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Abstract. RNA shapes, introduced by Giegerich et al. (17), pro-
vide a useful classification of the branching complexity for RNA
secondary structures. In this paper, we derive an exact value for
the asymptotic number of RNA shapes, by relying on an elegant
relation between non-ambiguous, context-free grammars and gen-
erating functions. Our results provide a theoretical upper bound
on the length of RNA sequences amenable to probabilistic shape
analysis (37; 41), under the assumption that any base can basepair
with any other base. Since the relation between context-free gram-
mars and asymptotic enumeration is simple yet not well-known in
bioinformatics, we give a self-contained presentation with illustra-
tive examples. Additionally, we prove a surprising 1-to-1 corre-
spondence between π-shapes and Motzkin numbers.
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1. Introduction

Recently, there has been an intense interest in RNA due to the sur-
prising, previously unsuspected regulatory and catalytic roles played
by ribonucleic acid in what until now has been primarily a predomi-
nantly protein-centric view of molecular biology. Apart from its long-
understood roles as mRNA and tRNA, ribonucleic acid molecules play
a catalytic role in peptide bond formation (45; 45) and in intron splicing
(40), both examples of enzymatic RNAs called ribozymes (14). RNA
also plays a role in post-transcriptional gene regulation by RNA inter-
ference (RNAi), for which discovery, A.Z. Fire and C.C. Mello were
awarded the 2006 Nobel Prize in Physiology or Medicine. By quite
different means, RNA performs transcriptional and translational gene
regulation by allostery, where a portion of the 5′ untranslated region
(5′ UTR) of mRNA known as a riboswitch (33; 46) can undergo a
conformational change upon binding a specific ligand such as adenine,
guanine, lysine, etc. RNA is known as well to play critical roles in
various other cellular mechanisms including dosage compensation (7),
protein shuttling (42), retranslation events such as selenocysteine in-
sertion (12) and ribosomal frameshift (4; 29), etc.

As in the case of protein, the function of RNA often depends on
its tertiary structure.1 Since such tertiary contacts disappear much
earlier than stacked base pairs when temperature is raised (3), it is
commonly believed that RNA secondary structure serves as a scaffold
for tertiary structure formation. For this reason, accurate prediction
of RNA secondary structure is an important problem of computational
biology.

Ab initio RNA secondary structure prediction by free energy min-
imization (Zuker (49)) is one of the real successes of bioinformatics,
along with sequence alignment (Smith-Waterman (36), BLAST (1),
PSI-BLAST (2)). Indeed, minimum free energy (MFE) secondary
structure prediction algorithms currently average 73% accuracy for se-
quences of length bounded by 700 (24). Reasons for this success de-
pend on a combination of techniques deriving from physical chemistry,
mathematics and computer science: (i) a realistic nearest neighbor en-
ergy model pioneered by Tinoco (19; 20), (ii) improved, experimen-
tally determined free energies for stacked base pairs and loops (25; 47),
(iii) a simple mathematical representation of secondary structures as
generalized balanced parenthesis expressions, which are generated by

1An exception to this statement is afforded by mRNA and small RNAs, such as
the approximately 21 nt. microRNAs (22), which effect post-transcriptional gene
regulation by hybridizing to mRNA.
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a context-free grammar (21), (iv) an efficient dynamic programming
algorithm which runs in time O(n3) and space O(n2), where n is the
length of the input RNA sequence (26; 49).

Due to the simple combinatorial representation of secondary struc-
tures, it is possible to apply methods of enumerative combinatorics to
determine the asymptotic number of RNA secondary structures, a re-
sult first obtained by Stein and Waterman (38; 44) by using a result
known as Bender’s theorem (5). Although the general idea is sound,
the hypotheses given in (5) are not sufficient for the conclusion of the
theorem to hold; indeed Canfield (8) gave a counterexample to the
statement of Bender’s theorem, and Meir and Moon (28) provided a
somewhat less general result, which nevertheless covers many enumer-
ation problems.

The following version of Bender-Meir-Moon is stated as Theorem
10.13 on page 1162 of (32).

Theorem 1.1 (Bender, Meir and Moon, Odlyzko). Suppose that f(z) =
∑∞

n=1 fnz
n is analytic at z = 0, that fn ≥ 0 for all n, and that

f(z) = G(z, f(z)), where G(z, w) =
∑

m,n≥0 gm,nz
mwn. Suppose that

there exist real numbers δ, r, s > 0 such that

• G(z, w) is analytic in |z| < r + δ and |w| < s+ δ.
• G(r, s) = s, Gw(r, s) = 1,
• Gz(r, s) 6= 0 and Gw,w(r, s) 6= 0.

Suppose that gm,n is real and non-negative for all m,n, that g0,0 = 0,
g0,1 6= 1,2 and gm,n > 0 for some m and some n ≥ 2. Assume further
that there exist h > j > i ≥ 1 such that fhfifj 6= 0 while the greatest
common divisor of j − i and h− i is 1. Then f(z) converges at z = r,
f(r) = s, and

fn = [zn]f(z) ∼
√

rGz(r, s)

2πGw,w(r, s)
r−nn−3/2.

In (18), Hofacker et al. extended results of Stein and Waterman
to determine the asymptotic number of various parameters related to
RNA secondary structure – parameters such as the expected number of
base pairs, average number of hairpin loops, expected size of bulges, etc.
In (34), Rodland applied the Bender-Meir-Moon Theorem to compute
the asymptotic number of RNA secondary structures including certain

2In Theorem 10.13 on page 1162 of (32), this condition is (incorrectly) stated as
g0,1 = 1, a typographic error, as evidenced by the example 10.14 on pages 1162-
1163, for which g0,1 6= 1. Odlyzko mentions that his statement of the theorem of
Meir and Moon includes some of his own corrections to (28).
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types of pseudoknots. Finally, in (10), we applied the theorem of Meir
and Moon (28) to determine the asymptotic number of saturated RNA
secondary structures; here, a structure S is saturated (48) if no base
pairs can be added to S without violating the definition of secondary
structure; equivalently S is saturated if it is locally optimal with respect
to the Nussinov-Jacobson energy model (31).

All of the previous asymptotic results were obtained by the following
approach.

Method 1.2.

(a) Inductively define the number an of objects of interest for length
n RNA by a recurrence relation3 usually involving a convolution
– i.e. a sum of the general form

∑

1≤k<n Sk · Sn−k.
(b) For the generating function w =

∑∞
n=0 anz

n, determine a si-
multaneous solution z = r, w = s for the (in general nonlinear)
functional equations G(z, w) = w and Gw(z, w) = 1, where Gw

denotes the partial derivative of G with respect to w.
(c) If G and a solution x = r, y = s satisfy the hypotheses of the

Bender-Meir-Moon Theorem 1.1, then

an ∼
√

rGz(r, s)

2πGww(r, s)
n−3/2 r−n

In place of the Bender-Meir-Moon Theorem 1.1, we make use of
Corollary 2 of Flajolet and Odlyzko (part (i) of (16) on page 224),
restated here as the following theorem. (Undefined concepts will be
explained later.)

Theorem 1.3 (Flajolet and Odlyzko). Assume that f(z) has a singu-
larity at z = 1 and is analytic in the region 4\1, depicted in Figure
A1 in the Appendix, and that as z → 1 in 4,

f(z) ∼ K(1 − z)α

Then, as n→ ∞, if α /∈ 0, 1, 2, ...,

fn ∼ K

Γ(−α)
· n−α−1.

3Such recurrence relations form the basis for dynamic programming algorithms
to count the number of structures, to determine the minimum free energy (MFE)
structure (31; 49) and to compute the Boltzmann partition function (27), which
latter yields thermodynamic parameters such as free energy, heat capacity, expected
internal energy, etc.
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In contrast with Method 1.2, the approach taken in this article is as
follows.

Method 1.4.

(a) Define a non-ambiguous context-free grammar G which gener-
ates the set of all combinatorial objects, regardless of length.

(b) Use the DSV methodology4 to immediately write down an ex-
plicit function for the generating function w = f(z) =

∑∞
n=0 anz

n.
In applications, it often happens that f(z) is a quotient of func-
tions involving fractional powers of polynomials.

(c) Determine the dominant singularity ρ of f(z). Rescale so that
ρ may be assumed to equal 1, and apply the Flajolet-Odlyzko
Theorem 1.3 to obtain an explicit formula for the asymptotic
value of an.

See Vauchaussade (39) for additional explanation of the DSV method,
and see Nebel (30) for an application of the Flajolet O-transfer method
and singularity analysis.

Advantages of the latter method are twofold. First, derivation of the
non-ambiguous context-free grammar and application of DSV method-
ology as summarized in (a),(b) of Method 1.4 is much easier than com-
plicated error-prone algebraic manipulations required to obtain (a),(b)
of Method 1.2. Second, it is often difficult or impossible to explic-
itly verify the hypotheses of the Bender-Meir-Moon Theorem 1.1. In
contrast, it is more straightforward to verify the hypotheses of the
Flajolet-Odlyzko Theorem 1.3.

The plan of this paper is as follows. In Section 2 we explain the rela-
tion between context-free grammars and generating functions, known
as the DSV method, and we show how to rescale the dominant singu-
larity ρ to 1 in order to apply the Flajolet-Odlyzko Theorem. (See the
Appendix for a clear explanation of any skipped details.) We illustrate
Method 1.4 by providing a simpler derivation for the well-known as-
ymptotic number of secondary structures (38). Our goal in reviewing
this material is to provide a broad understanding to the bioinformatics
community of the power and simplicity of the DSV method in finding
generating functions of combinatorial objects, and of the singularity
analysis of Flajolet and Odlyzko (16) to determine the asymptotic num-
ber of combinatorial objects described by these generating functions.
In Section 3, we present our new results concerning the asymptotic

4Presumably named after Dyck, Schützenberger and Viennot.
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number of RNA shapes. First, Section 3.1 presents background mate-
rial on RNA shapes (17; 37; 41). Second, in Section 3.2, we derive the
asymptotic number of π-shapes and of π-shapes compatible with some
secondary structure for a length n RNA sequence, under the assump-
tion that any base can basepair with any other base, and that there
is a minimum of one unpaired base in every hairpin loop. Third, In
Section 3.3, we derive the asymptotic number of π′-shapes and of π′-
shapes compatible with some secondary structure for a length n RNA
sequence. Section 3.4 presents a surprising one-to-one correspondence
between π-shapes having size 2n + 2 and and Motzkin words having
size n. In Section 4, we present a sharper asymptotic count on the
number of π-shapes having k stems or pairs of brackets. Taken to-
gether, our results provide evidence for the exponential time required
by the program RNAshapes of Giegerich and co-workers, which latter
computes the Boltzmann probability for occurrences of various RNA
shapes for a given sequence. Finally, in the Appendix, we present a
detailed, self-contained proof from basic principles of how to apply the
method of Flajolet and Odlyzko (16).

