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A Comparison of Bayesian Methods for Haplotype Reconstruction from

Population Genotype Data

Matthew Stephens' and Peter Donnelly?

'Department of Statistics, University of Washington, Seattle, and *Department of Statistics, University of Oxford, Oxford

In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from
genotype data in a population sample. We review the methods, emphasizing the differences between them in terms
of both the models (“priors”) they use and the computational strategies they employ. We introduce a new algorithm
that combines the modeling strategy of one method with the computational strategies of another. In comparisons
using real and simulated data, this new algorithm outperforms all three existing methods. The new algorithm is
included in the software package PHASE, version 2.0, available online (http://www.stat.washington.edu/stephens/

software.html).

Current high-throughput genotyping technologies, when
applied to DNA from a diploid individual, are able to
determine which two alleles are present at each locus
but not the haplotype information (that is, which com-
binations of alleles are present on each of the two chro-
mosomes). Knowledge of the haplotypes carried by sam-
pled individuals would be helpful in many settings,
including linkage-disequilibrium mapping and inference
of population evolutionary history, essentially because
genetic inheritance operates through the transmission of
chromosomal segments. Experimental methods for hap-
lotype determination exist, but they are currently time-
consuming and expensive. Statistical methods for infer-
ring haplotypes are therefore of considerable interest. In
some studies, data may be available on related individ-
uals to assist in this endeavor, but in general such data
may be either unavailable or only partially informative.
We focus here on the problem of statistically inferring
haplotypes from unphased genotype data for a sample
of (“unrelated”) individuals from a population.
Several approaches to this problem have been pro-
posed, notably Clark’s algorithm (Clark 1990) and the
EM algorithm (which produces an estimate of the max-
imum likelihood of haplotype frequencies) (Excoffier
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and Slatkin 1995). Stephens et al. (2001a) introduced
two Bayesian approaches, one (their Algorithm 2, or
“naive Gibbs sampler”) that used a simple Dirichlet
prior distribution, and a second, more sophisticated ap-
proach (their Algorithm 3), in which the prior approx-
imated the coalescent. Results on simulated SNP and
microsatellite data, as well as more limited comparisons
using real data (Stephens et al. 2001b), suggested that
this second approach, implemented in the software
PHASE v1.0, produced consistently more accurate hap-
lotype estimates than previous methods. In addition, Ste-
phens et al. (2001a) point out other advantages of a
Bayesian approach to this problem, including the ability
to provide accurate measures of uncertainty in statisti-
cally estimated haplotypes, which in principle could be
used in subsequent analyses (although practical consid-
erations mean that this has seldom been fully exploited
in practice).

More recently, two other Bayesian approaches to this
problem have been published: Niu et al. (2002) intro-
duced an algorithm that they refer to as “PL,” which
was implemented in the software HAPLOTYPER; and
Lin et al. (2002) also introduced a Bayesian algorithm,
which they generously attribute to us, but which nev-
ertheless differs in substantive ways from the algorithms
in Stephens et al. (2001a).

Here we highlight the conceptual differences between
these different Bayesian methods, some of which may
be unclear from the original papers. We note that the
main contribution of Niu et al. (2002)—the introduction
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of computational strategies to greatly reduce running
times—can also be applied to the other algorithms, and
we describe a new version of PHASE that exploits these
strategies. In our comparisons of data sets considered by
Niu et al. (2002) and Lin et al. (2002), we found that
this new version of PHASE outperforms the other two
methods. Our comparisons also demonstrate that the
apparently inferior performance of PHASE compared to
HAPLOTYPER in some of the comparisons of Niu et
al. (2002) was not, as they suggest, due to the fact that
the data sets considered in these comparisons deviated
from the implicit (coalescent-based) modeling assump-
tions underlying PHASE. Rather, it was due to the fact
that, to obtain reliable results, PHASE required longer
runs than Niu et al. (2002) employed.

Bayesian haplotype reconstruction methods treat the
unknown haplotypes as random quantities and combine

* prior information—Dbeliefs about what sorts of pat-
terns of haplotypes we would expect to observe in
population samples—with

* the likelibood—the information in the observed
data—

to calculate the posterior distribution, the conditional
distribution of the unobserved haplotypes (or haplotype
frequencies) given the observed genotype data. The hap-
lotypes themselves can then be estimated from this pos-
terior distribution: for example, by choosing the most
likely haplotype reconstruction for each individual.

