At the 99% quantile limit, 257 proteins were 

identified, of which 226 had been also detected by fragmentation and Mascot, 

revealing 31 newly detected proteins. Even when peptides of these 31 proteins had 

been identified they did not support the identification of the protein by Mascot under 

the settings used. For 6 of the 31 newly found proteins, no peptide had been identified 

by Mascot. For 8 of them, only one peptide had been identified by Mascot, and, for 

the remaining 17 proteins, at least 2 and up to 10 peptides had been identified. In 

addition, in a more extensive characterization of proteins expressed in Francisella 

tulerensis (1080 proteins detected), 27 of these 31 proteins have been detected 

independently by Rohmer et al. [29]. This overlap corresponds to a p-value of 3.4*10-

6 under the assumption of a random choice of the 31 proteins. 

Finally, the estimated FDR of 5.7 % of the OPM-based analysis corresponds to 15 

false positives out of the 257 proteins detected. Therefore even in the unlikely case 

where all proteins common to Mascot are real positives, such that all 15 false positive 

are clustered in the 31 additional proteins, at least 16 of these would be real new hits. 
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4  Discussion 

4.1  Summary of results 

In the present paper we describe an alignment approach that exploits both peptide 

mass and retention order for the identification of proteins. The main result of this 

work is that a combination of highly accurate MS, modern retention time prediction 

and robust scoring algorithm can be used to identify a large number of proteins, of the 

same order of magnitude as fragmentation-based methods. The scoring algorithm 

introduced here exploits both peptide mass and retention order for the identification 

of proteins. The new method tends to detect the same proteins as those detected in the 

fragmentation-based approach. It evaluates peptide peaks only within the context of 

the candidate proteins from which they arise. 

Using this method we were able to identify 257 proteins from Francisella 

tularensis. This is more than twenty times the 12 proteins repeatedly detected by 

Palmblad et al. from membranes of Yersinia pestis [20] in the only work that we are 

aware of, that reports concrete identification results from fragmentation-free MS and 

predicted HPLC retention times. Relative to the total number of proteins in the 

samples (at most 1719 in Francisella, and 456 in the membrane fraction of Yersinia 

pestis [30], we detect a much higher proportion of the proteins present in the sample 

(15% vs 2.6%) and are able to estimate a confidence level for these protein 

identifications. 
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4.2  Robustness of the scoring algorithm with 

regard to prediction errors 

As our scoring algorithm only relies on prediction order, it is robust against 

differences between predicted and measured retention time. This relaxes the accuracy 

requirement on the retention time predictor used: Differences between actual and 

predicted retention times will not change the outcome as long as they do not alter the 

retention order. 

Furthermore, if the predicted retention order for two peptides is inverted, both can 

still contribute to the OPM score: As long as they elute in the overlapping sections of 

their retention profiles, the peaks corresponding to these peptides can be found by the 

alignment, despite their wrong order. 

Finally, a correct retention order used is only relevant when comparing peptides 

resulting from the digest of the same protein. An incorrect retention order for peptides 

from other proteins has no influence on the OPM score. 

To test these ideas, we have simulated errors by adding Gaussian-distributed noise 

to each of the predicted peptide retention times and rerunning the analysis. We 

evaluated the effect of this modification on the estimated false discovery rate and on 

the number of proteins also found by fragmentation and Mascot. The magnitude of 

this noise is expressed in the same units as the hydrophobic index used by SSRCalc 

and described in Section 1.2.2. 

For a Gaussian noise with a standard deviation below 4 units, the FDR only 

slightly increased for all numbers of positive proteins. Similarly the ROC curve was 

only slightly modified. However when the standard deviation of the noise reached 5 

units and more, the FDR increased to the levels obtained when the order of peptides 

was not taken into account and even beyound that level. The same degradation was 

seen on the ROC curve. For comparison purposes we computed the intervals between 

Page 20 of 37

Wiley - VCH

PROTEOMICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

the predicted retention times of subsequent tryptic peptides belonging to the same 

proteins for all proteins in the database. Over the whole database, we found that the 

median of these intervals was 1.18 SSRCalc units and the 3rd quartile 2.84 units. This 

is consistent with the magnitude of the introduced noise for which the performance of 

our alignment-based detection method starts to be disrupted. 

4.3  Impact of the ion pairing reagent 

Commonly used ion pairing agents for the HPLC of peptides include Trifluoroacetic 

Acid (TFA) and Formic Acid (FA). The retention time predictor used here [21, 25] 

had been optimized by its authors for TFA on 100Å pore-size columns. On the other 

hand, the data that we used have been obtained with FA. Although the authors 

emphasized that the performance of their predictor was lower in FA than in TFA (the 

correlation coefficient between predictions and measures was only R2 = 0.94 with FA 

as opposed to a typical R2 = 0.99 with TFA on different columns), we still obtained an 

improvement of protein identification with the retention order in TFA. We interpret 

this result as evidence for the robustness of the OPM method. 

