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It is a classical result of Stein and Waterman that the asymptotic number of RNA sec-
ondary structures is 1.104366 · n−3/2 · 2.618034n. In this paper, we study combinatorial
asymptotics for two special subclasses of RNA secondary structures — canonical and
saturated structures. Canonical secondary structures are defined to have no lonely (iso-
lated) base pairs. This class of secondary structures was introduced by Bompfünewerer
et al., who noted that the run time of Vienna RNA Package is substantially reduced
when restricting computations to canonical structures. Here we provide an explanation
for the speed-up, by proving that the asymptotic number of canonical RNA secondary
structures is 2.1614 · n−3/2 · 1.96798n and that the expected number of base pairs in a
canonical secondary structure is 0.31724 · n. The asymptotic number of canonical sec-
ondary structures was obtained much earlier by Hofacker, Schuster and Stadler using a
different method.

Saturated secondary structures have the property that no base pairs can be added
without violating the definition of secondary structure (i.e. introducing a pseudoknot or
base triple). Here we show that the asymptotic number of saturated structures is 1.07427·
n−3/2 · 2.35467n, the asymptotic expected number of base pairs is 0.337361 · n, and the
asymptotic number of saturated stem-loop structures is 0.323954 · 1.69562n, in contrast
to the number 2n−2 of (arbitrary) stem-loop structures as classically computed by Stein
and Waterman. Finally, we apply the work of Drmota to show that the density of states
for [all resp. canonical resp. saturated] secondary structures is asymptotically Gaussian.
We introduce a stochastic greedy method to sample random saturated structures, called
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quasi-random saturated structures, and show that the expected number of base pairs is
0.340633 · n.

Keywords: Combinatorics; generating functions; ribonucleic acid; base pair; dominant
singularity.

1. Introduction

Imagine an undirecteda graph, described by placing graph vertices 1, . . . , n along
the periphery of a circle in a counter-clockwise manner, and placing graph edges as
chords within the circle. An outerplanar graph is a graph whose circular represen-
tation is planar; i.e. there are no crossings. An RNA secondary structure, formally
defined in Sec. 2, is an outerplanar graph (no pseudoknots) with the property that
no vertex is incident to more than one edge (no base triples) and that for every
chord between vertices i, j, there exist at least θ = 1 many vertices that are not inci-
dent to any edge (hairpin requirement). RNA secondary structure is equivalently
defined to be a well-balanced parenthesis expression s1, . . . , sn with dots, where if
nucleotide i is unpaired then si = •, while if there is a base pair between nucleotides
i < j then si = ( and sj = ). This latter representation is known as the Vienna
representation or dot bracket notation (dbn).

Formally, a well-balanced parenthesis expression w1 · · ·wn can be defined as
follows. If Σ denotes a finite alphabet, and α ∈ Σ, and w = w1 · · ·wn ∈ Σ∗

is an arbitrary word, or sequence of characters drawn from Σ, then |w|α des-
ignates the number of occurrences of α in w. Letting Σ = {( , )}, a word
w = w1 · · ·wn ∈ Σ∗ is well balanced if for all 1 ≤ i < n, |w1 · · ·wi|( ≥ |w1 · · ·wi|)
and |w1 · · ·wn|( = |w1 · · ·wn|) . Finally, when considering RNA secondary struc-
tures, we consider instead the alphabet Σ = {( , ) , •}, but otherwise the defini-
tion of well-balanced expression remains unchanged. The number of well-balanced
parenthesis expressions of length n over the alphabet Σ = {( , ) } is known as the
Catalan number Cn, while that over the alphabet Σ = {( , ) , •} is known as the
Motzkin number Mn.1 Stein and Waterman2 computed the number Sn of well-
balanced parenthesis expressions in the alphabet Σ = {( , ) , •}, where there exist
at least θ = 1 occurrences of • between corresponding left and right parentheses
( and ), respectively. It follows that Sn is exactly the number of RNA secondary
structures on [1, n], where there exist at least θ = 1 unpaired bases in every hairpin
loop.

In this paper, we are interested in specific classes of secondary structure: canon-
ical and saturated structures. A secondary structure is canonical3 if it has no lonely
(isolated) base pairs. A secondary structure is saturated4 if no base pairs can
be added without violating the notion of secondary structure, formally defined
in Sec. 2. In order to compute parameters like asymptotic value for number of

aWe often describe the graph edges of an undirected graph as (i, j), where i < j, rather
than {i, j}.
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structures, expected number of base pairs, etc. throughout this paper, we adopt the
model of Stein and Waterman.2 In this model, any position (nucleotide, also known
as base) can pair with any other position, and every hairpin loop must contain
at least θ = 1 unpaired bases; i.e. if i, j are paired, then j − i > θ. This latter
condition is due to steric constraints for RNA. At the risk of additional effort, the
combinatorial methods of this paper could be applied to handle the situation of
most secondary structure software, which set θ = 3.

1.1. Examples of secondary structure representations

Figure 1 gives equivalent views of the secondary structure of 5S ribosomal
RNA with GenBank accession number NC 000909 of the methane-generating
archaebacterium Methanocaldococcus jannaschii, as determined by comparative
sequence analysis and taken from the 5S Ribosomal RNA Database5 located at
http://rose.man.poznan.pl/5SData/. The sequence and its secondary structure in
(Vienna) dot bracket notation are as follows:

UGGUACGGCGGUCAUAGCGGGGGGGCCACACCCGAACCCAUCCCGAACUCGGAAGUUAAGCCCCCCAGCGAUGCCCCGAGUACUGCCAUCUGGCGGGAAAGGGGCGACGCCGCCGGCCAC

((((.(((((((....(((((((......((((((.............))))..)).....))))).))...(((((.....(((((....)))))....)))))...))))))))))).