In Bayesian approaches to complicated statistical
problems, it is helpful, conceptually, to distinguish be-
tween the following separate issues:

1. The model, or prior distribution (“prior”), for the
quantities of interest—in this case, for population
haplotype frequencies. For a given data set, differ-
ent prior assumptions will, in general, lead to dif-
ferent posterior distributions, and hence to different
estimates.

2. The computational algorithm used. For challenging
problems, including this one, the posterior distri-
bution cannot be calculated exactly. Instead, com-
putational methods—typically Markov chain Monte
Carlo (MCMC)—are used to approximate it. Dif-
ferent computational tricks or different numbers of
iterations will change the quality of approximations
produced by Bayesian methods.

The three Bayesian approaches we consider here differ
in both the prior and the computational algorithms used,
as we now describe.

We consider first the differences in prior distributions.
Stephens et al. (20014a) described two algorithms based
on two different priors for the haplotype frequencies:
the first, the “naive Gibbs sampler,” used a Dirichlet
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prior distribution; the second, implemented in PHASE
v1.0, used a prior approximating the coalescent. In their
comparisons, the algorithm based on the approximate
coalescent prior substantially outperformed the algo-
rithm based on the Dirichlet prior. The subsequent al-
gorithms of Niu et al. (2002) and Lin et al. (2002) are
each based on the Dirichlet prior.

Interestingly, Niu et al. (2002) and Lin et al. (2002)
attribute rather different properties to the Dirichlet prior.
Niu et al. (2002) state that their method “imposes no
assumptions on the population evolutionary history.” In
contrast, Lin et al. (2002) attribute the success of their
method to the fact that the “neutral coalescent model,
which [it] incorporates, is a reasonable approximation
of the random collection of human sequences used as
test data.” The truth, we suggest, lies somewhere in be-
tween. The Dirichlet prior arises naturally in genetics
models with so-called parent-independent mutation (Ste-
phens and Donnelly 2000)—that is, when the genetic
sequence of a mutant offspring does not depend on the
progenitor sequence. This assumption about the muta-
tion process does not apply (even approximately) to
DNA sequence data or to data at multiple SNP or mi-
crosatellite loci. Thus, the use of a Dirichlet prior can
be thought of as making simple but highly unrealistic
assumptions about the genetic processes underlying the
evolution of the study population. In contrast, the ap-
proximate coalescent prior used in Stephens et al.
(2001a) is based on the arguably more complex but de-
cidedly more realistic assumption that the genetic se-
quence of a mutant offspring will differ only slightly
from the progenitor sequence (often by a single-base
change).

We can informally illustrate an important operational
difference between the Dirichlet prior and what we have
called an “approximate coalescent prior” as follows.
Sometimes an unresolved genotype can be broken up
into two haplotypes, one or both of which is already
known (or assumed) to be present in the sample. Both
priors will put substantial weight on this possibility. In
contrast, suppose that an unresolved genotype cannot
be broken up in such a way, but that it can be broken
up so that both haplotypes are similar to, but not iden-
tical to, known haplotypes (where “similar to” here
means that one haplotype can be formed from the other
by one or a small number of single-base changes). The
approximate coalescent prior will put substantial weight
on this reconstruction, but the Dirichlet prior will choose
randomly between all possible reconstructions, giving no
additional weight to the one involving haplotypes similar
to those already seen. Analogous problems occur with
Clark’s method and the EM algorithm. (Indeed, the
maximum likelihood estimate for haplotype frequencies,
which the EM algorithm aims to find, corresponds to
the mode of the posterior distribution for a particular
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Dirichlet prior. In this sense, the EM algorithm gives the
same answer as a Bayesian procedure with an unrealistic
prior.)