Source code for programs developed in this paper is available at the
web supplement bioinformatics.bc.edu/clotelab/RNAshapes/webSupplement.
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2. Method and Materials

In this section, we define non-ambiguous context-free grammars and
describe the DSV methodology. Since the asymptotic number of RNA
secondary structures on n is both well-known (38) and not difficult
to obtain, we illustrate the classic approach (recurrence relations and
Bender’s Theorem) with our current approach (DSV methodology and
Theorem of Flajolet and Odlyzko). We begin by recalling the definition
of RNA secondary structure.

Definition 2.1. A secondary structure S on RNA sequence s1, . . . , sn
is defined to be a set of ordered pairs (i, j), such that 1 ≤ i < j ≤ n
and the following are satisfied.

(1) Watson-Crick or GU wobble pairs: If (i, j) belongs to S, then
pair (ai, aj) must be one of the following canonical basepairs:
(A,U), (U,A), (G,C), (C,G), (G,U), (U,G).

(2) Threshold requirement: If (i, j) belongs to S, then j − i > θ,
where θ, generally taken to be equal to 3, is the minimum num-
ber of unpaired bases in a hairpin loop; i.e. there must be at
least θ unpaired bases in a hairpin loop.

(3) Nonexistence of pseudoknots: If (i, j) and (k, `) belong to S,
then it is not the case that i < k < j < `.

(4) No base triples: If (i, j) and (i, k) belong to S, then j = k; if
(i, j) and (k, j) belong to S, then i = k.

In this paper, we are interested in the asymptotic number of struc-
tures and of shapes of an RNA sequence of length n, so we follow
the convention of Stein and Waterman (38; 44) by assuming that any
position i can base-pair with any any position j, provide only that
|j − i| > θ; i.e. condition (1) of Definition 2.1 is dropped. From
this point on, we will speak of a secondary structure S on the sequence
1, . . . , n, rather than on the nucleotide sequence s1, . . . , sn. For brevity,
we may say that S is a secondary structure on n. The size of secondary
structure S is the number of base pairs belonging to S, whereas the
length of S is the length of the Vienna dot bracket notation equivalent
to S. Thus S is a secondary structure on n exactly when S has length
n. Since the nature of the nucleotide or base ai located at position i
is not pertinent to the combinatorial study in this paper, by abuse of
notation, we may say that i is a base.
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Following (38; 44), we illustrate Method 1.2 consisting of recurrence
relations and Bender-Meir-Moon by outlining the derivation of the as-
ymptotic number

S(n) ∼

√

15 + 7
√

5

8π
n−3/2

(

3 +
√

5

2

)n

∼ 1.104366 · 2.618034n/n3/2.(1)

of secondary structures on n. As explained above, this assumes that
the minimum number θ of unpaired bases in a hairpin loop is taken to
be 1 and that each bases can basepair with any other base.

2.1. Context-free grammars and DSV method. In this section,
we illustrate Method 1.4 consisting of the DSV method and Flajolet-
Odlyzko. We recall the definition of non-ambiguous context-free gram-
mars and explain the DSV method which relates such grammars with
generating functions.

2.1.1. Some context on context-free grammars. Let Σ be a finite set of
symbols. A language is a subset of Σ∗, the set of all words a1, . . . , an,
where ai ∈ Σ for all 0 ≤ i ≤ n and n is an arbitrary integer. In
this paper, Σ will consist of left parenthesis ( , right parenthesis ) ,
and dot • when discussing secondary structures and of left bracket [ ,
right bracket ] , and dot • when discussing shapes. (Giegerich et al.
(17) use an underscore to denote an unpaired shape region, while we
use dot • to denote this.)

A context-free grammar is given by G = (V,Σ, R, S0), where V is a
finite set of nonterminal symbols (also called variables), Σ is a disjoint
finite set of terminal symbols, S0 ∈ V is the start nonterminal, and

R ⊂ V × (V ∪ Σ)∗

is a finite set of production rules. Elements of R are usually denoted by
A → w, rather than (A,w). If rules A → α1,. . . , A → αm all have the
same left hand side, then this is usually abbreviated by A→ α1| · · · |αm.

If x, y ∈ (V ∪ Σ)∗ and A → w is a rule, then by replacing the
occurrence of A in xAy we obtain xwy. Such a derivation in one step
is denoted by xAy ⇒G xwy, while the reflexive, transitive closure of
⇒G is denoted ⇒∗

G. The language generated by context-free grammar
G is denoted by L(G), and defined by

L(G) = {w ∈ Σ∗ : S0 ⇒∗
G w}.

For any nonterminal S ∈ V , we also write L(S) to denote the language
generated by rules from G when using start symbol S.

A context-free grammar G = (V,Σ, R, S0) is in Chomsky normal
form when all rules in R are of the form A → BC, or A → a, where
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A,B,C ∈ V and a ∈ Σ. Grammar G is said to be ε-free if either (i)
L(G) does not contain the empty word, ε, and G contains no rule of the
form A→ ε, or (ii) L(G) contains the empty word ε, and the only rule
occurrence of ε is S0 → ε. It is a classical result that every context-free
language is generated by a context-free ε-free grammar in Chomsky
normal form (21). Note that there do exist context-free languages L
which are inherently ambiguous, in the sense that no non-ambiguous
context-free grammar generates L.

If w = w1 · · ·wn is a word of length n in L(G), where G is a context-
free grammar, then a parse tree for w is a multifurcating tree T , such
that:

(1) w is the word formed by reading from left to right the leaves of
T .

(2) The root of T is labeled by S, the initial, “start” variable for
the grammar G.

(3) If a node of T is labeled by A, then
(a) either that node has only one child, which is labeled a and

A→ a is a rule of G,
(b) or that node has k children, labeled by B1| . . . |Bk, and

A→ B1 · · ·Bk is a rule of G.

A context-free grammar G is called non-ambiguous, if there is no word
w ∈ L(G) which admits two distinct parse trees.

2.1.2. From grammars to generating functions. A general approach to
the enumeration of combinatorial objects relies on generating functions.
The so-called length generating function for an object class C is defined
by C(z) :=

∑

i≥0Cnz
n, where Cn is the finite number of objects having

size n in the class C. From such a function, it is sometimes possible
to derive a closed-form formula for the coefficient of order n, denoted
by [zn]C(z), which is also the number Cn of objects of size n. Further-
more, it is almost always possible to efficiently derive the behavior of
Cn when n approaches infinity (16), as is described later in the paper.
Sometimes, an explicit expression for C(z) is unnecessary, and the as-
ymptotic value of Cn can be derived, for instance by means of Lagrange
inversion, from a functional equation involving C(z).

A generating function can be obtained through recurrence relations,
which may involve long and arduous calculations; for instance, see
(38; 43) for the enumeration of RNA secondary structures, as sum-
marized in (a),(b) of Method 1.2. However, an alternative technique,
due to M. Schützenberger and summarized in (a),(b) of Method 1.4,
can be used to derive the generating function of C. This technique is
known as the DSV method; see (6) for more details. The key idea is
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Type of nonterminal Equation for the l.g.f.
S → T | U S(z) = T (z) + U(z)
S → T U S(z) = T (z)U(z)
S → t S(z) = z
S → ε S(z) = 1

Table 1. Translation between context-free grammars
and generating functions. Here, G = (V,Σ, S0, R) is a
given context-free grammar, S, T and U are any non-
terminal symbols in V , and t is a terminal symbol in Σ.
The length generating functions (l.g.f) for the languages
L(S), L(T ), L(U) are respectively denoted by S(z), T (z),
U(z).

as follows. Instead of counting the objects of C, one may instead count
the number of words of a language L that encodes the objects of C.
An ambiguous generative process for the language can then be directly
transposed into a set of equations involving L(z), where L(z) is the
generating function of L and L(z) = C(z). See (15) for a survey of
actual admissible constructions. When the language L is context-free,
generated by a non-ambiguous context-free grammar G, such equations
can be deduced directly from the rules of G, using the scheme in Table
1. The correctness of this translation scheme is given in the following
theorem.

Theorem 2.2. Let G = (V,Σ, R, S0) be a non-ambiguous, ε-free, context-
free grammar in Chomsky normal form. For each nonterminal symbol
S, let S(z) be the corresponding generating function, defined by apply-
ing the translation scheme from Table 1. If L(z) denotes the length
generating function for the language L(G), then S0(z) = L(z).

Proof. In order to prove the validity of the previous equations,
we introduce the notation S for the language generated from a given
nonterminal S and Sn for its restriction to words having size n. From
the definition of a grammar, we directly get:

S → T | U ⇒ S = T ∪ U
S → T U ⇒ S = T · U
S → t ⇒ S = {t} ⇒ S(z) = z
S → ε ⇒ S = ∅ ⇒ S(z) = z0 = 1

where the operator dot · denotes language concatenation; i.e. the ex-
tension to sets of the concatenation operation.



ASYMPTOTICS OF RNA SHAPES 11

Since the grammar is non-ambiguous, the union involved in S = T ∪
U is disjoint, and the equation can be transposed to the cardinalities:

Sn = Tn + Un
After recalling that T (z) =

∑

n≥0 Tnzn and U(z) =
∑

n≥0 Unzn, we get:

T (z)+U(z) =
∑

n≥0

Tnzn+
∑

n≥0

Unzn =
∑

n≥0

(Tn+Un)zn =
∑

n≥0

Snzn = S(z)

Moreover, in the case of language concatenation, S = T · U , the
non-ambiguity of the grammar ensures that each word ω in S admits
a unique decomposition ω = ωpωs such that prefix ωp ∈ T and suffix
ωs ∈ U . Thus, we have

Sn =
n∑

i=0

Ti · Un−i

and

T (z)U(z) =
∑

n≥0

Tnzn
∑

n≥0

Unzn =
∑

n≥0

n∑

i=0

Ti · Un−izn =
∑

n≥0

Snzn = S(z)

¤

Theorem 2.2 assumes that G is an ε-free grammar for simplicity of
notation. There is no loss of generality, since it is well known that
such an equivalent form exists for any given non-ambiguous grammar.
However, it is unnecessary to put the grammar into ε-free form before
applying the translation rules from Table 1, since the proof above can
easily be extended to general rules of the form S → α1 | . . . | αk,
where αi ∈ (V ∪Σ)∗ are words over the alphabet of both terminal and
nonterminal symbols. Such an extension would involve the introduction
of new dummy nonterminal characters, each of which appears on the
left side in Chomsky-style rules. In fact, this is the basic principle of
the Chomsky normal form construction.