Equivalent representations for the same secondary structure may be produced by
software jViz,6 as depicted in Fig. 1. The left panel of this figure depicts the circular
Feynman diagram (i.e. outerplanar graph representation), the middle panel depicts
the linear Feynman diagram, and the right panel depicts the classical representation.
This latter representation, most familiar to biologists, may also be obtained by
RNAplot from the Vienna RNA Package.7

Fig. 1. Depiction of 5S ribosomal RNA from M. Jannaschii with GenBank accession number
NC 000909. Equivalent representations as (Left) outerplanar graph (also called circular Feynman
diagram), (Middle) linear Feynman diagram, (Right) classical diagram (most familiar to biolo-
gists). The sequence and secondary structure were taken from the 5S Ribosomal RNA Database,5

and the graph was created using jViz.6
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1.2. Outline and results of the paper

In Sec. 2, we review a combinatorial method, known as the DSV methodology and
the important Flajolet–Odlyzko Theorem, which allows one to obtain asymptotic
values of Taylor coefficients of analytic generating functions f(z) =

∑∞
i=1 aiz

i by
determining the dominant singularity of f . The description of the DSV methodology
and Flajolet–Odlyzko theorem is not meant to be self-contained, although we very
briefly describe the broad outline. For a very clear review of this method, with
a number of example applications, please see Ref. 8 or the recent monograph of
Flajolet and Sedgewick.9

In Sec. 2.1, we compute the asymptotic number 2.1614 · n−3/2 · 1.96798n of
canonical secondary structures, obtaining the same value obtained by Hofacker,
Schuster and Stadler10 by a different method, known as the Bender–Meir–Moon
method. In Sec. 2.2 we compute the expected number 0.31724 · n of base pairs
in canonical secondary structures. In Sec. 2.3, we apply the DSV methodology to
compute the asymptotic number 1.07427 · n−3/2 · 2.35467n of saturated structures,
while in Sec. 2.4, we compute the expected number 0.337361 · n of base pairs of
saturated structures. In Sec. 2.5, we compute the asymptotic number 0.323954 ·
1.69562n of saturated stem-loop structures, which is substantially smaller than the
number 2n−2−1 of (all) stem-loop structures, as computed by Stein and Waterman.2

In Sec. 3, we consider a natural stochastic process to generate random saturated
structures, called in the sequel quasi-random saturated structures. The stochastic
process adds base pairs, one at a time, according to the uniform distribution, with-
out violating any of the constraints of a structure. The main result of this section is
that asymptotically, the expected number of base pairs in quasi-random saturated
structures is 0.340633 · n, rather close to the expected number 0.337361 · n of base
pairs of saturated structures. The numerical proximity of these two values suggests
that stochastic greedy methods might find application in other areas of random
graph theory. In Sec. 4 we provide some concluding remarks.

At the web site http://bioinformatics.bc.edu/clotelab/SUPPLEMENTS/
JBCBasymptotics/, we have placed Python programs and Mathematica code used
in computing and checking the asymptotic number of canonical and saturated sec-
ondary structures, as well as the Maple code for checking Drmota’s11 conditions to
deduce the asymptotic normality of the density of states of RNA structures.

2. DSV Methodology

In this section, we describe a combinatorial method sometimes called DSV method-
ology, after Delest, Schützenberger and Viennot, which is a special case of what is
called the symbolic method in combinatorics, described at length in Ref. 9. See also
the Appendix of Ref. 8 for a detailed presentation of this method. This method
enables one to obtain information on the number of combinatorial configurations
defined by finite rules, for any size. This is done by translating those rules into
equations satisfied by various generating functions. A second step is to extract
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asymptotic expansions from these equations. This is done by studying the singu-
larities of these generating functions viewed as analytic functions.

Since our goal is to derive asymptotic numbers of structures, following standard
convention we define an RNA secondary structure on a length n sequence to be a
set of ordered pairs (i, j), such that 1 ≤ i < j ≤ n and the following are satisfied.

(1) Nonexistence of pseudoknots : if (i, j) and (k, �) belong to S, then it is not the
case that i < k < j < �.

(2) No base triples : if (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j)
belong to S, then i = k.

(3) Threshold requirement : if (i, j) belongs to S, then j − i > θ, where θ, generally
taken to be equal to 3, is the minimum number of unpaired bases in a hairpin
loop; i.e. there must be at least θ unpaired bases in a hairpin loop.

Note that the definition of secondary structure does not mention nucleotide identity,
i.e. we do not require base-paired positions (i, j) to be occupied by Watson–Crick or
wobble pairs. For this reason, at times we may say that S is a secondary structure
on [1, n], rather than saying that S is a structure for RNA sequence of length n.
In particular, an expression such as “the asymptotic number of structures is f(n)”
means that the asymptotic number of structures on [1, n] is f(n).

Grammars. We now proceed with basic definitions related to context-free gram-
mars. If A is a finite alphabet, then A∗ denotes the set of all finite sequences (called
words) of characters drawn from A. Let Σ be the set consisting of the symbols
for left parenthesis (, right parenthesis ), and dot •, used to represent a sec-
ondary structure in Vienna notation. A context-free grammar (see, e.g. Ref. 12)
for RNA secondary structures is given by G = (V, Σ,R, S0), where V is a finite set
of nonterminal symbols (also called variables), Σ = {•, ( , )}, S0 ∈ V is the start
nonterminal, and

R ⊆ V × (V ∪ Σ)∗

is a finite set of production rules. Elements of R are usually denoted by A → w,
rather than (A, w). If rules A → α1, . . . , A → αm all have the same left-hand side,
then this is usually abbreviated by A → α1‖ · · · ‖αm.

If x, y ∈ (V ∪Σ)∗ and A → w is a rule, then by replacing the occurrence of A in
xAy we obtain xwy. Such a derivation in one step is denoted by xAy ⇒G xwy, while
the reflexive, transitive closure of ⇒G is denoted by ⇒∗

G. The language generated
by context-free grammar G is denoted by L(G), and defined by

L(G) = {w ∈ Σ∗ : S0 ⇒∗
G w}.

For any nonterminal S ∈ V , we also write L(S) to denote the language generated by
rules from G when using start symbol S. A derivation of word w from start symbol
S0 using grammar G is a leftmost derivation, if each successive rule application is
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applied to replace the leftmost nonterminal occurring in the intermediate expres-
sion. A context-free grammar G is non-ambiguous, if there is no word w ∈ L(G)
which admits two distinct leftmost derivations. This notion is important since it is
only when applied to non-ambiguous grammars that the DSV methodology leads
to exact counts.

For the sake of readers who are unfamiliar with context-free grammars, we
present some examples to illustrate the previous concepts. Consider the following
grammar G, which generates the collection of well-balanced parenthesis strings,
including the empty string.b Define G = (V, Σ, R, S), where the set V of variables
(also known as nonterminals) is {S}, the set Σ of terminals is {( , )}, where S is
the start symbol, and where the set R of rules is given by

S → ε| (S ) |SS.