4.4  Impact of sample complexity and database 

size 

The performance of most protein identification approaches depends on the sample 

complexity and the size of the database: The more complex the sample, and the larger 

the database used for identification, the less one will be able to infer from MS peaks. 

We believe this to be true for the OPM approach as well. The examples shown here 

were obtained with samples of medium complexity, namely soluble proteins of whole 

cell lysate, from a prokaryote with a relatively small proteome: With its estimated 

1719 proteins, Francisella tularensis has a simple proteome: 262 (13.9%) of the 1886 
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entries listed in the Integr8 [1] database of complete genomes (version 110, May 26th, 

2010) include a number of proteins equal or smaller to that value. Similarly, 50% of 

the genomes in Integr8, V 110 have less than 3187 proteins. 

It is noteworthy that other strategies that require limited fragmentation data were 

also developed on target proteomes of relatively low complexity. For instance, the 

AMT strategy was developed on Deinococcus radiodurans, which has a proteome of 

3085 proteins [11] and the Yersinia pestis membrane fraction used by Palmblad [20] 

contains only 456 proteins. 

4.5  Post-translational modifications and missed 

clivages. 

Individual amino acids in proteins are often modified from their canonical form after 

protein synthesis. These post-translational modifications (PTMs) imply modifications 

in the measured masses and retention times. They can either affect every instance of 

the relevant amino acid (fixed PTM) or only a subset of a priori unknown size 

(variable PTM). Similarly, some predicted enzymatic cleavages may not occur 

experimentally (missed cleavage). 

As presented here, the OPM approach does not accommodate PTMs or missed 

cleavages, but it can easily be extended for both. Conceptually, fixed missed 

cleavages merely lead to a different set of peptides whose retention times can also be 

predicted. Variable missed cleavages are more problematic: because of the global 

nature of the scoring scheme, the match of several peptides could be affected by the 

modification of only one of them and the optimal alignment needs to be recomputed. 

The introduction of a PTM induces changes in both peptide mass and retention 

time. Any fixed PTM taken into account by the retention time predictor (as is the case 

here for the alkylation by iodoacetamide) only translates into a different set of ordered 
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peptides as input for the OPM method. In the case of variable PTMs, two possibilities 

(with and without the PTM) must be considered individually. As in other methods, the 

number of cases to consider will increase exponentially with the number of 

independent, variable PTMs in a given protein. 

The case of phosphorylations is of particular importance. According to Steen et al. 

[31], the retention time of peptides is, in many cases, not drastically modified upon 

phosphorylation, particularly if the number of basic residues in the peptide and the 

positive charges that they carry can counterbalance the additional negative charge 

induced by the phosphorylation. This would happen with monophosphorylated tryptic 

peptides which almost always have a basic residue (lysine or arginine) at their C-

terminal end. Therefore as the OPM method is robust to minor errors in the retention 

time it could readily accomodate phosphorylation using existing retention time 

prediction methods. 

 

4.6  Incorporating additional information 

The interest of a protein identification method based on HPLC and single MS could 

be questioned in view of the increasing availability of mass spectrometers with 

fragmentation and MS/MS capacity. 

However, even with the current generation of fast instruments, it is still not 

possible to fragment all the peptide ions from the first MS. Furthermore, not all the 

precursor ions selected for fragmentation provide spectra leading to the identification 

of peptide sequences. Therefore, the primary scans constitute a more complete 

representation of the peptides present in the samples than the series of assigned 

fragmentation spectra. The present method allows the use of data from this faithful 

representation of the digest peptides. 

Finally, the OPM approach can be used to incorporate additional information into 
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fragment-based analysis: For instance, in HPLC-MS/MS experiments, some proteins 

only give rise to a single fragmentation spectrum, which is frequently not considered 

as sufficient for unambiguous identification. Additional evidence about the presence 

of such a protein could be obtained by searching for peaks from its other peptides in 

the primary spectra, even if these peptides have not been fragmented. The scoring 

method described here can be modified for this purpose: If a peptide has been 

detected by fragmentation analysis, the alignment score for matching with this 

peptide is increased strongly above the default matching score. The rest of the 

alignment is executed as described above, rewarding matches of additional predicted 

peptides with the primary spectra. With the appropriate score settings, the resulting 

optimal alignment will incorporate the peptide recognized after fragmentation and the 

protein identification will thus be based on evidence from both primary and 

secondary spectra. Alternatively mass and retention time information from one 

experiment could be used in further experiments to guide the choice of precursor 

peptides, and thus provide more informative fragmentation steps. 

5  Conclusions 

Our main conclusion is that highly accurate mass measurements, modern retention 

time prediction, and a new scoring algorithm can be combined into a fragmentation-

free approach that is able to identify hundreds of proteins in a medium-complexity 

sample. This demonstrates for the first time that, supported by suitable informatics 

approaches, fragmentation-free mass spectrometry may, in the future and depending 

on sample complexity, deliver protein identification performance on a level similar to 

that of fragmentation-based approaches. In this respect, new instruments enable this 

possibility, for example the Thermo Exactive mass spectrometer 

(http://www.thermo.com/Exactive). 