Recurrence relations and Bender-Meir-Moon. An alternative to
the method of Bender, Meir and Moon is that developed in the paper by
Flajolet and Odlyzko (16). We outline the technique here; details and
necessary background are given in the Appendix. This alternative, as
mentioned in the introduction, is very general, and does not require all
of the technical conditions of theorems based on Bender’s (5) theorem.
This alternative is well suited to a wide class of problems, including
problems described in this paper.

In this section, we illustrate the application of Method 1.2 in order
to establish a classic result of Stein and Waterman (38) concerning the
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asymptotic number

sn ∼

√

15 + 7
√

5

8π
n−3/2

(

3 +
√

5

2

)n

∼ 1.104366 · n−3/2 · 2.618034n

of secondary structures on n. As earlier mentioned, it is here assumed
that the minimum number θ of unpaired bases in a hairpin loop is 1;
i.e. sn is the number of balanced-parenthesis expressions with dot, such
that if i, j form a base pair, then |j − i| > 1.

Proposition 2.3 (Stein and Waterman (38)). We have s0 = s1 = s2 =
1 and for all n > 2,

sn = sn−1 +
n−2∑

k=1

sk−1 · sn−k−1.

Proof. By induction on n. There is only one empty word, so s0 = 1,
and clearly s1 = 1 = s2. For the inductive case, there are two subcases:
either n is not basepaired, or n basepairs with some k ∈ {1, . . . , n−2}.
In the former case, the contribution is sn−1. Suppose that n basepairs
with some k ∈ {1, . . . , n− 2}. Since there are no pseudoknots, if (x, y)
is a base pair different than (k, n), then either 1 ≤ x < y < k or
k + 1 ≤ x < y < n, hence the contribution is sk−1 · sn−k−1. ¤

Lemma 2.4 (Stein and Waterman (38)). Letting w = f(z) =
∞∑

n=1

snz
n,

we have w2z2 − w(1 − z − z2) + z = 0.

Proof.

w2 =

( ∞∑

n=1

snz
n

)2

=
∞∑

n=1

(
n−1∑

k=1

sksn−k

)

zn.(2)

By Proposition 2.3, sn = sn−1 +
∑n−2

k=1 sk−1 · sn−k−1. Replacing n by
n + 2, we have sn+2 = sn+1 +

∑n
k=1 sk−1 · sn−(k−1). Substituting r for

k − 1, we have sn+2 = sn+1 +
∑n

r=0 sr · sn−r. Since s0 = 1, we have
∑n

r=0 sr · sn−r = sn +
∑n−1

r=0 sr · sn−r, so

sn+2 − sn+1 − sn =
n−1∑

r=0

sr · sn−r.

Now

w2 =

( ∞∑

n=1

snz
n

)2

=
∞∑

n=1

(
n−1∑

k=1

sksn−k

)

zn
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so

w2 =
∞∑

n=1

(sn+2 − sn+1 − sn)z
n =

∞∑

n=1

sn+2z
n −

∞∑

n=1

sn+1z
n −

∞∑

n=1

snz
n.

Note that

w − s1z − s2z
2

z2
=

∞∑

n=1

sn+2z
n

and

w − s1z

z
=

∞∑

n=1

sn+1z
n.

Thus

w2 =
w − z − z2

z2
− w − z

z
− w

Multiply by z2 to get

z2w2 = w − z − z2 − zw + z2 − wz2(3)

so

z2w2 − w(1 − z − z2) + z = 0

¤

Theorem 2.5 (Stein and Waterman (38)).

sn ∼

√

15 + 7
√

5

8π
n−3/2

(

3 +
√

5

2

)n

Proof. Noting that the golden ratio α = 1+
√

5
2

, the theorem states

that sn has growth rate Θ
(

(1+α)n

n3/2

)

. From equation (3), we have that

the generating function w =
∞∑

n=1

snz
n satisfies G(z, w) = w where G is

defined by

G(z, w) = w2z2 − w(1 − z − z2) + z + w

= w2z2 + wz + wz2 + z.

Solve the system G(z, w) = w, Gw(z, w) = 1, i.e.

w2z2 + wz + wz2 + z = w(4)

2wz2 + z + z2 = 1.(5)
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A solution of equations (4,5) is given by z = r, w = s, where r = 2
3+

√
5

and s = 1+
√

5
2

. If we can apply Theorem 1.1, then we obtain the desired

sn ∼

√

15 + 7
√

5

8π
n−3/2

(

3 +
√

5

2

)n

∼ 1.104366 · n−3/2 · 2.618034n.

Let’s verify the hypotheses of Bender-Meir-Moon Theorem 1.1. Clearly
S(z) =

∑∞
n=1 snz

n is analytic at 0, with sn ≥ 0 for all n. Since

G(z, w) = w2z2 + wz2 + wz + z(6)

we’ve seen that G(z, w) = w. As a polynomial in variables z, w, G
is clearly analytic in |z| < r + δ and |w| < s + δ, and since r, s is a
solution of equations (4) and (5), we have G(r, s) = s, Gw(r, s) = 1.
From equation (6), g0,0 = 0 and gm,n ≥ 0 for all m,n. The Taylor
coefficient g0,1 of z0w1 is 0, hence g0,1 6= 1, and the Taylor coefficient
g1,2 of zw2 is 1, hence gm,n > 0 for some m and some n ≥ 2. Taking
i = 1, j = 2, h = 3, the greatest common divisor of j − i and h− i is 1
and we have sisjsh 6= 0. We have verified all the conditions of Theorem
1.1, and so conclude the proof of equation (1).

DVS and Flajolet-Odlyzko. In this section, we illustrate the appli-
cation of Method 1.4 and give an alternate proof for the classic result
of Stein and Waterman (38) concerning the asymptotic number

sn ∼

√

15 + 7
√

5

8π
n−3/2

(

3 +
√

5

2

)n

∼ 1.104366 · n−3/2 · 2.618034n(7)

of secondary structures on n.
Consider the context-free grammar G with the following rules:

S → • | S • | (S ) | S (S )
Motivated by the Nussinov-Jacobson algorithm (31), it is easy to estab-
lish by induction on word length that G is a non-ambiguous grammar
which generates all non-empty secondary structures. (A minor modifi-
cation of the grammar generates all secondary structures where θ = 3.)
By DVS methodology, the generating function for non-empty Vienna
notation expressions for RNA secondary structures is a solution of the
following equation:

S = z + Sz + Sz2 + S2z2

Notice that this equation is identical to equation (6), and that its
derivation took two lines, in contrast with the rather lengthy alge-
bra involving convolutions. By the quadratic formula, the roots of this
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equation are S+ and S− where

S+ =
1 − z − z2 +

√
1 − 2z − z2 − 2z3 + z4

2z2

S− =
1 − z − z2 −

√
1 − 2z − z2 − 2z3 + z4

2z2
.

Since S(z) is analytic at z = 0 and S+ blows up at the origin, we must
choose S−.5

The dominant singularity z = r will be that root of P (z) having
least modulus, for the polynomial P (z) = 1 − 2z − z2 − 2z3 + z4 oc-
curring within the radical. Mathematica computes that the roots are

two imaginary roots with modulus 1 and the real roots 3−
√

5
2

, 3+
√

5
2

. It

follows that the dominant singularity6 is ρ := 3−
√

5
2

. The asymptotic
value of the coefficients sn of the generating series S(z) =

∑

n snz
n

is determined by the comportment of the function f(z) := S−(z) =
1−z−z2−

√
1−2z−z2−2z3+z4

2z2
about the dominant singularity ρ. (See the

Appendix for detailed justification of this and other points.) De-

fine G(z) = 1−z−z2
2z2

and H(z) = −
√

1−2z−z2−2z3+z4

2z2
, so that f(z) =

G(z) + H(z). Since G(z) is of slow growth, the asymptotic value of
sn is in fact determined by the comportment of H(z) about ρ (see the
Appendix for justification). In order to apply Theorem 1.3, we rescale
the dominant singularity from ρ to 1 by making the change of variable
x = z/ρ. This ensures that x approaches 1 exactly when z approaches
ρ. Since ρ is a root of P (z) = 1 − 2z − z2 − 2z3 + z4, and we are
working over the complex numbers, we can factor (1−z/ρ) out of P (z)
to obtain Q(z) = 1 + 0.618z + 0.618z2 − 0.382z3. Thus

P (z) = 1 − 2z − z2 − 2z3 + z4

= Q(z) · (1 − z/ρ)

= (1 + 0.618z + 0.618z2 − 0.382z3) · (1 − z/ρ).

5Note that the Taylor expansion of
√

1 − 2z − z2 − 2z3 + z4 about z = 0 is
1 − z − z2 − 2z3 − 2z4 − 4z5 − 8z6 − 16z7 + · · · , where all coefficients of z are
negative. Since S− has a minus sign before the term

√
1 − 2z − z2 − 2z3 + z4, its

Taylor expansion at 0 has non-negative coefficients for each term zn, as required
for the generating function

∑

n
snz

n. This is the case for all applications of DSV
methodology in this paper.

6The dominant singularity is that singularity ρ, which is the only singularity
on the circle of convergence z = |ρ|; i.e. ρ is the isolated singularity having least
modulus |ρ|. Later, an example will be given where singularities of a different
function include both r and −r of smallest modulus. In such cases, r is not isolated
and Theorem 1.3 cannot be directly applied.
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It follows that

H(z) = −
√

P (z)

2z2
= −

√

Q(z)

2z2
· (1 − z/ρ)−1/2(8)

= −
√

Q(ρx)

2(ρx)2
· (1 − x)−1/2.(9)

hence

H(z) ∼ −
√

Q(ρx)

2(ρx)2
· (1 − x)−1/2(10)

as x approaches 1, or equivalently z approaches ρ. Let K = −
√
Q(ρ)

2ρ2
=

−3.91487 and let α = −1/2, and compute that Γ(−1/2) = −2π. The
hypotheses of Theorem 1.3 hold, so we conclude that

sn ∼ K

Γ(−1/2)
· n−3/2 · (1/ρ)n = 1.104366 · n−3/2 · 2.61803n

which agrees with equation (1). ¤

We now use DSV plus Flajolet-Odlyzko to obtain asymptotics for
RNA shapes.
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3. Asymptotic number of RNA shapes

In this section, we begin by presenting some background material
on RNA shapes (17; 37; 41). In Section 3.2, we derive the asymp-
totic number of π-shapes and of π-shapes compatible with a length n
sequence, and in Section 3.3, we derive corresponding values for π ′-
shapes. Section 3.4 presents a surprising one-to-one correspondence
between π-shapes having size 2n + 2 and and Motzkin words having
size n.

