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ABSTRACT Transmembrane �-barrel (TMB)
proteins are embedded in the outer membrane of
Gram-negative bacteria, mitochondria, and chloro-
plasts. The cellular location and functional diver-
sity of �-barrel outer membrane proteins (omps)
makes them an important protein class. At the
present time, very few nonhomologous TMB struc-
tures have been determined by X-ray diffraction
because of the experimental difficulty encountered
in crystallizing transmembrane proteins. A novel
method using pairwise interstrand residue statisti-
cal potentials derived from globular (nonouter mem-
brane) proteins is introduced to predict the super-
secondary structure of transmembrane �-barrel
proteins. The algorithm transFold employs a gener-
alized hidden Markov model (i.e., multitape S-
attribute grammar) to describe potential �-barrel
supersecondary structures and then computes by
dynamic programming the minimum free energy
�-barrel structure. Hence, the approach can be
viewed as a “wrapping” component that may cap-
ture folding processes with an initiation stage fol-
lowed by progressive interaction of the sequence
with the already-formed motifs. This approach dif-
fers significantly from others, which use traditional
machine learning to solve this problem, because it
does not require a training phase on known TMB
structures and is the first to explicitly capture and
predict long-range interactions. TransFold outper-
forms previous programs for predicting TMBs on
smaller (<200 residues) proteins and matches their
performance for straightforward recognition of
longer proteins. An exception is for multimeric por-
ins where the algorithm does perform well when an
important functional motif in loops is initially iden-
tified. We verify our simulations of the folding pro-
cess by comparing them with experimental data on
the functional folding of TMBs. A Web server run-
ning transFold is available and outputs contact
predictions and locations for sequences predicted
to form TMBs. Proteins 2006;65:61–74.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Gram-negative bacteria are surrounded by two radically
different membranes, themselves separated by a region
called the periplasm. The inner membrane is a normal
lipid bilayer, which forms an important permeability
barrier and is associated with membrane-associated meta-
bolic functions. Transmembrane (TM) �-helical proteins
are typically embedded in this lipid bilayer. In contrast,
the composition of the outer membrane differs signifi-
cantly from that of the inner membrane. Although the
inner leaflet (periplasmic side) of the outer membrane has
similar composition to that of the inner membrane, the
outer leaflet (extracellular side) is composed of lipopolysac-
charides. In addition, the architecture of proteins embed-
ded in the outer membrane is strikingly different from
those embedded in the inner membrane. In place of TM
�-helical proteins typical of the inner membrane, outer
membrane transmembrane proteins are generally formed
into �-strands, assembled in a self-closed �-sheet forming
a barrel that spans the membrane. Outer membrane
proteins (omps) are then usually assimilated into TM
�-barrels (TMB). Such �-barrel membrane proteins are
not exclusively found in Gram-negative prokaryotes; in-
deed, it is also believed that in eukaryotes, outer mem-
brane proteins in mitochondria and chloroplasts adopt the
same architecture.

In recent years, there has been an increasing interest in
TM �-barrel proteins, both among experimental biologists
and computational biologists. In vitro and in vivo studies
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of omps1–4 have multiplied; nevertheless, the real nature
of forces driving the folding of TM �-barrel proteins
remains obscure. Most of what is now known about omps is
clearly summarized in recent reviews.5–7 At the same
time, ever since the seminal hidden Markov model method
introduced by Martelli et al.8 to predict TM �-barrels, a
number of other machine learning methods have been
developed in the past 2 years for TM �-barrel supersecond-
ary structure prediction.9–13

As far as we know, the mechanism of folding of TM
�-barrel proteins is quite different from TM �-bundle
proteins, which are thought to fold in a two-stage model14,15

where the �-helices fold independently and are subse-
quently inserted into the bilayer. The TMB folding process
is described in a four-stage model5 where long-range
interactions play a fundamental role. The unfolded mole-
cule collapses first at the inner (periplasmic) surface of the
outer membrane. A fraction of the �-structure is then
formed and parts of secondary structure elements lie on
the inner surface of the membrane in a state called
“molten disk.” Thereafter, �-hairpin loops translocate into
the bilayer in a similar way as in globular protein folding.
This state is naturally called “molten globule.” Following
this state, there is a rearrangement of � contacts resulting
in the native state.

It is still extremely difficult to experimentally determine
the structure of transmembrane proteins; thus, computa-
tional methods are needed. At this time, only a few
structures have been crystallized (about 100 TM �-barrels,
but less than 20 structures remain after removal of
homologous sequences). Despite the paucity of nonredun-
dant sequences whose TM �-barrel structure has been
solved, all existing TM �-barrel prediction methods are
based on classical machine learning techniques (e.g., hid-
den Markov models or neural networks). It follows that,
even with the use of sophisticated techniques to avoid
redundancy and overfitting the data, the evaluation of the
reliability of any machine learning method in this context
is fragile. (E.g., because advanced statistical techniques
were applied, PROFtmb10 uses only eight omp sequences
for training and evaluation of its structural predictions).
Hence, as was the case for TM �-helix prediction,16 the
performance of these prediction methods could be signifi-
cantly overestimated.

Moreover, existing approaches using hidden Markov
models (HMMs), neural networks (NNs), support vector
machines (SVMs), etc., are limited to local information in
fixed-size training sequences. (Indeed, all such methods,
when training on size n sequences, where n is much
smaller than the protein size, will invariably will miss
potential long-range interactions between residues i and j,
where �j � i� � n.) Given our state-of-the-art knowledge of
the four-state physical folding process for omps, these
limitations reveal a potential inability for these machine
learning techniques to take into account all forces driving
the folding, especially those long-range interactions be-
tween residues. (For example, the interactions involved in
the pairing of the first and last TM �-strands of the barrel
are difficult to handle with traditional machine-learning
methods.) Linguistic methods developed previously for

prediction of TM �-bundles17 and globular �-sheets18

enable us to circumvent the problem of an inadequate size
training set and capture long-range interactions.

In this article we introduce a novel method that takes
into account long-range interactions in �-barrel structure
prediction. Such long-range interactions are used effi-
ciently and without loss of generality. Moreover, to avoid
using any a priori knowledge of TM �-barrel structures
and to ensure the universality of our energy model, we use
�-strand contact energy parameters for globular proteins
taken from the program BETAWRAP.19–22 Our model is
based on an abstract physical description of omps (only the
basic topology is represented; see below), and the energy
parameters are defined independently of any known TM
�-barrel. It follows that our method can be applied to any
amino acid sequence, without preliminary analysis (e.g.,
one need not first determine that the protein contains
�-strands, or that it is likely to be a transmembrane
protein). With respect to our model and the �-strand
contact energies, our algorithm then uses a multitape
S-attribute grammar to describe all possible �-barrel
supersecondary structures, from which the minimum free
energy supersecondary structure is selected by dynamic
programming.