The OPM method introduced here provides a novel approach of using the 
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information on peptide retention time for the identification of peptides by HPLC-MS. 

Contrary to existing methods [11] it does not require previous retention time 

measurement. Furthermore, it relies on the retention order of peptides, and not on 

their exact retention times. Therefore, it can use predictors not trained with data 

obtained in exactly the same conditions and on the same HPLC system used for the 

analysis. In the practical application which we studied here, the OPM approach 

identified a significant fraction of the proteins found by a fragmentation-based 

approach, and some additional proteins. 

Finally, the alignment method underlying the OPM approach may also be used in 

combination with fragmentation data in at least two ways: 1) The alignment for one 

specific protein can include one peptide recognized from MS/MS spectra and other 

peptides from the same protein matching peaks in primary scans. 2) The alignment 

results (mass and retention time of the peptides) can direct the choice of ions which 

will be submitted to fragmentation in further LC/MS-MS experiments with the same 

samples. 
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8  Figures and table legends 

  

Figure 1: Principle of the identification method: for each protein the predicted 

tryptic peptides are sorted according to their predicted retention time (bottom). They 

are then matched to ions from the spectra in the same order. Each trapezoid represents 

one experimental spectrum, and the masses of the peptides are symbolized by the 

height of the lines. Intensities of the peaks are not considered. Solid lines: Matching 

peptides; Dashed lines: Non matching peptides. 

  

Figure 2: This dynamic programming algorithm iteratively computes the score s
i,j

 

of the best alignments between a prefix (p
1
,...,p

j
) of the list of peptide masses and a 

prefix (S
1
,...,S

i
) of the list of spectra. Here the values of the no-peptide score and the 

no-spectrum score
 
are 0 and −1 respectively. 

  

Figure 3: Distribution of number of matched peptides for proteins from Francisella 

tularensis subsp. novicida with one HPLC-MS experiment. Each point represents a 

protein from the sequence database. For visualization only, the positions of the points 

are shifted by a small gaussian random amount (σ=0.5). The lines represent the best 

linear fits for the data (see text). Abscissa : number of peptides longer than 4 amino 

acids per protein; Ordinate: number of matched peptides. 
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Figure 4: Effect of incorporating the order of the peptides. A : Values of the 

estimated false discovery rate (FDR) for different numbers of proteins identified 

above the threshold, with or without taking the peptide order into account. B : 

Receiver Operating Characteristic (ROC) curves for the comparison of the novel 

method with results from peptide fragmentation and Mascot. The ROC curves are 

obtained using the output from Mascot as the reference set. 

  

Table 1: OPM scores and quantile assignment of F. tularensis proteins. For each 

protein this table lists the number of tryptic peptides longer than 4 amino acids and 

the number of these peptides matched to the experimental MS1 peaks by the 

alignement procedure. In the last column the quantile assignment of the protein in 

shown. This corresponds to the position of the alignment score in the distribution of 

all the scores for decoy proteins with the same number of tryptic peptides. 
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Table 2: Number and proportion of total proteins detected for several quantile 

limits. Top: with experimental peptides matching in the predicted order; Bottom: 

without ordering the peptides. Real proteins: number of real proteins detected (portion 

of total proteins); Random proteins: number of randomized proteins from the decoy 

database detected; FDR estimate: estimated proportion of absent proteins from the 

protein with scores above the quantile limit; Frag. overlap: detected proteins also 

identified from the fragmentation data with the Mascot software. The total number of 

proteins in the database is 1719 and 436 of them were identified by Mascot from the 

fragmentation spectra. 

  

Table 3: Proteins identified by fragmentation and Mascot. This table lists the 

accesssion numbers and Mascot scores for the 436 proteins detected by Mascot on the 

basis of the fragmentation (MS-MS)spectra. Based on the comparison with a decoy 

data base this number of proteins was retained in order to obtain a false discovery rate 

of 5.7%. 
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Ordered peptide match score

Quantile 0.80 0.90 0.95 0.99
Real proteins 721 (41.9%) 531 (30.9%) 407 (23.7%) 257 (14.9%)
Random proteins 372 (21.6%) 174 (10.1%) 93 (5.4%) 15(0.91%)
FDR estimate 34.60% 24.80% 16.90% 5.7%
Frag. overlap 376 337 295 226

Unordered peptide match score

Quantile 0.80 0.90 0.95 0.99
Real proteins 701 (40.8%) 479 (27.9%) 357 (20.8%) 181 (10.5%)
Random proteins 350 (20.4%) 168 (9.8%) 85 (4.9%) 16 (0.9%)
FDR estimate 36.3% 28.8% 20.0% 8.6%
Frag. overlap 367 301 256 158
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