3.1. Computing the shape of a secondary structure. In (17),
Giegerich and co-workers defined an RNA shape to be a particular
compact representation of the branching structure of a given RNA sec-
ondary structure. From (17), a shape abstraction is defined to be a
homomorphic mapping from the set of all secondary structures (con-
sidered as parse trees with respect to a given context-free grammar
over the terminal symbols • , ( , ) ) into the set of well-balanced dot-
bracket expressions (considered as parse trees with respect to another
given context-free grammar over the terminal symbols • , [ , ] ).7 Al-
though (17) considered five different shape abstractions, details were
given only for the two shape abstractions π and π′; see (17) for the for-
mal definition using tree homomorphisms. For example, the π-shape
of the usual cloverleaf secondary structure of tRNA is [ [ ] [ ] [ ] ] ,
while the less succinct π′-shape is [ • [ • ] • [ • ] • [ • ] ] • , since
a typical tRNA structure has no unpaired bases on the 5′ end or be-
tween the T-stem and acceptor stem. Another example is given in
Figure 1, which depicts two different secondary structures, both hav-
ing the same π-shape.

If s is a given secondary structure, then to compute the correspond-
ing π-shape, one first removes all dots • and then replaces all stems
(base-paired regions possibly interrupted by bulges and internal loops)
by a single base pair [ · · · ] . To obtain the corresponding π ′-shape,
contract all maximal consecutive dots • k by a single dot • , and replace
all maximal nested, uninterrupted stacks of base pairs ( k · · · ) k by a
single base pair [ · · · ] . Formally, we have the following linear time
algorithm to compute the π- and π′-shape of a secondary structure s,
where s is given in Vienna notation.

Algorithm 3.1. function secStr2shape(s,shapeType)
//Input: sec str s in Vienna notation and shape type π, π ′

7In this paper, we use the dot • in place of the underscore symbol , which latter
is used in (17).
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Figure 1. Two RNA secondary structures described by
the π-shape [ [ ] [ ] ] .

//Output: π-shape or π′-shape of s, depending on shape type
1 if shapeType = π
2 remove all dots from s
3 else if shapeType = π′

4 replace each group of consecutive dots in s by single dot
5 n = |s| // s = s1, . . . , sn where dots have been contracted
6 if n ≤ 2 return •
7 use stack to convert Vienna notation s into list S of base pairs
8 for i = 1 to n, A[i] = 0
9 for (i, j) in S, A[i] = j
10 // Array A satisfies A[i] = j if (i, j) ∈ S, else A[i] = 0
11 x = y = 0 // x (resp. y) denotes lastLeftPos (resp. lastRightPos)

12 //last pos of left, right paren used to contract adjacent parentheses

13 for i = 1 to n
14 if A[i] > 0 //i is base paired to j = A[i]
15 if i = x+ 1 and A[i] = y − 1
16 j = A[i]; x = i; y = j
17 //update last viewed base paired positions

18 si = sj = 0 //mark positions i, j by 0 for subsequent deletion
19 else

20 x = i; y = j //update last viewed base paired positions
21 else //i is not base-paired
22 x = y = 0 //reset positions
23 strip all occurrences of 0 from s
24 return s
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3.2. Combinatorics for π-shapes. In this section we derive the num-
ber of π-shapes by first using the Bender-Meir-Moon Theorem 1.1 and
then using the Flajolet-Odlyzko Theorem 1.3.

Let an [resp. bn] denote the number of π-shapes [resp. number of
π-shapes which can be placed within an external bracket pair [ · ]
and which have n pairs of brackets. It is not difficult to prove that
a0 = 1 = a1, b0 = 1, b1 = 0 and for n ≥ 2,

an =
n−1−i∑

i=0

ai · bn−1−i(11)

bn =
n−1−i∑

i=1

ai · bn−1−i.(12)

By a lot of algebra, we could derive a functional relation of the form
G(x, y) = y, where y =

∑∞
n=0 anx

n. Since this is tedious and error-
prone, we instead use the DSV methodology.

Let G = (V,Σ, R, S) be the context-free grammar, where V is the
set consisting of S, T , Σ is the set consisting of [ , ] , and the rules in
R are given as follows

S → [T ]S | [T ](13)

T → [T ]S | ε
By induction on length, it follows that G is a non-ambiguous grammar
for the collection of all nonempty π-shapes, and after some algebra, the
DSV method yields the equation

S(z) = z2S(z)2 + z2S(z) + z2(14)

With the aim of applying the Bender-Meir-Moon Theorem 1.1, we de-
fine the function G(z, w) = z2w2 + z2w + z2 and would like to obtain
that the asymptotic number sn of π-shapes of length n is

sn = [zn]S(z) ∼
√

rGz(r, s)

2πGw,w(r, s)
n−3/2r−n(15)

=

√

3

2π
· n−3/2 ·

√
3
n

(16)

However, the hypotheses of the Bender-Meir-Moon Theorem 1.1 are
not satisfied, since there are no values of 1 ≤ i < j < h for which the
greatest common divisor of j − i and h− i is 1 and fhfifj 6= 0; indeed,
since every π-shape has even length, sn = 0 for n odd. Moreover, as

we’ll soon see, the value
√

3
2π

· n−3/2 ·
√

3
n

is off by a factor of 2.
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We proceed as follows. Make the variable change x = z2, and define
R(x) =

∑

n rnx
n. Since sn = 0 for odd n, we have

R(x) =
∞∑

n=0

rnx
n =

∞∑

n=0

s2nz
2n

=

( ∞∑

n=0

s2nz
2n

)

+

( ∞∑

n=0

s2n+1z
2n+1

)

=
∞∑

n=0

snz
n = S(z).

Next, it follows from (14) that

R(x) = xR(x)2 + xR(x) + x.(17)

Letting w denote R(x), if we define G(x,w) = xw2 + xw + x, then it
is straightforward to verify the hypotheses of the Bender-Meir-Moon
Theorem 1.1 for the values r = 1/3, s = 1, which satisfy

G(r, s) = s

Gw(r, s) = 1.

Hence it follows that

[z2n]S(z) = [xn]R(x) ∼
√

rGz(r, s)

2πGw,w(r, s)
· n−3/2 · r−n

=

√

3

4π
· n−3/2 · 3n

=

√

3

4π
·
(

2n

2

)−3/2

·
√

3
2n

=

√

6

π
· (2n)−3/2 ·

√
3

2n
.

Thus [z2n]S(z) =
√

6/π ·(2n)−3/2 ·
√

3
2n

. Since there are no π-shapes of
odd length, [z2n+1]S(z) = 0 and it follows that the number of π-shapes

is
√

6/π · n−3/2 ·
√

3
n
, provided n is even. This value has been verified

by simulation of equations (11) and (12).
Now we derive the same result using DSV methodology and the

Flajolet-Odlyzko Theorem 1.3. From (14), we use the quadratic for-
mula to solve for S in S(z) = z2S(z)2 + z2S(z) + z2 and obtain

S(z) =
1 − z2 ±

√
1 − 2z2 − 3z4

2z2
.(18)
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Since S(x) =
∑∞

n=0 snz
n is the length generating function for π-shapes,

obtained by a Taylor expansion of S(x) at z = 0, we clearly must choose
the solution with a minus sign before the radical, i.e.

S(z) =
1 − z2 −

√
1 − 2z2 − 3z4

2z2
.(19)

The dominant singularity will occur where the square root evaluates to
0, or where the denominator is 0. However since a generating function
is always analytic at z = 0, the dominant singularity must be that
root of the polynomial 1 − 2z2 − 3z4 having least modulus. The roots
are 0.57735, −0.57735, ±i; however, since |0.57735| = | − 0.57735|,
there does not exist a unique singularity isolated within a circle of
convergence about the origin, hence Theorem 1.3 cannot be applied.
As before, we make the variable change x = z2, and define R(x) =
∑

n rnx
n. Since sn = 0 for odd n, as before we have

R(x) =
∞∑

n=0

rnx
n =

∞∑

n=0

s2nz
2n

=
∞∑

n=0

snz
n = S(z)

and

R(x) =
1 − x−

√
1 − 2x− 3x2

2x
.(20)

The roots of P (x) = 1 − 2x − 3x2 are −1, 1/3, hence the dominant
singularity of R(x) is x = ρ = 1/3. Factor (1 − x/ρ) out of P (x) to
obtain P (x) = Q(x) · (1 − 3x), where Q(x) = 1 + x. Define H(x) =

−
√

1+x
2x

, and let K = H(ρ)
Γ(−1/2)

=
√

3
4π

. The hypotheses of Theorem 1.3 are

satisfied so we deduce that

[xn]R(x) ∼ K

Γ(−1/2)
· n−3/2 · (1/ρ)n ≈

√
3

4π
· n−3/2 · 3n.

As before,

[z2n]S(z) = [xn]R(x) =

√

6

π
· (2n)−3/2 ·

√
3

2n

and we conclude that the number of π-shapes is
√

6/π · n−3/2 ·
√

3
n
,

provided n is even.
It is often non-trivial to verify that the hypotheses necessary for ap-

plication of the theorem of Meir and Moon (28), as well as of Odlyzko’s
correction of Meir-Moon given in Theorem 10.13 on page 1162 of (32).
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In some cases, like the example in the next subsection, they are not
satisfied.

We now compute the number of π-shapes compatible with RNA sec-
ondary structures of length n. (Recall that the length of a secondary
structure is the number of symbols in its dot-parenthesis Vienna nota-
tion.)

π-shapes compatible with RNA sequences of length n. Our main inter-
est is to compute the asymptotic number of π-shapes compatible with
secondary structures of length n.

The following grammar non-ambiguously generates all nonempty ex-
pressions that begin with an arbitrary number of occurrences of the
dummy character ¤, followed (essentially) by a nonempty π-shape.8

Since the software RNAshapes (17; 37; 41), assumes a minimum of
θ = 3 unpaired bases in a hairpin loop, we consider the non-ambiguous
context-free grammar Gπ with the following rules:

S → ¤S | A
A → A [B ] | [B ]
B → A [B ] | •3

where •3 abbreviates • • •. Although there are no dots • occurring
in π-shapes, our grammar requires •3 to properly count the number
of π-shapes compatible with length n secondary structures. Note that
the grammar rules correspond to the various cases in the Nussinov-
Jacobson algorithm (11; 31).