The method described in this article is implemented in
a program called transFold, which introduces new soft-
ware (to potentially be used together with existing
methods but giving alternate solutions) to study the
properties of TM �-barrel proteins, predict their struc-
ture and distinguish them from other types of protein
folds. We have computed the accuracy of classification
(i.e., given an amino acid sequence, whether the protein
is a TM �-barrel protein) and structure prediction (i.e.,
given an amino acid sequence, determine the minimum
free energy TM �-barrel supersecondary structure). In
addition to classical secondary structure predictions,
transFold provides a list of pairs of residues that are in
contact in the predicted structure. These contact predic-
tions are examined and discussed in their biological
context. Finally, we compare our performance results
with existing methods, whenever possible using the
same datasets. Apart from the standard performance
calibrations of accuracy, sensitivity, specificity, and
Mathews correlation coefficient, we include two novel
measures.

The software transFold can be used for three types of
applications: (1) prediction of omps according to struc-
tural and potentially functional characteristics (water-
filled channel or not, in the present paper); (2) automatic
structural classification of omps; (3) in silico folding
experiments for mutants of omps. In particular, in this
article we reproduce experiments on the Outer mem-
brane protein A (OmpA) of Escherichia coli and compare
the results computed in silico with those observed in
vivo. The overall performance of transFold and its use in
performing computational experiments for mutagenesis
of outer membrane proteins argue for the potential
interest of experimental biologists.

62 J. WALDISPÜHL ET AL.
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MATERIAL AND METHODS
Abstract Physical Model
Level decomposition of the structure

Transmembrane �-barrels can roughly be seen as chan-
nels formed from �-strands that are embedded in the outer
membrane. Before precisely describing their structure, we
focus on fundamental structural characteristics of TM
�-barrels and their decomposition into well-defined levels
of abstraction.

To a first approximation, a pore is built from an even
number of �-strands, forming a single antiparallel �-sheet
where the first and last strands are paired together.
Figure 1(a) illustrates this configuration.

Note that �-strand lengths vary across the sequence.
Hence, any formal description of antiparallel �-strand
pairings should include (potential) strand extensions as
shown in Figure 1(b). This description (channel and antipa-
rallel pairing with extension) is insufficient to provide an
approximate and realistic model of TM �-barrels. The
main reason is that TM �-strands do not span the mem-
brane at 90° (perpendicular to the membrane), but rather
are usually inclined at an angle to the vertical TM axis.
This implies a shift in the hydrogen-bonded (H-bonded)
residues called the shear number. For instance, a shear
number of �1 means that the H-bonded partner of the
residue at position i is at position j �1 rather than j. An
example is shown in Figure 1(c).

Combining these models allows us to accurately describe
the most relevant characteristics of TM �-barrels. Note
that, unlike the description made for a single TM �-helix in
a TM �-bundle,17 we do not give any description of local
structure for single �-strands. In fact, such a description
would be of no use because of the simplicity of �-strand
hydrogen bonding, where side chains strictly alternate
around the �-strand axis.

Strand inclination appears to be an intermediate descrip-
tion level. As well, strand extensions are essential for
modeling at this level of abstraction. A schematic represen-
tation of a TM �-barrel is given in Figure 2(a), where the
important features of strand extension and tilt are illus-
trated.

Features of transmembrane �-barrels

Most of the relevant features of TM �-barrels have been
described in other articles.5–7 For example, Schulz7 gives a
set of 10 construction rules (most of them confirmed in
more recent reviews) that should be followed by all TM
�-barrel proteins. These rules range from exact criteria
(e.g., the number of �-strands is even) to somewhat less
precise criteria (high sequence variability of external loop).

The first feature we add to our model is that the number
of strands is even and that the N- and C-termini are
located in the periplasmic end of the barrel. This implies
that the two first �-strands are connected with an extracel-
lular loop, and that the first and last strands are in
opposite direction (with respect to the membrane) and
paired in an antiparallel �-sheet.

According to Wimley,6 the tilt of �-strands ranges from
20 to 45°. The shear number of an n-stranded barrel is thus
positive and around �2. In the program transFold, we
have implemented more flexible values, with a lower
bound of �1 and upper bound of �3 (except for pro-
teins with less than 200 residues, where a lower bound of n
is set).

Strands are connected with tight turns on the periplas-
mic side (named T1, T2, and so on), while longer loops are
observed on the extracellular side (denoted L1, L2, etc.). To
deal efficiently with these features, the allowed size for
periplasmic �-hairpins ranges from two to eight amino
acids. In contrast, a lower bound of five residues is applied

Fig. 1. Three different structural levels. a: Overall shape of the barrel: a barrel with 6 TM �-strands. b: Antiparallel strand pairing of TM �-strands with
possible extension: sidechains in black are exposed to the core of the channel and those in white to the membrane. c: Tilt of TM �-strands through the
membrane: H-bonds are represented by dotted lines and the shear number equals 1 in this example.
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Fig. 2. a: A schematic representation of an eight-strand �-barrel in our approximate physical model. H-bonds are represented by dashed lines. (Image
obtained using PyMOL). b: A derivation tree modeling a four-strand �-barrel with pseudofolding energies stored in internal nodes. The nodes are labeled with a
nonterminal determining the nature of the substructure and amino acids. Indeed, “L” represents a loop (periplasmic and extracelular), “E” represents antiparallel
TM �-strand, “C” represents a TM �-strand sheet (i.e., antiparallel TM �-strands that form the unclosed �-barrel), “B” represents the closing antiparallel TM
�-strand pairings, and “S” represents the whole omp structure. Here, the folding energy is simply computed as the number of interstrand residue contacts. Each
nonterminal is associated with an attribute representing the energy of the substructure. Both examples describe strand extension and shear number.
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to extracellular loops. (Because loops do not contribute to
the folding energy in our current model, we assign a larger
value for the minimum size of an extracellular loop, to
avoid ambiguity between periplasmic and extracellular
turns. A threshold of five is chosen to avoid strongly
structured hairpins, which should preferably occur in the
periplasmic domain.)

Tamm et al.5 note that TM �-strands span about 27–35
Å of the outer membrane. They also note a difference in
their lengths in a monomeric versus multimeric protein;
specifically they give an average length of 11 amino acids
for trimeric porin, and 13 to 14 residues in monomeric
�-barrels. The tilt of TM �-strands is generally higher in
longer sequences; thus, the minimal number of residues
required to span the membrane is increased.

Amino acids facing the bilayer are mostly hydrophobic,
while those exposed to the channel interior are polar.
However, the size of the channel varies over different TM
�-barrel proteins, and the hydrophobicity of the channel
interior can thus change. For example, porins have a large
water-filled channel while TM �-strands of OmpA in
Escherichia coli are tightly packed. It follows that the
presence of polar residues is most important (and favored)
for large pores. Because the size of the channel is naturally
related to the number of strands involved, we associate
these parameters together.

We then apply (slightly) different criteria according to
the number of TM �-strands and the length of the protein.
When the number of strands is greater than or equal to 14,
we constrain the profile of residues exposed to the channel
interior to be hydrophilic on each strand. Otherwise, when
there are at most 12 strands, this constraint is not applied.
Nevertheless, in that case, to compensate for the lack of
selection constraints on TM �-strands for smaller se-
quences (�170 residues), a hydrophobic profile is required
for the membrane-exposed face of each TM �-strand. (This
constraint has the advantage of allowing polar side chains
to point toward the channel interior while at the same time
limiting the overall polarity of channel interior.)