Here ε denotes the empty string. We claim that G is an ambiguous grammar. Indeed,
consider the following two leftmost derivations, where we denote the order of rule
applications r1 := S → ε, r2 := S → SS, r3 := S → (S ), by placing the rule
designator under the arrow. Clearly the leftmost derivation

S
→
r2 SS

→
r2 SSS

→
r3,r1 ( )SS

→
r3,r1 ( ) ( )S

→
r3,r1 ( ) ( ) ( )

is distinct from the leftmost derivation

S
→
r2 SS

→
r3,r1 ( )S

→
r2 ( ) (S )S

→
r3,r1 ( ) ( )S

→
r2 ( ) ( ) (S )

→
r1 ( ) ( ) ( )

yet both generate the same well-balanced parenthesis string. For the same reason,
the grammar with rules

S → • | •S| (S ) |SS

generates precisely the collection of non-empty RNA secondary structures, yet this
grammar is ambiguous, and we would obtain an overcount by applying the DSV
methodology. In contrast, the grammar whose rules are

S → • | •S| (S ) | (S )S

is easily seen to be non-ambiguous and to generate all non-empty RNA secondary
structures.

Generating Functions. Suppose that G = (V, Σ,R, S) is a non-ambiguous
context-free grammar which generates a collection L(S) of objects (e.g. canonical

bA well-balanced parenthesis string is a word over Σ = {(, )} with as many closing parentheses
as opening ones and such that when reading the word from left to right, the number of opening
parentheses read is always at least as large as the number of closing parentheses. RNA secondary
structures can be considered to be well-balanced parenthesis strings that also contain possible
occurrences of •, and for which there exist at least θ occurrences of • between corresponding left
and right parentheses ( and ), respectively.
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Table 1. Translation between context-free grammars and
generating functions.

Type of nonterminal Equation for the g.f.

S → T | U S(z) = T (z) + U(z)
S → T U S(z) = T (z)U(z)
S → t S(z) = z
S → ε S(z) = 1

Here, G = (V,Σ,R, S0) is a given context-free grammar,
S, T and U are any nonterminal symbols in V , and t is
a terminal symbol in Σ. The generating functions for the
languages L(S), L(T ), L(U) are respectively denoted by

S(z), T (z), U(z).

secondary structures). To this grammar is associated a generating function S(z) =∑∞
n=0 snzn, such that the nth Taylor coefficient [zn]S(z) = sn represents the num-

ber of objects we wish to count. In the sequel, sn will represent the number of
canonical secondary structures for RNA sequences of length n. The DSV method
uses Table 1 in order to translate the grammar rules of R into a system of equations
for the generating functions.

Asymptotics. In the sequel, we often compute the asymptotic value of the Taylor
coefficients of generating functions by first applying the DSV methodology, then
using a simple corollary of a result of Flajolet and Odlyzko.13 That corollary is
restated here as the following theorem.

Theorem 1 (Flajolet and Odlyzko). Assume that S(z) has a singularity at z =
ρ > 0, is analytic in the rest of the region 	\1, depicted in Fig. 2, and that as z → ρ

in 	,

S(z) ∼ K(1 − z/ρ)α. (1)

Then, as n → ∞, if α /∈ 0, 1, 2, . . . ,

sn ∼ K

Γ(−α)
· n−α−1ρ−n.

It is a consequence of Table 1 that the generating series of context-free grammars
are algebraic (this is the celebrated theorem of Chomsky and Schützenberger14). In
particular this implies that they have positive radius of convergence, a finite number
of singularities, and their behavior in the neighborhood of their singularities is of
the type (1). (See Ref. 9, Sec. VII. 6–9 for an extensive treatment.)

A singularity of minimal modulus as in Theorem 1 is called a dominant singu-
larity. The location of the dominant singularity may be a source of difficulty. The
simple case is when an explicit expression is obtained for the generating functions;
this happens for canonical secondary structures. The situation when only the sys-
tem of polynomial equations is available is more involved; we show how to deal with
it in the case of saturated structures.
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Fig. 2. The shaded region � where, except at z = ρ, the generating function S(z) must be analytic.

2.1. Asymptotic number of canonical secondary structures

In Bompfünewerer et al.,3 the notion of canonical secondary structure S is defined
as a secondary structure having no lonely (isolated) base pairs; i.e. formally, there
are no base pairs (i, j) ∈ S for which both (i−1, j +1) �∈ S and (i+1, j−1) �∈ S. In
this section, we compute the asymptotic number of canonical secondary structures.
Throughout this section, a secondary structure is interpreted to mean a secondary
structure on an RNA sequence of length n, for which each base can pair with any
other base (not simply Watson–Crick and wobble pairs), and with minimum number
θ of unpaired bases in every hairpin loop set to be 1. At the cost of working with
more complex expressions, by the same method, one could analyze the case when
θ = 3, which is assumed for the software mfold15 and RNAfold.7

2.1.1. Grammar

Consider the context-free grammar G = (V, Σ,R, S), where V consists of nontermi-
nals S, R, Σ consists of the terminals • , (, ), S is the start symbol, and R consists
of the following rules:

S → •|S • | (R ) |S (R ),

R → ( • ) | (R ) | (S (R ) ) | (S • ).
(2)

The nonterminal S is intended to generate all nonempty canonical secondary struc-
tures. In contrast, the nonterminal R is intended to generate all secondary struc-
tures which become canonical when surrounded by a closing set of parentheses. We
prove by induction on expression length that the grammar G is non-ambiguous and
generates all nonempty canonical secondary structures.
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Define context-free grammar GR to consist of the collection R of rules from G,
defined above, with starting nonterminal S. Formally,

GR = (V, Σ,R, R).

Let L(G), L(GR) denote the languages generated respectively by grammars G, GR.
Now define languages L1, L2 of nonempty secondary structures with θ = 1 by

L1 = {S : S is canonical},
L2 = {S : (S ) is canonical}.

Note that structures like • • ( • ) and ( • ) ( • ) belong to L1, but not to L2,
while structures like ( ( • ) ) belong to both L1, L2. Note that any structure S

belonging to L2 must be of the form (S0 ); indeed, if S were not of this form,
but rather of the form either •S0 or (S0 )S1, then (S ) would have an outermost
lonely pair of parentheses.

Claim. L1 = L(G), L2 = L(GR).