We claim that the collection P of π-shapes of nonempty secondary
structures of length n is in one-to-one correspondence with the set R
of words of length n generated by the grammar Gπ.

To see that |P| ≤ |R|, let φ0 ∈ P be a π-shape of a nonempty sec-
ondary structure of length n. Let φ1 be obtained from φ0 by replacing
opposing symbols [ ] (with no intervening symbols between [ and
] ) by [ •3 ] . Let φ2 = ¤

kφ1 be obtained by prefixing k = n − |φ1|
many occurrences of the symbol ¤ to φ1. Clearly φ2 is a length n ex-
pression which is generated by the grammar Gπ. This correspondence
is one-to-one.

To see that |R| ≤ |P|, let φ0 ∈ R. Replacing all occurrences of
the symbol [ resp. ] by ( resp. ) , and replacing occurrences of the
symbol¤ by •, we obtain a secondary structure S0 of length n having π-
shape φ0. This correspondence is one-to-one. It follows that |P| = |R|,

8Essentially, in the sense that opposing symbols [ ] (with no intervening sym-
bols between [ and ] ) are replaced by [ •3 ] , as required by the grammar Gπ

about to be defined.
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hence by using DSV methodology and the Odlyzko-Flajolet theorem to
count the number of length n expressions generated by the grammar
Gπ, we obtain the asymptotic number of π-shapes corresponding to
secondary structures of length n.

By DSV, we have the equations

S = zS + A

A = z2AB + z2B

B = z2AB + z3

For notational simplification in the previous equations, we write S in
place of S(z), and similarly for A,B. Such notational simplifications
will be tacitly applied without mention. Solving for S using substitution
we find that

S(z) = z2(1 − z)2S(z)2 + (z + z5 − z6)S(z) + z5(21)

Define the function G(z, w) = z2(1 − z)2w2 + (z + z5 − z6)w + z5.
The hypotheses of the Bender-Meir-Moon Theorem 1.1 are not sat-
isfied. In particular, for the power series expansion of G(z, w) =
∑

m,n≥0 gm,nz
mwn, it is required that gm,n ≥ 0, but by taking partial

derivatives, we can calculate that g6,1 is negative.
Until now we have seen the superior simplicity of the DSV method

over algebraic manipulations, in order to obtain a functional relation
of the form (21). Now we will see the the usefulness of the Flajolet-
Odlyzko Theorem 1.3.

We solve equation (21) using Mathematica to obtain two solutions
for S, given by

S+(z) =
−1 + z5 +

√
1 − 2z5 − 4z7 + z10

2(−1 + z)z2
(22)

S−(z) =
−1 + z5 −

√
1 − 2z5 − 4z7 + z10

2(−1 + z)z2
.(23)

Since S(z) =
∑∞

n=0 snz
n is a generating function obtained by a Tay-

lor expansion about z = 0, as before we must choose the solution
S(z) = S−(z). The function S(z) will be analytic except possibly
where the denominator is zero, or where the value inside the square
root is zero. The dominant singularity, which determines the exponen-
tial growth, is the singularity closest to 0 in the complex plane, and
is almost always a real number. In the present case, the dominant
singularity, ρ is a solution to the equation 1 − 2z5 − 4z7 + z10 = 0,
and using Mathematica, we find ρ ≈ 0.756 from which we immediately
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deduce that the exponential growth is (1/ρ)n ≈ (1.322)n. For many
applications this is enough, and no deeper analysis is needed.

To obtain more precise asymptotics, we will first ignore the part of
the equation without the dominant singularity, since this part grows
more slowly as n approaches infinity (see the Appendix for justification

of this point). Thus S(z) = G(z) +H(z), where G(z) = −1+z5

2(−1+z)z2
and

H(z) = −
√

1 − 2z5 − 4z7 + z10

2(−1 + z)z2
.(24)

Factor the singularity
√

1 − z/ρ out of H(z) so that

H(z) =

√

1 − z/ρ
√

Q(z)

2(−1 + z)z2
(25)

where Q(z) can be gotten by simply dividing polynomials. Since sin-
gularity ρ is isolated, we can apply the Flajolet-Odlyzko Theorem 1.3.
Make the variable change x = z/ρ and define J(x) = H(z), so that

J(x) = −
√

Q(ρx)

2(ρx− 1)ρ2x2
(1 − x)1/2 .(26)

We now have J(x) in the required form to apply the Flajolet-Odlyzko
Theorem 1.3, where the (rescaled) singularity is x = 1, and the power of
(1−x) is α = 1/2. The location of the singularity gives the exponential
growth, as mentioned. We pull out the singularity from H and evaluate
the rest at ρ, dividing by Γ(−α) = Γ(−1/2) to get the constant for the
asymptotics, given by the following calculations.

K =

√

Q(ρ)

2(ρ− 1)ρ2
≈ −8.65846(27)

sn ∼ K

Γ(−1/2)
· n−3/2 ·

(
1

ρ

)n

(28)

sn ∼ 2.44251 · n−3/2 · 1.32218n.(29)

This last equation gives the asymptotic number sn of π-shapes compat-
ible with secondary structures of length n; i.e. π-shapes of secondary
structures for an RNA sequence of length n, assuming that every base
can basepair with every other base and that there is a minimum of
θ = 3 unpaired bases in every hairpin loop.

See the web supplement for full justification of all details concerning
application of the Flajolet-Odlyzko Theorem 1.3 to compute the num-
ber sn given in (29) of π-shapes compatible with secondary structures
of length n.
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3.3. Combinatorics for π′-shapes. LetG = (V,Σ, R, S) be the context-
free grammar, where the set V of nonterminalsconsists of S, T, U , the
set Σ of terminals consists of [ , ] , • , and the rules in R are given by
the following.

S → U [T ]S | U
T → U [T ]U [T ]S | • [T ] | [T ] • | • [T ] • | ε
U → • | ε

By induction on length it can be shown that G is a non-ambiguous
grammar for the collection of all π′-shapes, including the empty word
ε. In particular T generates all π′-shapes for secondary structures which
can appear within an external base pair – i.e. either a hairpin loop, left
or right bulge, internal loop or multi-loop. Note the close similarity of
the grammar rules with the treatment of various cases in McCaskill’s
algorithm (27) for the partition function over all secondary structures.

By DSV we obtain the corresponding equations (see web supple-
ment) and solve for them with Mathematica to get the generating se-
ries function. The asymptotics are then obtained by again using the
same method as in the last section to obtain

Sn ∼ 0.985542 · n−3/2 · 2.40591n.(30)

Let G = (V,Σ, R, S0) be the context-free grammar, where V =
{S0, S, T, U}, Σ = { [ , ] , • }, and the rules in R are given by the
following.

S0 → ¤S0 | S
S → U [T ]S | U
T → U [T ]U [T ]S | • [T ] | [T ] • | • [T ] • | •3

U → • | ε

By induction on length it can be shown that G is a non-ambiguous
grammar which generates all π′-shapes possibly prefixed by a finite
number of occurrences of the dummy variable ¤, where •3 appears in
each hairpin loop. It follows that the number of π′-shapes correspond-
ing to secondary structures of length n is equal to the number of words
of length n generated by G. By misuse of terminology, we may at times
say that G is a grammar which generates the collection of π ′-shapes
compatible with secondary structures on n. As before, note that T gen-
erates all π′-shapes for secondary structures which can appear within
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an external base pair – i.e. either a hairpin loop, left or right bulge,
internal loop or multi-loop. By using DSV and Mathematica, we obtain

Sn ∼ 1.27613 · 1.80776n · n−3/2.(31)

3.4. Correspondence between π-shapes and Motzkin numbers.

Motzkin words are well-balanced words in the alphabet ( , ) , • , i.e.
those for which θ in Definition 2.1 is 0. We denote the set of all Motzkin
words by M. Motzkin words are generated by the non-ambiguous
context-free grammar having the rules:

M → (M )M | •M | ε(32)

The following theorem establishes a surprising correspondence between
Motzkin numbers and π-shapes.

Theorem 3.1. Let sn be the number of π-shapes of size n and mn the
number of Motzkin words of size n. Then

(33) s2n+2 = mn

Proof. A Dyck word is a well-balanced parenthesis expression,
with no occurrences of dot • . Clearly, π-shapes are exactly those
Dyck words not containing doubly nested [ [D ] ] patterns, where
D is a Dyck word. The grammar given in (13) at the beginning of
Section 3.2 generates the collection of non-empty π-shapes. By a small
modification, we obtain the following non-ambiguous grammar G =
(V,Σ, R, S0), which generates π-shapes, including the empty shape ε.

S → R | ε
R → [T ]R | [T ]
T → [T ]R | ε

This grammar is equivalent to the grammar

S → [T ]S | ε
T → [T ] [T ]S | ε

where T generates π-shapes which can be placed within an exterior
bracket [ · · · ] . By DSV methodology, the length-generating function
S(z) for π-shapes is the solution of

S(z) = R(z) + 1

R(z) = R(z)T (z)z2 + T (z)z2

T (z) = R(z)T (z)z2 + 1
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Using Mathematica, we eliminate R(z), T (z) to obtain

S+(z) =
1 − z2 +

√
1 − 2z2 − 3z4

2z2

S−(z) =
1 − z2 −

√
1 − 2z2 − 3z4

2z2

Since S(z) =
∑∞

n=0 snz
n is a generating function, we have S(z) =

S−(z).9

(34) S(z) =
1 + z2 −

√
1 − 2z2 − 3z4

2z2

On the other hand the grammar in (32) for the Motzkin words,
including the empty word, yields the following equation for the length
generating function M(z) for Motzkin words

M(z) = z2M(z)2 + zM(z) + 1

The solution for this equation is

(35) M(z) =
1 − z −

√
1 − 2z − 3z2

2z2

The generating functions S(z) for π-shapes andM(z) for Motzkin num-
bers turn out to be surprisingly similar. More precisely, we have

(36) S(z) = 1 + z2M(z2)

After recalling that S(z) =
∑

n≥0 snz
n and M(z) =

∑

n≥0mnz
n, where

sn is the number of π-shapes of size n and mn the number of Motzkin
words of size n, we get

∑

n≥0

snz
n = 1 +

∑

n≥0

mnz
2n+2

∑

n≥0
n even

snz
n +

∑

n≥1
n odd

snz
n = 1 +

∑

n≥0

mnz
2n+2

∑

n≥0

s2nz
2n +

∑

n≥1
n odd

snz
n = 1 +

∑

n≥0

mnz
2n+2

s0 +
∑

n≥0

s2n+2z
2n+2 +

∑

n≥1
n odd

snz
n = 1 +

∑

n≥0

mnz
2n+2

9The solution of equation (14) in Section 3.2 is 1−z
2
−

√

1−2z2
−3z4

2z2 , which is the
generating function of π-shapes without the empty word. Since the current gram-
mar generates the empty word, the right side of equation (34) differs by 1.
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Notice that Dyck words (well-balanced parenthesis words) are of even
length, so that

∑

n≥1
n odd

snz
n = 0.

