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Abstract. We describe the broad outline of a new thermodynamics-
based algorithm, FFTbor, that uses the fast Fourier transform to perform
polynomial interpolation to compute the Boltzmann probability that sec-
ondary structures differ by k base pairs from an arbitrary reference struc-
ture of a given RNA sequence. The algorithm, which runs in quartic time
O(n4) and quadratic space O(n2), is used to determine the correlation
between kinetic folding speed and the ruggedness of the energy landscape,
and to predict the location of riboswitch expression platform candidates.
The full paper appears in PLoS ONE (2012) 19 Dec 2012. A web server
is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.
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In [2], we developed a dynamic programming algorithm, RNAbor, which si-
multaneously computes for each integer k, the Boltzmann probability pk = Zk

Z
of the subensemble of structures whose base pair distance to a given initial, or
reference, structure S∗ is k.4 RNAbor stores the value of the (partial) partition
functions Zk(i, j) for all 1 ≤ i ≤ j ≤ n and 0 ≤ k ≤ n, each of which requires
quadratic time to compute. Thus it follows that RNAbor runs in time O(n5) and
space O(n3), which severely limits its applicability to genomic annotation. This
restriction is somewhat mitigated by the fact that in [1], we showed how to use
sampling to efficiently approximate RNAbor in cubic time O(n3) and quadratic
space O(n2), provided that the starting structure S∗ is the minimum free energy
(MFE) structure. We expect that a more efficient version of RNAbor could be used
in applications in genomics and synthetic biology, to detect potential conforma-
tional switches – RNA sequences containing two or more (distinct) metastable
structures.

4 Here Z denotes the partition function, defined as the sum of all Boltzmann factors
exp(−E(S)/RT ), over all secondary structures S of a given RNA sequence, R denotes
the universal gas constant and T absolute temperature. Similarly Zk denotes the sum
of all Boltzmann factors of all structures S, whose base pair distance to the initial
structure S∗ is exactly k.
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Fig. 1. (Top) Output of FFTbor on
the 46 nt spliced leader conforma-
tional switch of Leptomonas collo-
soma, where reference structure S∗

is taken to be the minimum free
energy structure. (Bottom) Expected
base pair distance

P

k
k · Zk/Z from

the reference structure of the gua-
nine riboswitch of Bacillus subtilis, de-
picted in Figure 1A of [3]. FFTbor

was run on all 144 nt windows of
CP003901.1/847300-848050, compris-
ing the 5′ untranslated region of
the XPT gene (guanosine monophos-
phate reductase, with coding region
at CP003901.1/848026-848607) of the
unrelated organism Streptococcus pyo-
genes A20. FFTbor detects the gua-
nine riboswitch at position 847848,
where expected base pair distance to
S∗ achieves a minimum of 53.79, corre-
sponding to a Z-score of This predic-
tion corresponds well with the Rfam
prediction at nearby position 847844.

In this abstract, we announce a radically different algorithm, FFTbor, that
uses polynomial interpolation to compute the coefficients p0, . . . , pn−1 of the
polynomial p(x) = p0+p1x+· · ·+pn−1x

n−1, where pk is defined by pk = Zk

Z . Due
to severe numerical instability issues in both the Lagrange interpolation formula
and in Gaussian elimination, we employ the Fast Fourier Transform (FFT) to
compute the inverse Discrete Fourier Transform (DFT) on values y0, . . . , yn−1,
where yk = p(ωk) and ω = e2πi/n is the principal nth complex root of unity.
This gives rise to an improved version of RNAbor, denoted FFTbor, which runs in

time O(n4) and space O(n2) on a single processor, and in time O(n3

m ) on an m-
core machine using OpenMP. Figure 1 (top) depicts the rugged energy landscape
typical of a conformational switch, while Figure 1 (bottom) depicts expected
base pair distance, of each size 144 window in the 5′-UTR of S. pyogenes, to the
XPT riboswitch structure of B. subtilis.
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