Proof of Claim. Clearly L1 ⊇ L(G), L2 ⊇ L(GR), so we show the reverse inclu-
sions by induction; i.e. by induction on n, we prove that L1 ∩ Σn ⊆ L(G) ∩ Σn,
L2 ∩ Σn ⊆ L(GR) ∩ Σn.

Base case: n = 1. Clearly L(G) ∩ Σ = { • } = L1 ∩ Σ, L(GR) ∩ Σ = ∅ = L2 ∩ Σ.

Induction case: Assume that the claim holds for all n < k.

Subcase 1. Let S be a canonical secondary structure with length |S| = k > 1. Then
either (1) S = •S0, where S0 ∈ L1, or (2) S = (S0 ), where S0 ∈ L2, or (3)
S = (S0 )S1, where S0 ∈ L2 and S1 ∈ L1. Each of these cases corresponds to a
different rule having left side S, hence by the induction hypothesis, it follows that
S ∈ L(G).

Subcase 2. Let S ∈ L2 be a secondary structure with length |S| = k > 1, for which
(S ) is canonical. If S were of the form •S0 or (S0 )S1, then (S ) would not be
canonical, since its outermost parenthesis pair would be a lonely pair. Thus S is of
the form (S0 ), where either (1) S0 begins with •, or (2) S0 is of the form (S1 ),
where S1 is not canonical, but (S1 ) becomes canonical, or (3) S0 is of the form
(S1 ), where S1 is canonical and (S1 ) is canonical as well.

In case (1), S0 is either • or •S1, where S1 is canonical. In case (2), S0 is of
the form (S1 ), where S1 must have the property that (S1 ) is canonical. In case
(3), S0 is of the form (S1 )S2, where it must be that (S1 ) is canonical and S2 is
canonical. By applying corresponding rules and the induction hypothesis, it follows
that S ∈ L(GR).

It now follows by induction that L1 = L(G), L2 = L(GR). A similar proof by
induction shows that the grammar G is non-ambiguous.
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2.1.2. Generating functions

Now, let sn denote the number of canonical secondary structures on a length n

RNA sequence. Then sn is the nth Taylor coefficient of the generating function
S(z) =

∑
n≥0 snzn, denoted by sn = [zn]S(z). Similarly, let R(z) =

∑
n≥0 Rnzn be

the generating function for the number of secondary structures on [1, n] with θ = 1,
which become canonical when surrounded by a closing set of parentheses.

By Table 1, the non-ambiguous grammar (2) gives the following equations

S(z) = z + S(z)z + R(z)z2 + S(z)R(z)z2, (3)

R(z) = z3 + R(z)z2 + S(z)R(z)z4 + S(z)z3, (4)

which can be solved explicitly (solve the second equation for R and inject this in
the first equation):

S(z) =
1 − z − z2 + z3 − z5 −√F (z)

2z4
, (5)

and

S(z) =
1 − z − z2 + z3 − z5 +

√
F (z)

2z4
, (6)

where

F (z) = 4z5(−1 + z2 − z4) + (−1 + z + z2 − z3 + z5)2. (7)

When evaluated at z = 0, Eq. (6) gives limr→0 S(z) = ∞. Since S(z) is known to
be analytic at 0, we conclude that S(z) is given by Eq. (5).

2.1.3. Location of the dominant singularity

The square root function
√

z has a singularity at z = 0, so we are led to inves-
tigate the roots of F (z). A numerical computation with MathematicaTM gives
the 10 roots 0.508136, 4.11674, −0.868214 − 0.619448i, −0.868214 + 0.619448i,
−0.799805 − 0.367046i, −0.799805 + 0.367046i, 0.410134 − 0.564104i, 0.410134 +
0.564104i, 0.945448− 0.470929i, 0.945448+ 0.470929i. It follows that ρ = 0.508136
is the root of F (z) having smallest (complex) modulus.

2.1.4. Asymptotics

Let T (z) = 1−z−z2+z3−z5

2z4 and factor 1− z/ρ out of F (z) to obtain Q(z)(1− z/ρ) =
F (z). It follows that

S(z) − T (ρ) =

√
Q(ρ)
2ρ4

· (1 − z/ρ)α + O(1 − z/ρ), z → ρ,
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where α = 1/2. This shows that ρ is indeed a dominant singularity for S. Note that
for each n ≥ 1, S(z) and S(z) − T (ρ) have the same Taylor coefficient of index n,
namely sn. Now, it is a direct consequence of Theorem 1 that

sn ∼ K(ρ)
Γ(−α)

· n−α−1 · (1/ρ)n, n → ∞, (8)

where α = 1/2 and K(z) =
√

Q(z)

2z4 . Plugging ρ = 0.508136 into Eq. (8), we derive
the following theorem, first obtained by Hofacker, Schuster and Stadler10 by a
different method.

Theorem 2. The asymptotic number of canonical secondary structures on [1, n] is

2.1614 · n−3/2 · 1.96798n. (9)

2.2. Asymptotic expected number of base pairs

in canonical structures

In this section, we derive the expected number of base pairs in canonical secondary
structures on [1, n].

2.2.1. Generating functions

The DSV methodology is actually able to produce multivariate generating series.
Modifying Eqs. (3) and (4) by adding a new variable u, intended to count the
number of base pairs, we get

S(z, u) = z + S(z, u)z + R(z, u)uz2 + S(z, u)R(z, u)uz2, (10)

R(z, u) = uz3 + R(z, u)uz2 + S(z, u)R(z, u)u2z4 + S(z, u)uz3. (11)

This can be solved as before to yield the solutionc

S(z, u) =
∑
n≥0

∑
k≥0

sn,kznuk

= 2u2z4
(
1 − z − uz2 + uz3 − u2z5

−
√

4u2z5(−1 + uz2 − u2z4) + (−1 + z + uz2 − uz3 + u2z5)2
)
.

Here, the coefficient sn,k is the number of canonical secondary structures of size n

with k base pairs. Using a classical observation on multivariate generating functions,
we recover the expected number of base pairs in a canonical secondary structure

cSince S(z, u) is known to be analytic at 0, we have discarded one of the two solutions as before.