Thus, for even n ≥ 0
s2n+2 = mn.

¤

3.5. Hairpin loops where θ > 0. From Theorem 3.1 in the previ-
ous subsection, it is tempting to conjecture the existence of a similar
one-to-one correspondence between secondary structures of length n,
assuming that hairpin loops contain at least θ > 0 unpaired bases, and
π-shapes, assuming that a minimum number θ of dots • appear in
closing brackets [ ] . However, as shown in Figure 2, no such corre-
spondence exists. In Figure 2, we see that the number of π-shapes of
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Figure 2. Asymptotic exponential growth factors for
both π-shapes and Motzkin words/RNA secondary struc-
tures for increasing values of θ. These numbers are com-
puted from the generating series for each θ using the
function infsing of the Maple package GFun(35).

size 2n with θ = 3 grows more slowly than the number of RNA sec-
ondary structures having a minimum of θ′ unpaired base inside each
hairpin loops, for all values of θ′.
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This phenomenon could be explained if RNA secondary structures
of length n have significantly fewer hairpin loops than do π-shapes of
length 2n. In such a case, a parameter (in this case θ) that impacts
the number of hairpin loops would naturally have a radically different
effect on the two combinatorial classes. However, the expected number
of hairpin loops turns out to surprisingly similar.

Theorem 3.2 (Expected number of hairpin loops inside π-Shapes
and Motzkin words). Let Xn (resp. Y2n+2) be the random variable
which counts the number of hairpin loops in a random, uniformly drawn
Motzkin word (resp. π-shape) of length n (resp. 2n+ 2). Then the ex-
pected number mt

n = E(Xn) of hairpin loops (resp. of terminal brackets
[ ] st2n = E(Y2n+2)] satisfies

mt
n ∼ n

6
+ O(1) st2n+2 ∼

2n

3
+ O(1)

Thus, there are 4 times more terminal loops inside π-shapes than
inside Motzkin words.

Proof. Consider the following grammar for the Motzkin words,
adapted in order to mark each occurrence of a hairpin or terminal loop
with a special dummy terminal symbol H, having size 0:

M → (N )M | •M | ε
N → (N )M | •N | H

Following the DSV methodology introduced earlier and replacing each
occurrence of H by a new variable u, we obtain the equations

M(z, u) = M(z, u)N(z, u)z2 +M(u, z)z + 1

N(z, u) = M(z, u)N(z, u)z2 +N(u, z)z + u

from which we obtain the solution

M(z, u) =
∑

ω∈M
z|ω|uτ(ω) =

∑

n≥0

∑

k≥0

mn,kz
nuk

=
1 − 2z + (2 − u)z2 −

√

1 − 4z + (4 − 2u)z2 + 4uz3 + (u2 − 4u)z4

2z2(1 − z)
.

Here τ : M → N is the function which counts the number of occur-
rences of hairpin loops inside a Motzkin word, and mn,k is the number
of Motzkin words having size n and k hairpin loops.

We now use the classical observation, found for instance in (13), that
the expected number mh

n of hairpin loops in Motzkin words of length
n is closely related to the partial derivative of the multivariate length
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generating function. More precisely,

[zn]∂M(z,u)
∂u

(z, 1)

[zn]M(z, 1)
=

[zn]
(∑

i≥0

∑

k≥0mi,kz
ikuk−1

)
(z, 1)

mn

=

∑

k≥0mn,kk

mn

=
∑

k≥0

kP(Xn = k)

= E(Xn) = mh
n

Here, P(Xn = k) =
mn,k

mn
is the (uniform) probability that a Motzkin

word of length has exactly k hairpin loops. Then we apply the as-
ymptotic techniques extensively described throughout this article to
∂M(z,u)

∂u
(z, 1) and M(z, 1), and obtain

[zn]
∂M(z, u)

∂u
(z, 1) ∼

√
3

4
√
π

3n√
n

+ O(
1

n
√
n

)

[zn]M(z, 1) ∼ 3
√

3

2
√
π

3n

n
√
n

+ O(
1

n2
√
n

)

from which the ratio
[zn]

∂M(z,u)
∂u

(z,1)

[zn]M(z,1)
yields the claimed result.

This proof also holds for the π-shapes, using the grammar

S → [T ]S | ε
T → [T ] [T ]S | H

where H is a length 0 dummy symbol to mark hairpin loops. This
yields the generating function

S(z, u) =
1 + (2 − u)z2 −

√

1 − 2uz2 − (4u− u2)z4

2z2

and, using the DSV technique coupled with singularity analysis (15),

[z2n+2]
∂S(z, u)

∂u
(z, 1) ∼

√
3√
π

3n√
n

+ O(
1

n
√
n

)

¤
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4. π-shapes with k stems

In this section, we apply the DSV method and the Flajolet-Odlyzko
Theorem 1.3 in order to compute the number of π-shapes having k-
stems, i.e. k pairs of brackets. Unlike other sections, the material
makes use of more advanced singularity analysis techniques from (15).

π-expansion. Let S denote the set of secondary structures in Vienna
notation, and let P denote the set of all π-shapes. First we consider
the total number of secondary structures of size n compatible with a
given shape π. We claim that the set of RNA structures compatible
with a given shape π can be exhaustively built from π by the means of
an operation called π-expansion, consisting in two consecutive trans-
formations:

(1) Helix expansion: Replace each opening left bracket [ resp.
its corresponding right closing bracket ] , by k open parentheses
( k, resp. right parentheses ) k, for k ≥ 1.

(2) Unpaired base insertion: Insert any number of unpaired
bases (symbol • ) at any position in the structure resulting from
the previous operation, except among occurrences of the motif
( )where at least θ must be added.

We claim that this transformation is non-ambiguous, meaning that
there is at most one way to obtain a given structure r from a given
shape π by applying the above two transformations.

Let us properly define these concepts and notions, starting with a
factorization of RNA secondary structures into shapes, introduced al-
ready in Algorithm 3.1.

Definition 4.1 (π-factorization). Define the factorization function φ :
S → P, mapping RNA secondary structures into π-shapes, given by
φ = φ2 ◦ φ1, where

φ1(αω) =

{
φ1(ω) if α = •
αφ1(ω) if α ∈ { ( , ) }

φ1(ε) = ε

where ω ∈ { • , ( , ) }∗ is a suffix of an RNA secondary structure, α ∈
{ • , ( , ) } and

φ2( (
kω ) kω′) = [φ2(ω) ]φ2(ω

′)
φ2(ε) = ε

for k ≥ 0, ω, ω′ ∈ S and ω not of the form (ω′′ ) with ω′′ ∈ S.
Alternatively, this means that k is maximal such that ω ∈ S.
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Definition 4.2 (π-expansion). Let P(S) be the set of all subsets of S,
also called the power set of S. Define π-expansion to be the function
ψ : P → P(S), given by ψ = ψ2 ◦ ψ1, where

ψ1( [ω ]ω
′) =

⋃

k≥1

{ ( k}.ψ1(ω).{ ) k}.ψ1(ω
′)

ψ1(ε) = ε

with ω, ω′ ∈ P and

ψ2(αα
′ω) =

{
{ • ∗ ( • θ}.ψ2(α

′ω) if αα′ = ( )
{ • ∗α}.ψ2(α

′ω) otherwise

ψ2(α) = { • ∗α • ∗}
ψ2(ε) = { • ∗}

where α ∈ { ( , ) }, α ∈ α ∈ { ( , ) } and • ∗ is a macro for the union
language of any number of dots • corresponding to unpaired bases.

Note that the functions ψ1 and ψ2 correspond to the transformations
(1) and (2) introduced above.

Proposition 4.3. For all π ∈ P, the π-expansion of π is exactly the set
of all secondary structures of RNA that factor into π, i.e. all secondary
structures having shape π, or more formally

ψ(π) = {r ∈ S | φ(r) = π}, for all π ∈ P

Moreover, the construction ψ is non-ambiguous.

Proof. For any π ∈ P, let:

• Aπ ⊂ S be the set of RNA structures ω such that φ(ω) = π
• Bπ = φ1(Aπ) be the set of Dyck words ω such that φ2(ω) = π
• Cπ = ψ1(π)
• Dπ = ψ2(Cπ) = ψ(π).

Then proving the Proposition 4.3 is equivalent to proving that Aπ =
Dπ.

Aπ DππBπ Cπψ1φ1 φ2 ψ2

Figure 3. Sketch of the proof goes as follows. We first
identify Bπ with Cπ and then prove that the inverse im-
age of any ω ∈ Bπ = Cπ under φ1 is the same as the
image of ω under ψ2. Then it follows directly that Aπ =
Dπ.
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• Bπ = Cπ:
This equality can be proved by induction on the size |π| of the
shape π. For |π| = 0, the only candidate for π is ε, therefore
Bπ = Cπ = {ε}. Assume now that, ∀π ∈ P such that |π| ≤ n,
Bπ = Cπ holds. Then for π such that |π| = k+1, we know that
π = [ π′ ] π′′ (|π| > 0). Recall that

Bπ = {w ∈ D | φ2(w) = π}.
Since |w| > 0 (|w| ≥ |π|), w can be decomposed in w =
( kw′ ) kw′′, for given w′, w′′ ∈ D such that w′ 6= ( v ) , v ∈ D
(k is maximal). Thus we get the following equivalent definition
for Bπ:

Bπ = { ( kw′ ) kw′′ ∈ D | w′ 6= ( v ) and φ2( (
kw′ ) kw′′) = [π′ ] π′′}

= { ( kw′ ) kw′′ ∈ D | w′ 6= ( v ) , w′ ∈ Bπ′ and w′′ ∈ Bπ′′}
= { ( kw′ ) kw′′ ∈ D | w′ ∈ Bπ′ and w′′ ∈ Bπ′′}.