Similarly, the extracellular loops are mostly composed of
polar residues. Hence, using a polarity scale,23 we con-

strain these segments to be polar. Extracellular loops are
also known to be quite flexible. However, at this point, this
criterion seems too inexact to be used reliably. A strategy
that includes the flexibility scale24 could be used, but is
intentionally omitted in the current article. High sequence
variability of extracellular loop regions prevents any simple
measure from being applied.

An overrepresentation of aromatic residues in found in
two rings contacting the bilayer, one at either end of the
�-barrel. Nevertheless, our statistical analysis of the amino
acid location propensity (data not shown) does not reveal
any clear signal. Some preferences might be found in
subsequent analysis, but we did not succeed in designing
any simple and reliable criterion.

From the preceding discussion, it emerges that the
physical parameters are strongly correlated with the type
of pore (water-filled or not), the length of the sequence and
number of TM strands. For example, a TM �-barrel with
18 TM strands should have a water-filled pore, while a
small protein with eight TM �-strands will have a less
polar environment in the channel interior and its �-strands
should be less inclined (lower shear number). All parame-
ters used in this article are reported in Table I for each
type of protein. Note that certain constraints have been
applied to large proteins to reduce the complexity of
parsing for the underlying multitape S-attribute gram-
mar. For example, the minimum number of residues in
extracellular loops is required to be seven residues for the
largest proteins (more than 320 amino acids and more
than 12 TM strands). In contrast, in the case of the
smallest proteins, the lower bound for the shear number is
relaxed to 0 and there is no overall hydrophobicity require-
ment (i.e., the requirement stipulating that TM �-strands
are overall hydrophobic has been removed; however, we
maintain the hydrophobicity requirement that side chains
facing the bilayer are hydrophobic and that side chains
facing the channel interior are polar).

Folding energy

It is now well known that the TM �-barrel folding
process passes through different states (unfolded, molten

TABLE I. Parameters Used for the Different Classes of Proteins

Nonwater-filled (�12 strands)
Water-filled

(�14 strands)

�170 171–220 221–270 �270 �320 �320

Min. length of TM strand 10 10 11 12 8 10
Max. length of TM strand 16 16 18 20 11 13
Min. shear number 0 0 1 2 1 1
Max. shear number 3 3 3 4 3 3
Min. length of periplasmic loop 2 2 2 2 2 2
Max. length of periplasmic loop 8 8 8 8 8 8
Min. length of extracellular loop 5 5 5 5 5 7
Min. hp of outward residues 0 0 0 0 0 0
Max. hp of inward residues �� �� �� �� 0 0
hydrophobic TM strands no yes yes yes no no

The type of constraints (physical or chemical) is listed in the left column. In this column, “hp” abbreviates hydrophobicity, while “outward
residues” face the bilayer and “inward residues” face the channel interior. Central columns give values used for non water-filled channels, and the
two rightmost columns give values used for proteins with water-filled channels. Each structural class is divided into subclasses with respect to the
length of the sequence.
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disk, molten globule, and native state) where long-range
interactions play a dominant role.5 Hence, a realistic
energy function must be based on, or at least include, these
terms.

As suggested in Figure 1, our model can describe side-
chain interactions occurring between TM �-strands. [Be-
cause only local information can be used, classical hidden
Markov models (HMM) and neural networks (NN) are
intrinsically unable to deal with such long-range interac-
tions.] Nevertheless, thermodynamic driving forces are
still not fully understood,1 and residue contact energy
between TM �-strands remains obscure. Some values have
recently been computed;25 however, we deliberately do not
use these values to ensure that our energy parameters are
not learned from the dataset on which we make our
predictions. As previously explained, very few TM �-barrel
structures are actually known; this is a major objection
against current machine-learning methods (see Ref. 10).

The BETAWRAP authors19,20 designed an elegant strat-
egy to compute pairwise probabilities according to their
environment but independently of the context in which
they are used. These values were computed using a large
set of globular proteins (no TM proteins) whose tertiary
structure is known. They distinguish contacts occurring in
a hydrophilic environment (exposed at the surface) from
those occurring in a hydrophobic environment (buried in
the core of the protein), thus yielding two distinct tables,
which give the contact probability according to the milieu.

Tamm et al.5 noted that the general distribution of
residues in TM �-barrel proteins is inverted with respect
to that of most soluble proteins. In soluble proteins,
hydrophobic amino acids are generally found buried in the
core, while in TM �-barrel proteins, polar residues face the
core, which is the channel interior (sometimes water-filled,
and usually polar).

In our program transFold, we used the values provided
by Refs. 19 and 20, turning them into an energy potential
using the standard procedure (taking the negative loga-
rithm of the frequencies (see pp. 223–228 of Ref. 26 for
details). Finally, the folding pseudoenergy of the structure
is simply computed as the sum of all contact potentials.

In our current model, extracellular loops and �-hairpins
do not contribute to the folding pseudoenergy for several
reasons. First, even for simple configurations, we do not
have any reliable energy function. Second, extracellular
loops display great structural diversity and sometimes
contain strongly structured subdomains with important
energy contributions that are difficult to determine. Fi-
nally, the goal of the current article is to better understand
the effect of long-range interactions between �-strands in
TM �-barrel folding.

Implementation
Grammatical modeling

In analogy to Ref. 17, we transcribe the previous descrip-
tion into a multitape S-attribute grammar (MTSAG). This
approach is motivated by two reasons. First, when used in
a machine learning context, this formalism generalizes
other standardized approaches such as hidden Markov
models (HMMs) and stochastic context free-grammars.27

(We emphasize that our use of multitape S-attribute
grammars is to permit a unified description of all possible
supersecondary structures for a �-barrel protein, after
which we apply dynamic programming, rather than ma-
chine learning.) Second, building on Lefebvre’s work, we
are able to use a meta-parser (mtsag2c) that allows us to
more easily produce our transFold software. Moreover,
modeling with multitape S-attribute grammars provides
us with an elegant way to describe the structure of TM
�-barrel proteins and suggests applications in future com-
binatorial studies.

Compared with other grammars used in computational
biology (e.g., general tree grammars), the MTSAG formal-
ism has two clear advantages. First, the expressive power
of the language is better suited to the complexity of the
structural description, and it offers faster parsing in
practice. Second, attributes in a multitape S-attribute
grammar allow us to unify the energy model together with
a protein structural description.

The modeling operates in two steps. The structural
description is first transcribed as a multitape context-free
grammar (MTCFG). Then, we define an attribute system
that computes the folding pseudoenergy of a TM �-barrel,
and we associate to each production rule an attribute
function.

We begin by describing each structural level with its
own grammar. The translation of the overall structure of
the TM �-barrel is identical to that given in Ref. 17 for the
TM �-bundle. This MTCFG is called Gbarrel, and we
display its production rules in Figure 3. Similarly, we
model antiparallel pairings with the grammar Gcouple in
Figure 3. In this case, a classical context-free grammar
(CFG) suffices for its description. (Note that the decomposi-
tion of the structures follows the hierarchy of the lan-
guages. This could be used as a good estimator of the
complexity of protein structure.)