September 17, 2009 14:36 WSPC/185-JBCB 00433

880 P. Clote et al.

on [1, n] using the partial derivative of S(z, u); indeed,

[zn]∂S(z,u)
∂u (z, 1)

[zn]S(z, 1)
=

[zn]
(∑

i≥0

∑
k≥0 si,kzikuk−1

)
(z, 1)

sn

=

∑
k≥0 sn,kk

sn

=
∑
k≥0

k
sn,k

sn
,

and sn,k/sn is the (uniform) probability that a canonical secondary structure on
[1, n] has exactly k base pairs.

We compute that G(z) = ∂S(z,u)
∂u (z, 1) satisfies

G(z) =
−(z2 − 2)(T (z) −√F (z) + z

√
F (z))

2z4
√

F (z)
,

where T (z) = (1−2z +2z3−z4−3z5 +z6) and F (z) is as in Eq. (7). Simplification
yields

G(z) =
−(z2 − 2)(z − 1)

2z4
− T (z)(z2 − 2)

2z4
·
(

1√
F (z)

)
.

2.2.2. Asymptotics

From this expression, it is clear that the dominant singularity is again located at
the same ρ = 0.508136. A local expansion there gives

G(z) ∼ K(ρ)(1 − z/ρ)−1/2, z → ρ,

with K(z) = −Q(z)−1/2T (z)(z2−2)
2z4 . By Theorem 1, we obtain the asymptotic value

K(ρ)
Γ(−α)

· n−3/2 · (1/ρ)n. (12)

Plugging ρ = 0.508136 into Eq. (12), we find that the asymptotic value of
[zn]∂S(z,u)

∂u (z, 1) is

0.68568 · n−1/2 · 1.96798n. (13)

Dividing Eq. (13) by the asymptotic number [zn]S(z) of canonical secondary struc-
tures, given in Eq. (9), we have the following theorem.

Theorem 3. The asymptotic expected number of base pairs in canonical secondary
structures is 0.31724 · n.

2.3. Asymptotic number of saturated structures

An RNA secondary structure is saturated if it is not possible to add any base
pair without violating the definition of secondary structures. If one models the
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folding of an RNA secondary structure as a random walk on a Markov chain (i.e.
by the Metropolis–Hastings algorithm), then saturated structures correspond to
kinetic traps with respect to the Nussinov energy model.16 The asymptotic number
of saturated structures was determined in Ref. 17 by using a method known as
Bender’s Theorem, as rectified by Meir and Moon.18 In this section, we apply the
DSV methodology to obtain the same asymptotic limit, and in the next section we
obtain the expected number of base pairs of saturated structures.

2.3.1. Grammar

Consider the context-free grammar with nonterminal symbols S, R, terminal sym-
bols •, (, ), start symbol S and production rules

S → •| • •|R • |R • •| (S ) |S (S ) , (14)

R → (S ) |R (S ). (15)

It can be shown by induction on expression length that L(S) is the set of saturated
structures, and L(R) is the set of saturated structures with no visible position; i.e.
external to every base pair.17 Here, position i is visible in a secondary structure T

if it is external to every base pair of T ; i.e. for all (x, y) ∈ T , i < x or i > y.

2.3.2. Generating functions

Let

S(z) =
∞∑

i=0

si · zi, R(z) =
∞∑

i=0

ri · zi (16)

denote the generating functions S resp. R, corresponding to the problems of count-
ing number of saturated secondary structures resp. the number of saturated struc-
tures having no visible positions. Applying Table 1, we are led to the equations

S = z + z2 + zR + z2R + z2S + z2S2, (17)

R = z2S + z2RS. (18)

2.3.3. Location of the dominant singularity

By first solving Eq. (18) for R and injecting in Eq. (17), we get

S = z + z2 + z2S + z2S2 + (z + z2)
z2S

1 − z2S
, (19)

which upon normalizing gives a polynomial equation of the third degree

P (z, S) = −S3z4 + z(1 + z) − S2z2(−2 + z2) + S(−1 + z2) = 0. (20)

Unlike earlier work in this paper, direct solution of this equation by Cardano’s
formulas gives expressions that are difficult to handle. Instead, we locate the singu-
larity by appealing to general techniques for implicit generating functions (Ref. 9,
Sec. VII. 4).
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By the implicit function theorem, singularities of P (z, S) only occur when both
P and its partial derivative

∂P

∂S
(z, S) = −1 + (1 + 4S)z2 − S(2 + 3S)z4 (21)

vanish simultaneously.
The common roots of P and ∂P/∂S can be located by eliminating S between

those two equations, for instance using the classical theory of resultants (see, e.g.
Ref. 19). This gives a polynomial

Q(z) = z11(1 + z)(4 + z − 7z2 − 28z3 − 32z4 + 4z6), (22)

that vanishes at all z such that (z, S) is a common root of P and ∂P/∂S.
Numerical computation of the roots of Q yields 0, −1, −2.29493, −0.854537,

−0.244657− 0.5601i, −0.244657 + 0.5601i, 0.424687, and 3.2141.
A subtle difficulty now lies in selecting among those points the dominant sin-

gularity of the analytic continuation of the solution S of Eq. (19) corresponding
to the combinatorial problem. Indeed, it is possible that one solution of Eq. (19)
is singular at a given r without the solution of interest being singular there. Con-
sidering such a singularity would result in an asymptotic expansion that is wrong
by an exponential factor. One way to select the correct singularity is to apply a
result by Meir and Moon18 to Eq. (19). This results in a variant of the computation
in Ref. 17.

Instead, we use Pringsheim’s theorem (see, e.g. Ref. 9).

Theorem 4 (Pringsheim). If S(z) has a series expansion at 0 that has nonnega-
tive coefficients and a radius of convergence R, then the point z = R is a singularity
of S(z).

In our example, there are only two possible real positive singularities, 0.424687
and 3.2141. The latter cannot be dominant, since it would lead to asymptotics of
the form 3.2141−n, i.e. an exponentially decreasing number of structures. Thus the
dominant singularity is at ρ = 0.424687. Since the moduli of the non-real roots
of Q is 0.611203 > ρ, the conditions of Theorem 1 hold, provided that the function
behaves as required as z → ρ.

2.3.4. Asymptotics

We now compute the local expansion of S(z) at ρ. From Eq. (21), we have that

P (ρ, S) = 0.605047− 0.819641S + 0.328189S2 − 0.0325295S3, (23)

whose (numerical approximations of) roots are the double root S = 1.6569 and
single root S = 6.77518. It is easily checked that 1.6569 is the only root of Eq. (23)
in which P (ρ, S) is increasing; thus we let T = 1.6569.
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Recall Taylor’s theorem in two variables

f(x, y) =
∞∑

n=0

∞∑
k=0

∂n+kf(x0, y0)
∂xn∂yk

· (x − x0)n

n!
· (y − y0)k

k!
.