Let us now focus on Bπ, which can be defined as:

Cπ = {v ∈ D | v ∈ ψ1(π)}
= { ( k′

v′ ) k
′

v′′ ∈ D | v′ ∈ Cπ′ and v′′ ∈ Cπ′′}.
After noting that |π′| < |π| (resp. |π′′| < |π|), we apply the
induction hypothesis yields (w′ ∈ Bπ′) ⇔ (w′ ∈ Cπ′) and (w′′ ∈
Bπ′′) ⇔ (w′′ ∈ Cπ′′). This establishes the equality Bπ = Cπ.

• Aπ = Dπ:
We will focus first on A′

ω, the inverse image of ω ∈ D under φ1,
and on D′

ω, the image of ω ∈ D under ψ2. As φ1 simply deletes
each occurrence of an unpaired base • , its inverse should con-
sist of inserting any number of dot symbols • before or after any
symbol in the shape expression. However, such a construction
would also yield words over { ( , ) , • }∗ that are not secondary
structures, due to the constraint that there are at least θ un-
paired bases symbolized by dots • in each hairpin (or terminal)
loop. Therefore, a minimum number of at least θ dots •must
occur within the ( )motif. The resulting construction is then
exactly that of ψ2, thus A′

ω = D′
ω. As

Aπ =
⋃

ω∈Bπ

A′
ω , Dπ =

⋃

ω∈Cπ

D′
ω and Bπ = Cπ,

then Aπ = Dπ.

Concerning the non-ambiguity of the construction, we first point out
that in the definitions of ψ1 and ψ2, at most one rule can be applied at
any time, and the unions involved in the definitions of the right-hand
sides are obviously disjoint. The only potentially pathological case
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would then consist of two shapes π and π′, mapping to two distinct
sets S and S ′ under ψ1, and then mapping to a unique set T under ψ2.
Since Dπ = Aπ, the image of T under φ is a singleton, which makes
such a case impossible to arise. ¤

Theorem 4.4. Let π ∈ P be a shape, having m base pairs and h occur-
rences of the motif [ ] . Let L(π) := ψ(π) be the language associated
with π through the π-expansion. Then the length generating function
Lπ(z) :=

∑

ω∈L(π) z
|ω| of L(π) is given by

(37) Lπ(z) =
zθh

1 − z

z2m

(1 − 2z)m

Furthermore, the number sπn of RNA secondary structures that map
under φ to a given π-shape π is asymptotically given by

(38) sπn = [zn]Lπ(z) ∼
1

2θh+2m−1

2nnm−1

(m− 1)!
(1 + O(1/n))

Proof. Let k = {k1, . . . , km}, ki ≥ 1 be the indices assigned by ψ1

to the parentheses in a left-to-right fashion, and let ψk

1 (π) ∈ D be the
Dyck word obtained from π under ψ1 using values from k during the
expansion of helices. The length generating function for the language
ψ1(π) is then ψ1π(z) such that

ψ1π(z) =
∑

ω∈ψ1(π)

z|ω| =
∑

k
ki≥1

z|ψ
k

1 (π)| =
∑

n≥0

∑

k
ki≥1
|k|=n

zn =
z2m

(1 − z2)m

for |k| =
∑m

i=1 ki. The last part of the previous equation arises from the
enumeration of the partitions of n into m non-empty parts. It can also
be derived directly from the fact that generating functions are commu-
tative images of languages, which means that it is possible to remove
the order in a sequence. Let Eπ be the reconciliation language built
by reordering the words of ψ1(π) such that each opening parenthesis
is immediately followed by its corresponding closing one. Thus, the
languages ψ1(π) and Eπ share the same generating function. Namely:

Eπ =
⋃

k
ki≥1

{( ( ) )k1 . . . ( ( ) )km} = L(( ( ) )+ . . . ( ( ) )+

︸ ︷︷ ︸

m times

)

It is well known that the generating function of the language having
regular expression ( ( ) )+ is z2

1−z2 , so we get the result10.

10The language denoted by the previous regular expression is ambiguous. How-
ever, the multiplicity of a word generated from it exactly equals the number of
words from ψ1(π), so that the generating functions are the same for ψ1π and Eπ.
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The transform ψ2 applied to a Dyck word ω appends any number of
dots • occurring at the end of ω as well as before each symbol, while
ensuring a minimal number θ of dots • in each hairpin loop. Since
the variable z in ψ1π(z) is the image of a dot • in ψ1(π), this sub-
stitution resp. concatenation transformation on the language amounts
to a composition resp. product of the generating functions, according
to DSV methodology. Recall that the language { • }∗ of any number
of unpaired bases has generating function 1

1−z and that the θ unpaired
bases in each of the h hairpin loops can be gathered (commutativity).
Thus obtaining a factor zθh in the generating function, we get:

ψπ(z) =
zθh

1 − z
ψ1π(

z

1 − z
)

=
zθh

1 − z

z2m

(1 − z)2m

1
(

1 −
(

z
1−z
)2
)m

=
zθh

1 − z

z2m

(1 − z)2m

(1 − z)2m

((1 − z)2 − z2)m

=
zθh

1 − z

z2m

(1 − 2z)m
= Lπ(z)

Using singularity analysis techniques extensively described in (15), it
is then possible to extract the asymptotic behavior of sπn = [zn]Lπ(z),
the number of secondary structures of size n associated with a given
shape π.

The dominant singularity ρ is the pole of 1
(1−2z)m , thus ρ = 1/2.

Observing that [zn]Lπ(z) = ρ−n[zn]Lπ(zρ), we focus on the function
f(z) = Lπ(z/2), namely

f(z) =
z2mzθh

2θh+2m(1 − z/2)

1

(1 − z)m

whose dominant singularity is now at z = 1. By defining

g(z) =
1

2θh+2m−1

1

(1 − z)m

it follows that f(z) ∼ g(z). The function g(z) is of the basic-scale type
defined in (15), and thus admits an asymptotical expansion of the form

[zn]g(z) ∼ 1

2θh+2m−1

nm−1

Γ(m)
=

1

2θh+2m−1

nm−1

(m− 1)!
(1 + O(1/n))

Since the generating function is of rational type, it meets the analyticity
condition of (15), so that we can transfer the asymptotic behavior of
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the coefficient of g(z) into the behavior of [zn]f(z). The results follows,
after recalling that [zn]Lπ(z) = 2n[zn]f(z). ¤



ASYMPTOTICS OF RNA SHAPES 37

5. Discussion

In this paper, we determine the asymptotic number of π- and π ′-
shapes, as well as the number of shapes compatible with an RNA sec-
ondary structure of length n. We describe the DSV method which
allows very simple determination of the function S(z) whose power se-
ries

∑

n≥0 snz
n has the property that sn is the number of combinatorial

objects (secondary structures, π-shapes, π′-shapes, etc.) of length n.
The DSV method begins with a non-ambiguous context-free grammar
that generates all combinatorial objects, regardless of length, and ap-
plies a simple transform to obtain an implicit equation for S(z), where
S(z) =

∑

n≥0 snz
n is the length generating function for the combina-

torial objects being counted. This implicit equation immediately gives
rise to the functional equation G(z, w) = w, used in the Bender-Meir-
Moon Theorem 1.1. Alternatively, this implicit equation can be solved
to give an equation S(z) = f(z)/g(z), and dominant singularity anal-
ysis can be carried out using the Flajolet-Odlyzko Theorem 1.3. Since
the hypotheses for the Bender-Meir-Moon Theorem 1.1 do not hold in
certain cases, and may be very difficult to verify in other cases, the ap-
proach using DSV and Flajolet-Odlyzko can be quite useful. Basically,
one first determines the dominant singularity z = ρ, then performs a
change of variable x = z/ρ, in order to rescale the dominant singular-
ity to x = 1. In this form, the Flajolet-Odlyzko Theorem 1.3 can be
applied to deduce the asymptotic value sn ∼ K/Γ(−α)ρ−nn−3/2. The
combination of DSV and Flajolet-Odlyzko is not well-known in the
bioinformatics community, although there are some notable exceptions
such as Nebel (30).

Table 5 of (41) presents heuristic approximations on the number of
shapes for secondary structures of a given RNA sequence of length n.
For π-shapes, the number obtained by repeated simulations as stated
in (41) is 1.1n, while for π′-shapes, the number is 1.16n. Originally, our
motivation in this paper was to give a rigorous asymptotic limit for
the expected number of π- and π′-shapes compatible with secondary
structures for random RNA sequences of length n, where the sequences
are generated by a zero-order Markov process assuming a given com-
position frequency for each nucleotide. Such a value could then be
compared directly with the experimentally obtained values of 1.1n and
1.16n. Unfortunately, we are not currently able to compute this ex-
pected value; however, in Sections 3.2 and 3.3, we compute the asymp-
totic number of π- and π′-shapes compatible with secondary structures
for an RNA sequence of length n, under the assumption that any base
can basepair with any other base. Those results are summarized in



38 W.A. LORENZ, Y. PONTY, AND P. CLOTE

Object counted Asymptotic number an
num of sec str on n 1.104366 · 2.618034n/n3/2

num of π-shapes of size n 1.38198 · 1.732051n/n3/2

num of π-shapes compatible with sec str on n 2.44251 · 1.32218n/n3/2

num of π′-shapes of size n 0.985542 · 2.40591n/n3/2

num of π′-shapes compatible with sec str on n 1.27613 · 1.80776n/n3/2

Table 2. Summary of asymptotic results concerning π-
and π′-shapes. Asymptotic number of secondary struc-
tures is given in the first line for purpose of comparison.
Asymptotic value sn in the second line is for n even, since
there are no π-shapes when n is odd. Asymptotic values
in the third and fifth line assume a minimum of θ = 3
unpaired bases in hairpin loops.

Table 2. Additionally, in Theorem 3.1 we establish an interesting one-
one correspondence between π-shapes and Motzking numbers. Finally,
performing a finer analysis, in Theorem 4.4 of Section 4, we give the as-
ymptotic number of RNA secondary structures having any fixed, given
π-shape π. This result may lead to a rigorous asymptotic limit for the
expected number of π-shapes compatible with secondary structures for
random RNA sequences of length n, where the sequences are gener-
ated by a zero-order Markov process assuming a given composition
frequency for each nucleotide.
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Appendix

In this section, we give a self-contained justification of the application
of the theorem of Flajolet and Odlyzko (16) to obtain the asymptotic
number of π-shapes compatible with secondary structures on n. Recall
from Section 3.2 that if S(z) =

∑∞
n=0 snz

n is the generating function
for the number of secondary structures on a sequence of length n, with
minimum hairpin length 1, it is given by

S(z) =
1 − z + z2 −

√
1 − 2z − z2 − 2z3 + z4

2z2

We begin by discussing why the exponential growth rate of sn is deter-
mined by the dominant singularity.