We compose Gbarrel with Gcouple, resulting in a grammar
which describes all TM �-barrel features except strand
inclination. To restrict our model to a valid �-barrel (with a
correct shear number), we constrain strand extensions.
Extension of the left strand with unpaired amino acids (at
most three, as explained earlier) is then required (cf.
production rules Sextend 3 Sextend � of Gcouple in Fig. 3)
when �-strands are connected with an extracellular loop.
Extension of the right strand is then disallowed in such
cases.

The way the grammar Gbarrrel operates to decompose a
barrel is illustrated in Figure 4(a). In these structures,
each TM �-strand is paired twice: with its left and right
neighbors except for the last strand, which is paired with
the first strand to close the channel. However, classical
linguistic tools only allow single pairings. The key idea is
to duplicate the structure and make associations only from
the copy to the original structure. This justifies the use of a
two-tape grammar. Hence, it becomes feasible to isolate
each antiparallel pairing involved in the barrel into indi-
vidual blocks.

To proceed, the grammar generates two-tape words of
the form given in Figure 4(b). Here, “ε,” which could also be
denoted “�,” represents the empty character, and “(” or “)”
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represent any amino acids brought into contact by the
pairing. Unlike classical one-tape words, a two-tape word
results from the concatenation of two-character letters.
The most common way to represent these is to juxtapose

characters (tokens), one on top of the other [see Fig., 4(b)
and (c)]. Finally, an operation called �-suppression re-
moves all empty tokens to obtain the resulting word [see
Fig. 4(c)], which represents the decomposition illustrated

Fig. 3. Grammatical modeling of the structural levels. Grammar Gbarrel a: models the overall structure of TM �-barrel and Gcouple b: the antiparallel
pairings of TM �-strands with possible extension on the left (reduction: decreases length) or on the right (extension: increases length). Token F
represents any amino acid, while F � 1 means the same amino acid as in the upper tape (see ref. 17 for technical details concerning upper and lower
tape for multitape S-attribute grammars). “�” represents the empty character. Grammatical modeling of strand inclination (i.e., shear number) results from
combination of these two grammars.

Fig. 4. �-Barrel decomposition and its description as a two-tape word. a: Decomposition of the �-barrel into
individual subunits. Each block is associated to a single �-strand antiparallel pairing. b: Twp-tape string
modeling a four-strand �-barrel. The string includes the empty character “	.” c: Same structure after
“�”-suppression.
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in Figure 4(a). From this discussion it emerges that the
parsing process (i.e., structure modeling) consists of insert-
ing empty characters at correct positions in the original
two-tape string.

The grammar Gcouple operates in a more traditional
manner. Pairs of amino acids are progressively added at
each extremity of the string; in addition, amino acids can
be added to only one side, to reflect the fact that beta
strands of unequal lengths may be paired. The combina-
tion of grammars Gbarrel and Gcouple results in a system
that respects both properties; that is, a system that
produces and concatenates two-tape blocks following the
pairing rules of TM strands.

To achieve the modeling and associate its folding energy
to a given structure, we associate an attribute function to
each production rule, and achieve the construction of the
MTSAG G� for TM �-barrels. Because they are the only
productions that describe amino acids contacts, only pro-
duction rules with Schannel and Smemb on the left-hand side
contribute to the final folding pseudoenergy value. Obvi-
ously, productions Schannel 3 � Smemb � use the values
computed for interactions occurring in a hydrophilic envi-
ronment (residues exposed to the channel interior), while
productions Smemb 3 � Schannel � use the values computed
for interactions occurring in a hydrophobic environment
(side chains facing the membrane core). An example of the
modeling of a complete structure of a TM �-barrel with its
folding pseudoenergy is given in Figure 2(b). The structure
description (including strand extensions and shear num-
ber) is unified with the energy value in a unique derivation
tree, representing the sequences of productions used to
generate the structure. More details can be found in ref.
17.

Software

Our software, which implements the method described
above, is called transFold. Results reported in this article
have been computed with a Xeon 2.4-GHz dual processor
with 2 GBytes running Fedora 3.0 Linux. The theoretical
upper bound for time complexity is O(n6) (see refs. 17 and
27); however, in practice, the time complexity appears to
be O(n3) or O(n4) (this assertion should be provable by
careful mathematical analysis). The same remark holds
true for space requirements where a complexity of approxi-
mately O(n3) is observed instead of the theoretical bound
of O(n4).

A run on a sequence of 300 residues typically uses
around 1 min of CPU time and 1 GB of memory. However,
performance may vary according to the values assigned to
structural constraints (e.g., the values defined in Table I).
A web server has been implemented and is available at
http://bioinformatics.bc.edu/clotelab/transFold/. and http://
theory.csail.mit.edu/transFold.

Datasets

Due to the paucity of experimental data, relatively few
sequences and structures are available to evaluate our
structure predictions. Nevertheless, many different repre-
sentative datasets (often similar) have already been used.
In most cases, because all other existing methods are

based on learning methods, these datasets have been
designed to avoid redundancy and sequence similarity.
Note that because our energy parameters come from
pairwise frequencies in globular proteins, we need not be
overly concerned with redundancy concerns necessary in a
machine learning context. Nevertheless, for comparative
purposes, we consider (an updated version of) the same
datasets tested in previous machine-learning studies.

The two most relevant datasets have been proposed by
Martelli et al.8 and Bigelow et al.10 The first dataset
(denoted setMartelli) is composed of 15 structures filtered
at 30% sequence identity (pdb id: 1A0S, 1BXW, 1E54,
1EK9, 1FCP, 1FEP, 1I78, 1K24, 1KMO, 1PRN, 1QD5,
1QJ8, 2MPR, 2OMF, 2POR), while the second dataset
(denoted setTMBcomp) is smaller but is computed with
more sophisticated techniques (PDB id: 1A0S, 1AF6, 1BT9,
1FEP, 1PRN, 1QD5, 1QJ9, 1QJP). Both are used in the
current article.

We updated these two sets, by taking structures avail-
able in the PDB28 release of October 2005, filtered at 30%
of sequence identity. As was done in previous work,10 we
removed structures that do not fit into our description and
present atypical structural features (e.g., �-barrels formed
from different chains, or the presence of an important plug
domain inside the pore). (These structures were removed
mainly because the particular interactions, which occur
between �-barrel side chains pointing toward the channel
and those residues of the plug domain, are not yet de-
scribed by our energy model). Moreover, due to the complex-
ity of parsing and the reliability of the predictions, we
restrict the sequence length to at most 500 residues.
Because our prediction algorithm is based on long-range
interactions, the combinatorial complexity increases as
sequence length increases. It follows that the performance
of the method is strongly correlated with input size. For
this reason, we bound the length of input sequences to 500
residues, which seems to be a fairly reasonable upper
bound for transmembrane proteins. Note that HMMs and
neural networks are not concerned by sequence length
restrictions, because they apply only local information.
Secondary structure assignment has been made by DSSP29

and is manually adjusted. (The PDB structure was exam-
ined to suppress gaps in TM �-strands or adjust strand caps.)