We now expand P (z, S) at z = ρ and S = T and invert this expansion. This yields

P (z, S) = P (ρ, T ) +
∂P

∂S
(ρ, T )(S − T ) +

∂P

∂z
(ρ, T )(z − ρ)

+
1
2

∂2P

∂S2
(ρ, T )(S − T )2 + · · · , (24)

where the dots indicate terms of higher order. The first two terms are 0, so by
denoting Pz = ∂P

∂z (ρ, T ) and PSS = ∂2P
∂S2 (ρ, T ), we have

0 = P = Pz(z − ρ) +
1
2
Pzz(S − T )2 + O(S − T )3

+ O((z − ρ)(S − T )2) + O((z − ρ)2). (25)

Isolating (S − T )2 we get

(S − T )2 =
−2Pz(z − ρ)

PSS
+ O((z − ρ)2) + O((S − T )3)

S − T = ±
√

2ρPz

PSS
·
√

1 − z/ρ + O(z − ρ).

Since [zn]S(z) is the number of saturated secondary structures on [1, n] and the
Taylor coefficients in the expansion of

√
1 − z/ρ are negative, we discard the posi-

tive root and thus obtain

S − T = −
√

2ρPz

PSS
·
√

1 − z/ρ + O(z − ρ). (26)

We now make use of Theorem 1 as before and recover the following result,
proved earlier in Ref. 17 by the Bender–Meir–Moon method.

Theorem 5. The asymptotic number of saturated structures is 1.07427 · n−3/2 ·
2.35468n.

2.4. Expected number of base pairs of saturated structures

In this section, we compute the expected number of base pairs of saturated struc-
tures, proceeding as in Sec. 2.2 by first modifying the equations to obtain bivariate
generating functions and then differentiating with respect to the new variable and
evaluating at 1 to obtain the asymptotic expectation.
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2.4.1. Generating functions

We first modify Eqs. (17) and (18) by introducing the auxiliary variable u, respon-
sible for counting the number of base pairs:

S = z + z2 + zR + z2R + uz2S + uz2S2, (27)

R = uz2S + uz2RS. (28)

Solving the second equation for R and injecting into the first one gives

P (z, u, S) = Suz2(z + z2) − (−1 + Suz2)(−S + z + z2 + Suz2 + S2uz2). (29)

2.4.2. Asymptotics

We are interested in the coefficients of ∂S/∂u at u = 1. Differentiating Eq. (29)
with respect to u gives

∂P

∂u
+

∂P

∂S

∂S

∂u
= 0.

Using Eq. (26), we replace S(z, 1) by T +K
√

1 − z/ρ+O(1− z/ρ) in this equation
to obtain

(ρ2T (1 + 2(1 − ρ2)T − 2ρ2T 2) + O(
√

1 − z/ρ))

+ ((4Kρ2 − 2Kρ4 − 6Kρ4T )
√

1 − z/ρ + O(1 − z/ρ))
∂S

∂u

∣∣∣∣
u=1

= 0,

and finally

∂S

∂u
(z, 1) ∼ − 0.642305√

1 − z/ρ
.

Applying Theorem 1 to Eq. (30) gives

ρn[zn]
∂S

∂u
(z, 1) ∼ 0.642305

Γ(1/2)
· n−1/2 = 0.362417 · n−1/2.

It follows that the asymptotic expected number of base pairs in saturated structures
on [1, n] is

[zn]∂S(z,u)
∂u (z, 1)

[zn]S(z, 1)
∼ 0.362417 · n−1/2 · ρ−n

1.07427 · n−3/2 · ρ−n
= 0.337361 · n.

We have just proved the following.

Theorem 6. The asymptotic expected number of base pairs for saturated structures
is 0.337361 · n.

Since the Taylor coefficient sn,k of generating function S(z, u) =
∑

n,k sn,kznuk

is equal to the number of saturated structures having k base pairs, it is possible
that the methods of this section will suffice to solve the following open problem.

Open Problem 1. Clearly, the maximum number of base pairs in a saturated
structure on [1, n] where θ = 1 is �n−1

2 �. For fixed values of k, what is the asymptotic
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number sn,�(n−1)/2�−k of saturated secondary structures having exactly k base pairs
fewer than the maximum?

Note that in Ref. 17, we solved this problem for k = 0, 1.
A related interesting question concerns whether the number of secondary struc-

tures sn,k having k base pairs is approximately Gaussian. As first suggested by Y.
Ponty (personal communication), this is indeed the case. More formally, consider
for fixed n the the finite distribution Pn = p1, . . . , pn, where pk = sn,k/sn and
sn =

∑
k sn,k. In the Nussinov energy model, the energy of a secondary struc-

ture with k base pairs is −k, so the distribution Pn is what is usually called
the density of states in physical chemistry. It follows from Theorem 1 of Drmota
Ref. 11 (see also Ref. 20) that Pn is Gaussian. Similarly, it follows from Theo-
rem 1 of Drmota that the asymptotic distribution of density of states of both
canonical and saturated structures is Gaussian. Details of a Maple session apply-
ing Drmota’s theorem to saturated structures are available in the web supplement
http://bioinformatics.bc.edu/clotelab/SUPPLEMENTS/JBCBasymptotics/.

2.5. Asymptotic number of saturated stem-loops

Define a stem-loop to be a secondary structure S having a unique base pair (i0, j0) ∈
S, for which all other base pairs (i, j) ∈ S satisfy the relation i < i0 < j0 < j. In
this case, (i0, j0) defines a hairpin, and the remaining base pairs, as well as possible
internal loops and bulges, constitute the stem. We have the following simple result
due to Stein and Waterman.2

Proposition 1. There are 2n−2 − 1 stem-loop structuresd on [1, n].

Proof. Let L(n) denote the number of secondary structures with at most one loop
on (1, . . . , n). Then L(1) = 1 = L(2). There are two cases to consider for L(n + 1).

Case 1. If n + 1 does not form a base pair, then we have a contribution of L(n).