A1. Determining the exponential growth factor. The definition
of a function f being analytic at a point z0 is that the complex deriva-
tive of f is defined at z0. Note that while the function

√
z is defined at

z=0, it is not analytic at z=0. The derivative of
√
z = z1/2 is 1

2
z−1/2.

As is suggested by this, the derivative does not exist at zero. Thus, the
function

√
z is analytic everywhere except 0.

Similarly the function
√

1 − 2z − z2 − 2z3 + z4 is not analytic ex-
actly at the zeros of the polynomial 1 − 2z − z2 − 2z3 + z4. And the
function, S(z) is analytic everywhere except the zeros of the polyno-
mial inside the square root, and possibly where the denominator equals
0. (In this case it is actually analytic at z = 0.)

It is known from introductory complex analysis that a power series
converges in a circular region about the point of expansion out to the
nearest non-analytic point, or singularity. In addition, if the singularity
is not trivial11 the power series always diverges outside of this circle.
(See the chapter on power series in Churchill’s Complex Variables and
Applications (9) for a good and quick introduction.)

This fact gives an immediate answer for the exponential growth of
the power series terms of a given function. In the case of generating
series, we are expanding about the point z = 0. For a generating
series with positive coefficients, it can be shown, using Pringsheim’s
theorem (23), that the singularity closest to the origin always occurs
on the positive real axis at some value ρ. Then, we know that the power
series converges for the circular region |z| < ρ, and so the exponential

11All singularities we deal with will be what we call non-trivial. A function f
analytic inside a circle C has a non-trivial singularity at z0 on C if either f or its
derivative of some order has no limit as z tends to z0 in C. An example of a trivial
singularity is the singularity of the function f(z) = ez(z − 1)/(z − 1) at z = 1.
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growth of the terms fn cannot be greater than (1/ρ)n. Otherwise, if
the terms grow faster than this, it is clear that the series

f(z) =
∞∑

n=0

fnz
n

cannot converge near z = ρ as the terms aren’t going to zero. Similarly,
since the power series diverges for any z such that |z| > ρ, the expo-
nential growth rate of the terms cannot be less than (1/ρ)n. Otherwise
it is straightforward to show the series will converge for real z > ρ.
Thus we immediately get that for generating functions the exponential
rate of growth of terms is exactly (1/ρ).

The singularity closest to the origin is called the dominant singular-
ity. For our function S, the dominant singularity is at ρ = 1

2
(3−

√
5) ≈

0.381966, one of the roots of the polynomial 1 − 2z − z2 − 2z3 + z4,
which is inside the square root in S(z). We get immediately that for
large n, S scales as

Sn ≈ (1/ρ)n ≈ (1/0.381966)n ≈ (2.61803)n.

So, the above gives the exponential growth. In many cases, this is
all that is desired. However, we still could be off by non-exponential
growth factors. Thus, for example, if ρ = 1, all we know is that there
is no exponential growth or decay. Within these bounds, anything, for
example polynomial growth, is possible.

A2. Finer asymptotics. To get the asymptotics more exactly is not
hard either, that is, using the results from the paper by Flajolet and
Odlyzko (16).

To use these results, we have to verify that the generating series is
analytic in the region 4 shown in Figure A1, except at the point ρ,
thus analytic in 4\ρ, where for the shape 4 we can choose any ε and
0 < φ < π/2. The region 4 is the solid circle about the origin with
radius ρ+ ε, with a symmetric wedge cut out of it, centered about the
real axis, to the point ρ.

Since our singularities are isolated (this will always be true if you
have only finitely many singularities), and our dominant singularity is
unique, (that is, we do not have more than one singularity the same
minimal distance from the origin) we can choose ε to make our function
analytic in 4\ρ. Simply note that 4 is a subset of the solid circle of
radius ρ+ε about the origin. Thus, if all of our singularities have larger
magnitude than ρ, they will have larger magnitude than ρ+ ε for some
ε, and will not be in 4.
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Note that this method can be applied in any case in which the sin-
gularities are isolated and the dominant singularity is unique. There
are usually ways to work around cases where the dominant singularity
is not unique. (We saw an example in Section 3.2.)

ε
φ

Dominant singularity

ρ

iρ

External singularities

Figure A1. The shaded region 4 where, except at z =
ρ, the generating function S(z) must be analytic

First some setup. We have our function

S(z) =
1 − z + z2 −

√
1 − 2z − z2 − 2z3 + z4

2z2

Call the polynomial under the square root P (z). Since z = ρ is a root

of P (z) we can pull out the factor
√

1 − z/ρ (using Mathematica or
Maple) to get

√

P (z) =
√

1 − z/ρ
√

Q(z)

where now
√

Q(z) will be analytic for all z such that |z| < ρ + ε for

some ε, so that for where we’re interested in,
√

Q(z) is always analytic.
Split S into 2 parts.

S(z) =
1 − z + z2

2z2
−

√
1 − 2z − z2 − 2z3 + z4

2z2

g(z) =
1 − z + z2

2z2

h(z) = −
√

1 − z/ρ
√

Q(z)

2z2

S(z) = g(z) + h(z)
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If we don’t worry about being rigorous, we can do some quick calcula-
tions to pull out the asymptotics. To go straight to these calculations,
skip the next section.

A3. A detailed analysis. To apply the results of the paper by Fla-
jolet and Odlyzko(16), we will need to rescale the relevant part of the
function so that the dominant singularity is at 1 instead of at ρ.

Let

G(z) = z2g(z) =
1

2
(1 − z + z2)

H(z) = z2h(z) = −1

2

√

1 − z/ρ
√

Q(z)

That way, G(z) and H(z) are both defined, and analytic, at 0 and
we can talk about their power series expansion about 0. Recall that
Cauchy’s formula is

fn = [zn]f(z) =
1

2πi

∮

O+

f(z)

zn+1
dz,

where O+ is any positively oriented contour in 4 (in an analytic region)
that encloses the origin. In their proof, Flajolet and Odlyzko use a
special contour, but we don’t have to worry about that.

Then,

sn =
1

2πi

∮
S(z)

zn+1
dz

=
1

2πi

∮
g(z)

zn+1
dz +

∮
h(z)

zn+1
dz

=
1

2πi

∮
G(z)

zn+3
dz +

∮
H(z)

zn+3
dz

sn = Gn+2 +Hn+2

We figure out the asymptotics of G and H.
It is clear in this example that Gn is 0 for any large n (for any n larger

than 2). But note that even if this were not the case, more generally
we know that G(z) will grow exponentially like 1/|ρ′|, where ρ′ is the
location closest to the origin that the function G(z) is not analytic
(may be complex). Since |ρ′| > ρ, as ρ is our dominant singularity, this
exponential growth rate will be slower than the growth rate of H(z),
so we can ignore it.

For H(z), rescale so that the singularity occurs at w = 1 instead of
z = ρ. To do this, simply substitute z = ρw. We get
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H(w) = − 1

2

√
1 − w

√

Q(ρw)

ε
φ

Dominant singularity

External singularities

1

i

Figure A2. The rescaled region 4, where the dominant
singularity of H(z) has been moved out from ρ to 1

The function H(w) has a singularity at w = 1, and is analytic in
the required region, 4\1, where the rescaled region 4 is shown in
figure A2. Note that external singularities that remain will scale to
still be outside of the region 4. We now apply the following theorem
(stated as Corollary 2, part (i) of (16) on page 224) which states

Theorem. Assume that f(z) is analytic in 4\1, and that as z → 1 in
4,

f(z) ∼ K(1 − z)α

Then, as n→ ∞, if α /∈ 0, 1, 2, ...,

fn ∼ K

Γ(−α)
n−α−1.

We take α = +1/2. Note that

f(z) ∼ g(z)

as z → z0 means

lim
z→z0

f(z)

g(z)
= 1
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For our H(w), we find

H(w)

(1 − w)1/2
= −1

2

√

Q(ρw)

so that

lim
w→1

H(w)

(1 − w)1/2
= −1

2

√

Q(ρ) = K ′

lim
w→1

H(w)

K ′(1 − w)1/2
= 1

This can be rewritten

H(w) ∼ K ′(1 − w)1/2

By the above theorem, we get

[wn]H(w) ∼ K ′

Γ(−1/2)
n−3/2

Now we scale back. Note that

H(w) =
∑

Hw
n w

n

where in the term Hw
n = [wn]H(w), the superscript w reminds us that

these are the coefficients when we expand the function in terms of the
variable w.

H(w) =
∑

Hw
n w

n

=
∑

Hw
n

zn

ρn

=
∑ Hw

n

ρn
zn

Therefore, the Hn = [zn]H(z), the power series coefficients of H in
terms of z, are given by,

Hn =
Hw
n

ρn

so that

Hn ∼ Hw
n

ρn

Hn ∼ K ′

Γ(−1/2)
(
1

ρ
)nn−3/2

Remember that for large n, the Gn goes away so that

sn = Hn+2 ∼
K ′

Γ(−1/2)
(
1

ρ
)n+2(n+ 2)−3/2
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And then note that

lim
n→∞

(n+ 2)−3/2

n3/2
= lim

n→∞
(
n+ 2

n
)3/2 = 1

so that
(n+ 2)−3/2 ∼ n−3/2

which means we can simplify to

sn ∼ K ′

ρ2Γ(−1/2)
(
1

ρ
)nn−3/2

or letting K = K ′/ρ2,

sn ∼ K

Γ(−1/2)
(
1

ρ
)nn−3/2

Plugging in values (ρ ≈ 0.381966) gives

sn ∼ 1.10437(2.61803)nn−3/2

A4. The short way. Now that we can see how the theorem applies,
how rescaling works, and that splitting the generating function into
parts that are not analytic at 0 does not cause problems, we can see
that if we start with

g(z) =
1 − z + z2

2z2

h(z) = −
√

1 − z/ρ
√

Q(z)

2z2

S(z) = g(z) + h(z)

we can ignore g(z) as it doesn’t have the dominant singularity. Then

we simply get K by taking out the
√

1 − z/ρ term and evaluating the
rest of h(z) at the dominant singularity ρ to get

K = −
√

Q(ρ)

2ρ2
≈ −3.91487

Since the singularity is of the form (1 − z/ρ)1/2, we read off α = 1/2.
We then take the general equation

sn ∼ K

Γ(−1/2)
(
1

ρ
)nn−1−α

and plug in our values to obtain our final answer.

sn ∼ 1.10437(2.61803)nn−3/2.
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