Our final dataset is then composed of 14 structures,
divided into three different subsets according to sequence
length and channel type. Proteins with a nonwater-filled
pore are referred to as NWF. This set is divided into
sequences having less than 200 residues (denoted NWF-)
and more than 200 residues (denoted NWF�). Proteins
with a water-filled channel belong to a dataset denoted
WF. Formally, NWF �200 consists of (PDB id) 1QJP,
1QJ8, 1THQ, 1P4T, while NWF �200 consists of 1I78,
1K24, 1QD6, and WF of 1A0S, 1AF6, 1PRN, 2OMF, 1E54,
1TLY, 2POR.

With the same restrictions, the dataset setMartelli is
restricted to 11 structures and setTMBcomp to seven
structures.

Whole protein prediction and structural classification
has been performed on different datasets provided by
Gromiha and Suwa.9 Sequences have also been filtered
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according to their length. The remaining database con-
tains 439 globular proteins (dataset noted GLOB), 162
helical inner membrane proteins (noted TMH), and 151
outer membrane proteins sometimes annotated as prob-
able (noted UNK). Sequences belonging to NWF or WF are
obviously removed from UNK.

Evaluation

Several different scores are usually used to evaluate the
prediction accuracy. Standardized benchmarks have been
established,30,31 and roughly similar benchmarks are found
in other articles. Per-segment and per-residue accuracy
are the main features to consider, for which sensitivity and
specificity are the two most commonly used measures.

Sensitivity gives the rate of correct prediction over the
observed structure (i.e., percentage of true structure that
is correctly predicted), and specificity gives the rate of
correct prediction over the predicted structure (i.e., percent-
age of predicted structure that is true). In the context of
secondary structure assignment, sensitivity of �-strand
residue assignment is denoted by QTM

%obs and specificity
by QTM

%pred. Additionally, for nontransmembrane resi-
dues, we have respectively QN

%obs and QN
%pred. Let X

�{TM,N} be an assignment (or state). Then, formally:
QX

%obs �100 
 number of residues correctly predicted in
state X/number of residues observed in state X; QX

%pred

�100 
 number of residues correctly predicted in state
X/number of residues predicted in state X.

These scores are combined into a single score giving the
rate of correct assignment: Q2 � 100 
 number of residues
correctly predicted in the protein/number of residues in
the protein.

Sensitivity and specificity for per-segment accuracy
come from the same formulas. In that case, a segment is
correctly predicted if the observed segment intersects one
and only one predicted segment, and vice versa. In this
study, we define intersection as an overlap of at least four
amino acids. By Q�

%obs and Q�
%pred, we denote the sensitiv-

ity and specificity of TM �-strand segments.
In addition to these classical scores, we consider the

score Qp, which computes the percentage of structures
correctly predicted, where a structure is said to be correctly
predicted if and only if all observed (respectively, pre-
dicted) �-strands intersect one and only one predicted
(respectively observed) strand. We additionally consider
the score (Qp

almost ), which computes the percentage of
structures almost correctly predicted. Here, a structure is
said to be almost correctly predicted if and only if each
observed (respectively predicted) TM �-strand intersects
at most one predicted (respectively observed) �-strand.

We also computed Matthew’s correlation coefficient
(MCC), to estimate per-residue accuracy. More details can
be found in ref. 10.

We evaluated the accuracy of our contact predictions
and compared them with DSSP29 annotations. For this
purpose we need first to define the notion of a compatible
pair of residues. By contact pair, we mean a pair (i,j) of
indices such that the residue at position i is predicted to be
hydrogen bonded to the residue at position j. If � is a given
integer, then contact pairs (i,j) and (m,n) are said to be

compatible if (i,j) � (m � �,n � �). In our context, because
we want to consider only residues with the same orienta-
tion in the barrel (e.g., side chains pointing toward the
membrane or pointing toward the cavity), we choose � to be
equal to 2.

Hence, we extracted H-bonded pairs of residues from
PDB files. Then, we considered a contact prediction as
correct if a compatible pair is found in the observed contact
list. We completed the sensitivity (Qct

%obs) and specificity
(Qct

%pred) scores as defined above.

RESULTS AND DISCUSSION

Using transFold with parameters defined in Table I, we
determine the TM �-barrel structure with the best pseudo-
folding energy. In the following, we evaluate the reliability
of the predictions, compare the results with two of the best
current methods, and estimate the accuracy to discrimi-
nate transmembrane �-barrel proteins from other pro-
teins. Finally, we perform in silico folding variants of the
Outer membrane protein of Escherichia coli (OmpA), and
reproduce experimental results.

Evaluation of Structure Predictions

TransFold’s favorable performance when compared with
existing methods for TMB prediction can be seen in Table
II. As previously mentioned, there is a breakdown into
different subsets according to the length and the type of
protein. Sequences in NWF range in length from 148 to
297, while sequences in WF range in length from 289 to
421. As expected, Table II displays a dependence between
input size and performance. Nevertheless, the perfor-
mance rate obtained for proteins in NWF remains strong
even for the longest sequences, where performance seems
to be less affected than the performance for proteins in
WF. Some structural features occurring in porins (all
proteins in WF belong to the porin family) are in fact not
described by our grammar; for instance, small helices and
�-sheets located in extracellular loops are not represented
in our current grammar. As stated in ref. 17, the reliability
of prediction is closely related to the ability of the grammar
to describe important features in the native structure.

The most exciting observation is that our prediction of
TM �-strands is very accurate. Focusing on sequences in
NWF, all TM �-strands were correctly predicted with no
overprediction. This means that for all proteins in NWF
the correct shape of the barrel has been found. According
to the current consensus folding model,5 long-range inter-
actions drive the folding of TM �-barrel proteins. Because
our predictions are based on these long-range interactions,
our prediction rates are consistent with this theory, which
explains the excellent results in Table II.

TM �-strand prediction for the porin family is less
accurate, but still remains good in terms of per-segment
accuracy. Given the percentage of almost predicted struc-
tures and the high sensitivity score, we see an overpredic-
tion of TM segments rather than a misprediction. In fact,
long extracellular loops tend to cause such overpredic-
tions. Because no constraint has been imposed on these
regions, our algorithm tries to insert extra �-strands. This
situation is expected to be corrected when additional

PREDICTING TRANSMEMBRANE �-BARREL PROTEINS 69

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



constraints are applied in a future extension of our current
grammar, in particular by including a description for
small helices and �-sheets located in extracellular loops.

To confirm this hypothesis, we have constrained extracel-
lular regions to be free of secondary structure (helices and
strands), whenever a structural motif is observed in the
PDB structure; for example, in the long loop L3 of porins,
where the chain folds back into the lumen of the pore. By
this procedure we want to: (1) add criteria for the selection
of loop regions; (2) show evidence of additional structural
stability caused by structured loop regions.

Results obtained with the constraint that �-strands not
be allowed in loop regions are indicated in the line with
rubric WF* in Table II, and additionally occur in the line
with rubric All*.

The scores thus obtained show a clear increase in
prediction accuracy, reaching the rates found for the WT
set. From these observations, we conclude that specific
constraints applied to extracellular loops should allow us
to improve accuracy of our method for porins. Taking into
account the flexibility of potential loop regions24 could be a
good starting point to improve the prediction of these
loops. (This suggestion follows one of the rules given by
Schulz;7 however, an additional reason to consider this
point is that it is believed that functional regions, mostly
located in such loops, are flexible.)