Case 2. n + 1 forms a base pair with some 1 ≤ j ≤ n − 1. In this case, since only
one hairpin loop is allowed, there is no base-pairing for the subsequence s1, . . . , sj−1,
and hence if n+1 base-pairs with j, then we have a contribution of L(n−(j+1)+1) =
L(n − j). Hence

L(n + 1) = L(n) +
n−1∑
j=1

L(n − j)

= L(n) + L(n − 1) + · · · + L(1),

and hence L(1) = 1, L(2) = 1, L(3) = 2, and from there L(n) = 2n−2 by induction.

dIn Ref. 2, stem-loop structures are called hairpins. Since the appearance of Ref. 2, common
convention is that a hairpin is a structure consisting of a single base pair enclosing a loop region;
i.e. ( • · · · • ). Here we use the more proper term stem-loop.
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We now compute the asymptotic number of saturated stem-loop structures. Let
h(n) be the number of saturated stem-loops on [1, n], defined by h(n) = 1 for
n = 0, 1, 2, 3, h(4) = 3, and

h(n) = h(n − 2) + 2h(n − 3) + 2h(n − 4) (30)

for n ≥ 5. Note that we have defined h(1) = 1 = h(2) for notational ease in the
sequel, although there are in fact no stem-loops of size 1 or 2. Indeed in this case,
the only structures of size 1 and 2 are • and • •, respectively.

The first few terms in the sequence h(1), h(2), h(3), . . . are 1, 1, 1, 3, 5, 7, 13,
23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503; for instance,
h(20) = 12503.

2.5.1. Grammar

It is easily seen that the following rules

S → • | • • | (S ) | • (S ) | • • (S ) | (S ) • | (S ) • •

provide for a non-ambiguous context-free grammar to generate all non-empty satu-
rated stem-loops. It defines actually a special kind of context-free language, called
regular, whose generating function is rational.

2.5.2. Generating function

By the DSV methodology, we obtain the functional relation

R(z) = z + z2 + R(z)z2 + 2R(z)z3 + 2R(z)z4,

whose solution is the rational function

R(z) =
P (z)
Q(z)

=
z

1 − z − 2z3
, (31)

where P (z) = z and Q(z) = 1 − z − 2z3.

2.5.3. Asymptotics

For rational functions, an easy way to compute the asymptotic behavior of the
Taylor coefficients is to compute a partial fraction decomposition and isolate the
dominant part. This is equivalent to solving the corresponding linear recurrence.
See also Ref. 21 (p. 325) or Ref. 22 (Thm. 9.2).

Partial fraction decomposition yields

R(z) =
A(a1)

1 − z/a1
+

A(a2)
1 − z/a2

+
A(a3)

1 − z/a3
,
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where the ais are the roots of Q and A(z) = −1/Q′(z). It follows by extracting
coefficients that

h(n) = A(a1)a−n
1 + A(a2)a−n

2 + A(a3)a−n
3 .

(Note that this is an actual equality valid for all n ≥ 0 and not an asymptotic
result.) Now, the roots of Q are approximately

a1 = 0.5897545, a2 = −0.294877− 0.872272i, a3 = −0.294877 + 0.872272i.

Since |a2| = |a3| = .9207 > |a1|, it follows that the asymptotic behavior is given by
the term in a1.

We have proved the following theorem.

Theorem 7. The number h(n) of saturated stem-loops on [1, n] satisfies

h(n) ∼ 0.323954 · 1.69562n. (32)

Convergence of the asymptotic limit in Eq. (32) is exponentially fast, so that when
n = 20, 0.323954 · 1.69562n = 12504.2, while the exact number of saturated stem-
loops on [1, 20] is h(20) = 12503.

3. Quasi-Random Saturated Structures

In this section, we define a stochastic greedy process to generate random satu-
rated structures, technically denoted as quasi-random saturated structures. Our
main result is that the expected number of base pairs in quasi-random saturated
structures is 0.0.340633 ·n, just slightly more than the expected number 0.337361 ·n
of all saturated structures. This suggests that the introduction of stochastic greedy
algorithms and their asymptotic analysis may prove useful in other areas of random
graph theory.

Consider the following stochastic process to generate a saturated structure. Sup-
pose that n bases are arranged in sequential order on a line. Select the base pair
(1, u) by choosing u, where θ+2 ≤ u ≤ n, at random with probability 1/(n−θ−1).
The base pair joining 1 and u partitions the line into two parts. The left region has
k bases strictly between 1 and u, where k ≥ θ, and the right region contains the
remaining n − k − 2 bases properly contained within endpoints k + 2 and n (see
Fig. 3). Proceed recursively on each of the two parts. Observe that the secondary

1 u n

at least θ unpaired bases

.....k

n−k−2

Fig. 3. Base 1 is base-paired by selecting a random base u such there are at least θ unpaired bases
enclosed between 1 and u.
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structures produced by our stochastic process will always base-pair with the left-
most available base, and that the resulting structure is always saturated.

Before proceeding further, we note that the probability pi,j that (i, j) is a base
pair in a saturated structure is not the same as the probability qi,j that (i, j) is a
base pair in a quasi-random saturated structure. Indeed, if we consider saturated
and quasi-random saturated structures on an RNA sequence of length n = 10, then
clearly p1,5 = 1/29 while clearly q1,5 = 1/8.e Despite the very different base pairing
probabilities when comparing saturated with quasi-random saturated structures, it
is remarkable that the expected numbers of base pairs over saturated and quasi-
random saturated structures are numerically so close.

Let Uθ
n be the expected number of base pairs of the saturated secondary struc-

ture generated by this recursive procedure. In general, we have the following recur-
sive equation

Uθ
n = 1 +

1
n − θ − 1

n−2∑
k=θ

(Uθ
k + Uθ

n−k−2), n ≥ θ + 2, (33)

with initial conditions

Uθ
0 = Uθ

1 = · · · = Uθ
θ+1 = 0, Uθ

θ+2 = Uθ
θ+3 = 1. (34)

If we write Eq. (33) for Uθ
n+1 and substitute in it the value for Uθ

n, we derive

Uθ
n+1 = 1 +

1
n − θ

n−1∑
k=θ

(Uθ
k + Uθ

n−k−1)

= 1 +
1

n − θ

(
Uθ

n−1 + Uθ
n−θ−1 +

n−2∑
k=θ

(Uθ
k + Uθ

n−k−2)

)

= 1 +
1

n − θ

(
Uθ

n−1 + Uθ
n−θ−1

)
+

n − θ − 1
n − θ

(Uθ
n − 1).