Structural motifs occurring in extracellular loops play a
fundamental role in structure stability and/or function.
For example, the loop L2 in porins is known to contribute
significantly to the trimer stability, while loop L3 has
hydrophobic contacts with residues inside the barrel.5

Because the stability of TM �-barrel proteins is rather
modest (10 kcal/mol in general), it follows that the
contribution of these substructures cannot be neglected.
The (grammatical) description of these structural sub-
units, as well as their contribution to the folding pseudoen-
ergy, should improve prediction rates. In a sense, the
behavior of our model confirms experimental observations.

Finally, the comparison of our contact predictions with
H-bonded pairs of residues yields satisfying results (par-
ticularly good for small proteins), especially if we consider

the difficulty of predicting them directly from sequence.
Several reasons explain the apparently weak values of
sensitivity Qct

%obs and specificity Qct
%pred observed for

larger proteins: first, H-bonds constitute a subset of inter-
actions occurring between residues of different strands.
Moreover, the number and location of H-bonds may vary
between different experimentally determined structures
(e.g., 3D coordinate files) for the same protein. Hence,
some contacts could have been simply missed by experimen-
tal annotations.

One can note that local features such as gaps or bulges
in H-bond patterns between two paired TM �-strands are
not yet modeled in transFold. These alterations of the
structure could possibly distort the contact map (local
perturbations of the structure can have a global effect).
Because our current measure for the correctness of a
contact does not allow us to capture this feature, the
accuracy of predicted contacts is then affected.

Nevertheless, the accuracy of contact prediction is par-
ticularly good for small proteins (less than 200 residues;
see supplementary data for detailed results). Hence, trans-
Fold could prove to be useful in annotation or reannotation
efforts, specifically by indicating contacts that have been
missed using classical methods. In particular, the use of
transFold predictions together with NMR experiments
(e.g., residue interactions experimentally observed) could
result in a more accurate method for building complete 3D
model of proteins.

Comparison with Existing Methods

To compare our method with existing methods, we ran
transFold on the setMartelli dataset as well as setTMB-
comp. According to the performance published in the
literature, HMMs show better accuracy than neural net-
work methods. For this reason, we compare transFold with
the state-of-the-art HMM methods. Prediction rates for
the HMM of Martelli et al. and for PROFtmb were
obtained respectively from refs. 8 and 10. These references
reported the scores Q� (segment overlap), Q2 (correct
secondary structure assignment), QTM

%obs and QTM
%pred

(sensitivity and specificity of TM �-strand residue assign-

TABLE II. Prediction Accuracy

Topology Strands 2-states TM residues non-TM residues Contact

Qp Q�
% obs Q�

% pred Q2 QTM
% obs QTM

% pred QN
% obs QN

% pred MCC Qct
% obs Qct

% pred

NWF� 100 (100) 100 100 84.81 92.52 86.26 68.14 80.81 0.64 83 65
NWF� 100 (100) 100 100 75.57 80.40 81.20 67.02 65.86 0.48 48 44
NWF 100 (100) 100 100 79.72 86.05 83.66 67.48 71.43 0.55 64 55
WF 0 (71.4) 92.0 78.0 63.97 76.42 64.95 48.39 62.12 0.30 32 23
WF* 85.7 (100) 99.1 99.1 78.04 78.92 81.07 76.94 74.47 0.56 51 45
All 50.0 (85.7) 94.9 85.2 69.91 80.44 72.16 54.44 65.47 0.38 45 35
All* 92.9 (100) 99.4 99.4 78.68 81.90 82.19 73.95 73.57 0.56 56 49

Qp is the rate of correctly predicted structures, while the rate of almost predicted structures Qp
almost is given in parenthesis. Q�

% obs and Q�
% pred

represent the sensitivity and specificity, respectively, of TM �-strand predictions. Q2 is the rate of correct secondary structure assignment,
QTM

% obs and QTM
% pred are the sensitivity and specificity of assignment, respectively, for �-strand residues, and QN

% obs and QN
% pred are similarly

sensitivity and specificity, respectively, for non-TM residues. Matthew’s correlation coefficient (MCC), as well as the sensitivity and specificity of
contact predictions are given in last columns. NWF contains omps with nonwater-filled channels. It is divided into two datasets NWF� and NWF�

for small proteins (�200 res.) and larger proteins (�200 res.). WF is the dataset of proteins with a water-filled channel (porin-like). The rubric
“All” indicates that the score is for the complete dataset (NWF�WF). Rubrics with an asterisk (*) indicate results for datasets computed with
constraints for unfolded subsequences (portions of loop regions where a significant structural motif has been observed).
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ment), and MCC (Matthew’s correlation coefficient); how-
ever, the rate of correctly predicted topology Qp was absent
from both original papers (although it could be that the
score Qp is related to Q�).

Results are presented in Table III. Two scores for our
software transFold are reported, denoted respectively by
transFold and transFold*. The latter (with asterisk) em-
ploys the additional constraint explained in the example
given for the L3 loop in porins (i.e., we prevent TM strand
formation in extracellular loop regions), while the former
(without asterisk) imposes no such additional constraint.

Because PROFtmb as well as the HMM of Martelli et al.
are machine-learning methods, which thus learn their
parameters from known TM �-barrel structures, their
reported accuracy is associated with a standard deviation.
Scores reported in the literature are the best encountered
in bootstrap experiments, and hence, should be considered
to be an upper bound for the actual performance. Trans-
Fold is not subject to this caveat, because its contact
potentials were computed from globular proteins.19,20

Although both HMMs give similar performance results,
the scores obtained with transFold differ markedly. Our
method significantly improves the prediction of TM
�-strands; however, the per-residue prediction rate is
lower. As stated above, long-range interactions play a
fundamental role in the formation of TM �-strands; thus,
it is not surprising that transFold detects TM �-strands
that “local” methods have missed. It follows that transFold
is a more reliable tool to predict the overall structure of the
barrel and all transmembrane �-strands.

Nevertheless, the secondary structure assignment in
transFold is not as accurate as that of the HMMs from refs.
8 and 10, because transFold has used no local information,
with the exception of hydrophobicity, to evaluate the
ability of a given residue to fit well in the local context.
Clearly, classical learning methods (HMMs and NNs)
implicitly make use of hydrophobicity, in addition to
sequence information. For instance, the HMM method
PROFtmb,10 carefully describes each position that can be
taken by an amino acid in the structure (periplasm,
extracellular milieu, membrane core, or interfacial bi-

layer). It follows that given the simplicity of our local
description of TM �-strands, it is not surprising that HMM
methods outperform transFold for per-residue accuracy.
Nevertheless, if we consider the standard deviation associ-
ated with learning methods, the rates of transFold are still
in the range of those given for existing methods.

We should note that the inaccuracy of transFold in a
secondary structure assignment is most visible in the
performance on porins (water-filled barrel structures). For
proteins having less than 300 residues, transFold obtains
good secondary structure assignment scores, comparable
with the best scores observed for the HMMs of Martelli et
al. and of PROFtmb; and even better if we consider
proteins having less than 200 residues. Results for trans-
Fold* show an improvement over transFold in the case of
porins, where in this case we have added the constraint
that no �-strand can occur in extracellular loop regions.

From this discussion, it emerges that the techniques of
HMM and transFold appear to be complementary. Because
MTSAG generalizes the HMM method,27 we can expect that
by merging these methods, one might obtain a significant
performance increase in TM �-barrel prediction.

Outer Membrane Protein Discrimination and
Structural Classification

In this section, we evaluate the ability of transFold to
discriminate outer membrane protein (omps) from globu-
lar and inner membrane proteins. In addition to this
classification, we propose a method to classify omps accord-
ing to structure (e.g., water-filled channel or nonwater-
filled channel).

To discriminate proteins we used four parameters: se-
quence length, folding pseudoenergy in the nonwater-filled
model (NWF model), folding pseudoenergy in the water-
filled model (WF model), and overall hydrophobicity of the
sequence. The folding pseudoenergies in both models are
required because constraints differ significantly (see ear-
lier); hence, the signal is different. Overall hydrophobicity
is used to estimate the propensity of the sequence to be
affected by strand selection constraints.

TABLE III. Comparison of Prediction Accuracy of transFold with Other Methods

Method Q� Q2 QTM
% obs QTM

% pred MCC

SetMartelli
transFold 93 70 81 70 0.35
transFold* 99 79 83 81 0.56
Martelli 94 � 11 84 � 6 80 � 14 87 � 9 0.69 � 11
PROFtmb 93 � 11 83 � 6 80 � 14 87 � 9 0.69 � 11

SetTMBcomp
transFold 93 70 82 70 0.37
transFold* 100 80 84 82 0.58
PROFtmb 93 � 11 83 � 6 85 � 14 87 � 9 0.70 � 11

Performance of the HMM of Martelli et al. on the dataset setMartelli is reported in Ref. 8 and
performance of PROFtmb on the dataset setTMBcomp is reported in Ref. 10 Q� is the percentage
segment overlap between predicted and observed TM �-strands, Q2 is the rate of correct secondary
structure assignment, and QTM

%obs and QTM
%pred are respectively sensitivity and specificity of

assignment of �-strand residues, and MCC is Matthew’s correlation coefficient. Results marked
with report scores computed on sequences with constrained unfolded subsequences (parts of loops
where a significant structural motif has been observed).
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Small changes in selection constraints (strand length,
shear number, hydrophobicity, etc.) may have an impact
on the homogeneity of the folding pseudoenergy values.
We use the same settings (one for the NWF model and
another one for the WF model) for all proteins regardless of
their length. These parameters are determined by taking
the largest constraints defined in Table I. Nevertheless,
using original settings (cf. Table III) does not significantly
change the scores obtained (data not shown).

Discrimination was performed using a support vector
machine (SVM). For this purpose, we used the S. Noble
and P. Pavlidid software Gist (http://svm.sdsc.edu). For
each protein, we computed a feature vector x� � (x1,x2,x3,x4),
where x1 is protein length, x2 is average hydrophobicity, x3

is the energy according to the nonwater-filled (NWF)
model, x4 is the energy according to the water-filled (WF)
model. Using the default kernel of Gist, support vectors
were computed on a randomly chosen training set com-
posed of 85% non-omp proteins (GLOB and TMH datasets)
and 50% TM �-barrel proteins (UNK dataset). Sequences
not chosen in the training set were used to compute
performance. This procedure was iterated 1000 times, to
obtain a reliable estimate of classification performance.

Because two folding pseudoenergies (in NWF and WF
models) are computed for each sequence, this can be done
with an appropriate labeling to distinguish between both
types of structure. [Only proteins of a given type (NWF or
WF) are labeled as positive. The standard procedure is
then applied in the same way as previously described.] We
are then able to make automatic structural classification of
omps.

Results from this benchmark are given in Table IV. Five
scores are computed. We computed the receiver operating
characteristic (ROC) for the test set, and report the
normalized area under the ROC curve, which graphs true
positive rate as a function of false positive rate. Perfect
classification corresponds to a ROC area of 1.0. We also
compute rates of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). The mean
and standard deviation for each of these scores is given as
computed from 1000 runs.

Study of OmpA of Escherichia coli

To show the biological significance of transFold, we
compared our predictions (structures and folding pseudoen-
ergies) to previously published experimental results. Al-
though only a few TM �-barrel proteins have been crystal-
lized, the literature provides extensive experimental
analysis for some of these proteins. The series of experi-
ments on Outer membrane protein A of E. coli conducted

by Koebnik and colleagues2–4 is probably one of the best
examples of what can be done to provide a biologically
meaningful benchmark (in addition to their immediate
interest, of course).

In these experiments, the authors studied the efficiency
of the in vivo membrane assembly of OmpA variants. Two
specific protocols were designed. Koebnik et al.3 studied
consequences of permuting four structural units 1, 2, 3,
and 4 in the original sequence, while Koebnik2 focused
only on the effect of amino acids mutations in TM �-strands.
In the latter study, two sets of mutagenesis experiments
were performed: mutation of inward pointing residues
facing the cavity, and mutation of outward pointing resi-
dues facing the bilayer.

For both studies, we have reproduced these experiments
in silico; results are reported in Tables V and VI. To
explain our results, we need to define several notions. By
randomized sequence, we mean an amino acid sequence
obtained from OmpA by either (1) permuting structural
units 1, 2, 3, and 4 of the original structure, as in ref. 3, or
(2) either by mutating inward pointing residues facing the
cavity or by mutating outward point residues facing the
bilayer, as in Ref. 2. (For some permutations, certain
constraints, such as the hydrophobicity of membrane-
exposed residues, for example, are no longer necessarily
satisfied.) For each randomized sequence s�, we used
transFold to compute the minimum folding pseudoenergy
structure S�, using the parameters from Table I. Compar-
ing the structure S� with the structure S for OmpA,
obtained by DSSP from the PDB structure for the wild-
type sequence, we then computed the percentage Qp of
randomized sequences whose structure S� is the same as
S. We also computed the rate of correct secondary struc-
ture assignment Q2, defined as the overall percentage of

TABLE IV. Evaluation of Protein Discrimination

ROC TP TN FP FN

TM vs Glob 0.81 � 0.03 88 � 2 63 � 4 37 � 4 12 � 2
NWF (nonporin) 0.78 � 0.03 83 � 9 65 � 6 35 � 6 17 � 3
WF (porin) 0.93 � 0.02 95 � 7 75 � 8 25 � 8 5 � 7

The first line gives the performance for basic discrimination between omp and nonomp proteins.
The second and third lines give the scores obtained for structural classification, where NWF refers
to nonwater-filled channel (nonporin) and WF refers to water-filled channel (porin-like proteins).