If we multiply out by n − θ and simplify it, we obtain

(n − θ)Uθ
n+1 = 1 + (n − θ − 1)Uθ

n + Uθ
n−1 + Uθ

n−θ−1, (35)

which is valid for n ≥ θ + 1.

3.1. Asymptotic behavior

We now look at asymptotics. In particular we prove the following result.

eThe web supplement contains a Python program to compute the number of saturated structures
on n. Clearly p1,5 = s3·s5

s10
, where sk denotes the number of saturated structures on an RNA

sequence of length k. A computation from a Python program (see web supplement) shows that
s3 = 1, s5 = 5 and s10 = 145, hence p1,5 = 5/145 = 1/29.
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Theorem 8. Let Uθ
n denote the expected number of base pairs for quasi-random

saturated structures of an RNA sequence of length n. Then for fixed θ, and as
n → ∞

Uθ
n ∼ Kθ · n with Kθ = e−1−Hθ+1

∫ 1

0

et+(t+t2/2+···+tθ+1/(θ+1)) dt, (36)

where Hθ+1 = 1 + 1
2 + · · · + 1

θ+1 is the (θ + 1)th harmonic number.

The first few values can easily be obtained numerically and we have

K1 = 0.340633, K2 = 0.285497, K3 = 0.247908,

K4 = 0.220308, K5 = 0.199018.

Proof. For a fixed integer θ, the recurrence (35) is linear with polynomial coef-
ficients. It is a classical result that the generating functions of solutions of such
recurrences satisfy linear differential equations. This is obtained by applying the
following rules: if U(z) =

∑
n≥0 unzn, then∑

n≥0

nunzn = zU ′(z),
∑
n≥0

un+kzn =
1
zk

(U(z) − u0 − u1z − · · · − uk−1z
k−1).

Starting from Eq. (35), we first shift the index by θ + 1 and apply these rules
together with the initial conditions (34) to get

(n + θ + 2)Uθ
n+θ+2 − (θ + 1)Uθ

n+θ+2 = 1 + (n + θ + 1)Uθ
n+θ+1 − (θ + 1)Uθ

n+θ+1

+ Uθ
n+θ + Uθ

n,

1
zθ+2

zy′ − (θ + 1)
y

zθ+2
=

1
1 − z

+
1

zθ+1
zy′ − (θ + 1)

y

zθ+1
+

y

zθ
+ y.

Finally, this simplifies to

z(1 − z)y′ + ((θ + 1)(z − 1) − z2 − zθ+2)y =
zθ+2

1 − z
. (37)

This is a first-order non-homogeneous linear differential equation. The homogeneous
part

z(1 − z)W ′ + ((θ + 1)(z − 1) − z2 − zθ+2)W = 0

is solved by integrating a partial fraction decomposition

W ′(z)
W (z)

=
θ + 1

z
− z

z − 1
− zθ+1

z − 1

=
θ + 1

z
+

2
z − 1

− 1 − (1 + z + · · · + zθ),

log W = (θ + 1) log z − 2 log(1 − z) − z − (z + z2/2 + · · · + zθ+1/(θ + 1)),

W (z) =
zθ+1

(1 − z)2
e−z−(z+z2/2+···+zθ+1/(θ+1)).
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From there, variation of the constant gives the following expression for the gener-
ating function:

y =
zθ+1

(1 − z)2
e−z−(z+z2/2+···+zθ+1/(θ+1))

∫ z

0

et+(t+t2/2+···+tθ+1/(θ+1) dt.

Because the exponential is an entire function, we readily find that the only singu-
larity is at z = 1, where y ∼ K/(1 − z)2 with K as in the statement of the theorem.
The proof is completed by the use of Theorem 1.

Note that the asymptotic expected number of base pairs in quasi-random sat-
urated structures with θ = 1 is 0.340633 · n, while by Theorem 6 the asymptotic
expected number of base pairs in saturated structures is 0.337361 · n, just very
slightly less. This result points out that the stochastic greedy method performs
reasonably well in sampling saturated structures, although the stochastic process
tends not to sample certain (rare) saturated structures having a less-than-average
number of base pairs.

The stochastic process used to construct quasi-random saturated structures iter-
atively base-pairs the leftmost position in each subinterval. One can imagine a more
general stochastic method of constructing saturated structures, described as follows.
Generate an initial list L of all allowable base pairs (i, j) with 1 ≤ i < j ≤ n and
j ≥ i + θ + 1. Create a saturated structure by repeately picking a base pair from
L, adding it to an initially empty structure S, then removing from L all base pairs
is that form a crossing (pseudoknot) with the base pair just selected. This ensures
that the next time a base pair is from L, it can be added to S without violating the
definition of secondary structure. Iterate this procedure until L is empty to form
the stochastic saturated structure S.

Taking an average over 100 repetitions, we have computed the average number of
base pairs and the standard deviation for n = 10, 100, 1000. Results are µ = 0.323,
σ = 0.0604 for n = 10; µ = 0.3526, σ = 0.0386 for n = 100; and µ = 0.35618,
σ = 0.0361 for n = 1000. This clearly is a different stochastic process than that
used for quasi-random saturated structures.

4. Conclusion

In this paper we applied the DSV methodology and the Flajolet–Odlyzko theorem
to asymptotic-enumeration problems concerning canonical and saturated secondary
structures. For instance, we show that the expected number of base pairs in canon-
ical RNA secondary structures is equal to 0.31724 · n, which is far less than the
expected number 0.495917 ·n of base pairs over all secondary structures, the latter
follows from Theorem 4.19 of Ref. 10. This may provide a theoretical explanation
for the speed-up observed for Vienna RNA Package when restricted to canonical
structures.3
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Additionally, we computed the asymptotic number 1.07427 · n−3/2 · 2.35467n

of saturated structures, the expected number 0.337361 · n of base pairs of satu-
rated structures and the asymptotic number 0.323954 · 1.69562n of saturated stem-
loop structures. We then considered a natural stochastic greedy process to generate
quasi-random saturated structures, and showed surprisingly that the expected num-
ber of base pairs is 0.340633·n, a value very close to the expected number 0.337361·n
of base pairs of all saturated structures. Finally, we apply a theorem of Drmota11

to show that the density of states for [all resp. canonical resp. saturated] secondary
structures is asymptotically Gaussian.
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