TABLE V. Predictions for Permuted Variants of OmpA 3

Set #seq Qp Q2 �E

Circular 3 100 70.96 �79.57
Noncircular 21 43 66.16 �36.39

#seq is the number of sequences in the set under consideration Qp is
the percentage of correctly predicted structures, Q2 the rate of correct
secondary structure-assignment, and �E is the difference of folding
pseudo energy between the predicted structure (optimal structure
given constraints) and randomized structure (obtained by permuting
structurl units of the original structure). Dataset circular contains the
circularly permuted variants of the OmpA, except that (4123) has been
removed, because it has been experimentally observed to be phage-
resistant. The sequence (4123) is stored, along with all non-circularly
permuted variants, in dataset noncircular.
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residue positions correctly predicted to be in a �-strand of
S. Additionally, we compute the difference of potential, �E,
defined as E�(s�) � E(s�), where E�(s�) is the folding
pseudoenergy of the structure S� predicted by transFold
for randomized sequence s�, and where E(s�) is the folding
pseudoenergy of the structure S for s�. The latter is
obtained by threading the randomized sequence s� onto the
structure for OmpA, as obtained by DSSP from the PDB
structure.

Concerning the first experiment, Koebnik et al.3 sepa-
rated OmpA into four structural subunits (denoted 1, 2, 3,
and 4), each containing an antiparallel strand pair con-
nected by an extracellular loop (cutpoints are located in
the periplasmic loops). They then built permuted variants
of OmpA and measured the efficiency of membrane assem-
bly. Their main result was to show a reduced efficiency of
plating in the order of strains 1234 � 2341/3412 �
4123/noncircular; that is, wild-type 1234 has greater plat-
ing efficiency than each of the two circular permutations
2341 and 3412, while these have greater plating efficiency
than both the circular permutation 4123 as well as noncir-
cular permutations.

We then defined a dataset, denoted Circular, containing
circularly permuted variants of OmpA, with the exception
of 4123 because of its lack of plating efficiency; that is, the
dataset Circular consists of the permutations 1234, 2341,
and 3412. All other sequences (4123 included) belong to
another set denoted noncircular; that is, the dataset
noncircular consists of 4!-3 � 21 many permutations.
Table V presents the scores computed on these datasets.
Obviously, the structure used for structure comparisons
(Qp and Q2) are permuted variants of the wild-type struc-
ture. Note that, because no turn constrains the antiparal-
lel pairing of first and last TM �-strands of the barrel,
predictions are not automatically similar for circular vari-
ants.

In the second study, Koebnik2 mutated the amino acids
of TM �-strands 4, 6, and 8, where mutation sites were

restricted either to inward pointing side chains (barrel
interior) or to outward pointing side chains (membrane
core). This methodology allows us to distinguish the effect
of both environment constraints. A total of 114 OmpA
mutants have been studied and experimentally classified
into three categories. Class I represents the most effi-
ciently assembling variant, class III contains all phage-
resistant (assembly defective), and class II contains vari-
ants with a low but significant membrane assembly (see
the original article for more details).

In this article, the sets of mutants affecting the eighth
TM �-strand are denoted 8C1, 8C2, and 8C3 according to
their membrane assembly efficiency (respectively class I,
II, and III). Notations for TM �-strands 6 and 4 are similar.
The scores Qp, Q2, and �E computed on these datasets are
shown in Table VI.

For both experiments a clear correlation is observed in
the transFold prediction and the experimentally observed
membrane assembly efficiency. The rates of correctly
predicted structure Qp, as well as correct secondary struc-
ture assignment Q2, show that the predicted structures
differ significantly from the wild-type structure (correctly
predicted by transFold) for OmpA variants whose mem-
brane assembly is altered. Note that phage-sensitive clones
(circular or class I) have higher values of Qp and Q2 than do
phage-resistant (noncircular or class III) clones.

CONCLUSION

In this article, we have presented the first pseudoenergy
minimization method to predict the supersecondary struc-
ture of (large) TM �-barrel proteins. Our technique is free
from the limitations imposed on current machine-learning
methods that use only local information and present a
potential overfitting from the extremely sparse dataset of
available transmembrane �-barrel structures. Our method
can be applied to new biological sequences without any a
priori loss of accuracy. Nevertheless, because our method
assumes that the input amino acid sequence represents a

TABLE VI. Predictions for OmpA Mutation Variants 2

Outward side chains Inward side chains

#seq Qp Q2 �E #seq Qp Q2 �E

8C1 3 100 70.96 �79.57 22 100 73.84 �73.87
8C2 6 33 64.72 �21.43 0 — — —
8C3 17 6 63.30 �8.41 1 0 60.82 11.42
6C1 1 100 71.35 �61.33 0 — — —
6C2 0 — — — 0 — — —
6C3 12 92 75.58 �45.95 14 71 72.89 �14.39
4C1 1 100 79.53 �43.61 5 100 76.49 �79.49
4C2 2 50 76.02 �43.97 5 100 76.49 �81.19
4C3 15 20 67.45 1.03 7 100 76.52 �82.92

#seq is the number of sequences in the set under consideration, Qp is the percentage of correctly predicted
structures, Q2 the rate of correct secondary structure assignment, and �E the difference of folding
pseudo-energy between the predicted structure of the mutant sequence, and the observed structure of the
wild-type sequence. Lines marked with “—” mean that no sequence of this type was found in the original
paper. Datasets are listed in the first column. The prefix refers to the �-strand whose residues have been
mutated and the suffix refers to the observed efficiency of membrane assembly. “C1” stands for proteins
with high membrane assembly efficiency, “C3” for phage-resistants and “C2” for the remaining (low but
significant membrane assembly). The two groups of columns (2, 3, 4 and 5, 6, 7) distinguish the side chain
orientation for the mutated residues (outward or inward pointing residues).
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single protein domain, for large multichain proteins, one
should first apply a tool to determine protein domains.
Moreover, the results cited earlier on OmpA suggest
further uses in in silico sequence analysis coupled with in
vivo or in vitro experiments. In particular, we emphasize
that transFold will help us to further understand the
folding properties of omps.

The accuracy of our method in classification (i.e., the
discrimination between TM �-barrels and other proteins)
is surprisingly good if we consider that our method em-
ploys a pseudoenergy model, and that the stability of omps
is rather modest (10 kcal/mol). Performance can be
compared with those of previous methods.9,10 Although
the ratio of false positives needs to be improved, the results
obtained for specific subclasses of omps suggest that this
can be significantly improved using a more precise discrimi-
nation. However, in its current implementation, automatic
structural classification by transFold seems a little too
fragile to be used accurately, except in the case of porin-
like proteins. Nevertheless, this approach appears promis-
ing and improvements in the model and grammar underly-
ing transFold will be undertaken in future work. To this
end, the experimental studies on TM �-strands32 should
prove useful in refining our model.

Finally, the nature of the signal (contact interactions)
used to make predictions is radically different from that
used by HMMs or neural networks. Despite the lack of
data, these latter techniques also give good results. It is
known that MTSAGs generalize HMMs,27 so by merging
both approaches (MTSAG and HMM) we may see a great
improvement in the accuracy of TM �-barrel prediction. A
Gibbs sampler33 could also be considered as a candidate
for refining the per-residue accuracy. A postprocessing
stage using neural networks and alignment techniques34

could perhaps improve the accuracy of interstrand residue
contact predictions.
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