Whatever one’s view on the accuracy of the coalescent
as a model for real data, it is difficult to imagine any
actual population sample where guessing the haplotypes
at random will be more accurate than choosing haplo-
types that are similar to others in the sample. Indeed,
the main innovation in Lin et al. (2002) can be thought
of as an ad hoc modification of the Dirichlet prior to
avoid this undesirable “guessing-at-random” behavior.
Their modification is that, when considering whether an
individual’s genotypes can be resolved into haplotypes
that match other haplotypes in the sample, they look for
matches only at positions where the individual is het-
erozygous, ignoring the data at positions where the in-
dividual is homozygous. As a consequence of this, the
algorithm never reaches the situation considered above,
where no “matching” haplotypes exist, and it therefore
avoids choosing randomly between all possible recon-
structions. This modification has certain computational
advantages over the approximate coalescent prior—in
particular, Lin et al. (2002) exploited a computational
trick from the naive Gibbs sampler in Stephens et al.
(20014) to produce an efficient algorithm. However, as
our comparisons below demonstrate, the resulting al-
gorithm is less accurate than one based on the approx-
imate coalescent prior. This is because the genotypes at
positions where an individual is homozygous carry po-
tentially valuable information about the phase relation-
ships at the other (heterozygous) positions—information
that is exploited by the approximate coalescent prior
when close-matching haplotypes are sought.

Whether the posterior distribution for one prior will
provide better estimates than the posterior distribution
for a different prior will depend on which of the priors
does a better job of capturing features of the real data.
We continue to believe, on the basis of both general
population genetics and the evidence of the superior per-
formance of the PHASE algorithm in comparisons
here—and in Stephens et al. (20014, 2001b)—that the
use of an approximate coalescent prior will lead to better
estimates than the use of a Dirichlet prior (even with the
modification made by Lin et al. [2002]).

In addition to these differences in priors, the three
Bayesian methods also differ in their computational ap-
proaches. Both algorithms in Stephens et al. (2001a),
and the algorithm in Lin et al. (2002), used relatively
unsophisticated MCMC algorithms based on Gibbs
sampling. An important innovation in Niu et al. (2002)
is the introduction of two computational tricks—prior
annealing and partition ligation—for reducing the com-
putational effort required to obtain a good approxi-
mation to the true posterior distribution. These ideas are
largely independent of the prior used, and similar ideas
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can be applied to the approximate coalescent prior used
in PHASE (and could be applied to the modified Diri-
chlet prior of Lin et al. [2002]), as we outline below.
Qin et al. (2002) apply similar ideas to make the EM
algorithm computationally tractable for large data sets.

Our discussion above may appear to construct a
rather concrete divide between models (prior distribu-
tions) and computation. This is deliberate: we want to
emphasize the distinct role that each of these compo-
nents can play in the quality of the final solution ob-
tained. However, in practice, there is often a strong in-
teraction between these two components of a Bayesian
analysis. Indeed, the algorithm implemented in PHASE
was not actually developed in the conventional way of
writing down a prior and likelihood and then developing
a computational method for sampling from the corre-
sponding posterior (and neither, incidentally, was the
algorithm of Lin et al. [2002]). Rather, the posterior is
defined implicitly as the stationary distribution of a par-
ticular Markov chain, which in turn is defined via a set
of (inconsistent) conditional distributions. Although de-
fining posterior distributions in this way is not without
its potential pitfalls, the algorithm in Stephens et al.
(2001a) was designed to circumvent these (see appendix
A). Furthermore, this unconventional approach has the
advantage of avoiding some of the computational dif-
ficulties of sampling from the posterior corresponding
to an exact coalescent prior, while capturing the salient
features of such a prior, notably the tendency for hap-
lotypes in a population to be similar to other haplotypes
in the population. Although Niu et al. (2002) claim that
the “pseudoposterior probabilities” that our “pseudo-
Bayesian” algorithm attaches to the constructed hap-
lotypes are difficult to interpret, simulation results show
these probabilities to be reasonably well calibrated rel-
ative to a coalescent prior, even in the presence of mod-
erate amounts of recombination (Stephens et al. 20014).

We now outline a modified version of PHASE that
continues to make use of an approximate coalescent
prior but exploits ideas from Niu et al. (2002) to im-
prove computational efficiency and to increase the size
of the problem that can be handled. For convenience,
in the following description we use “frequency” to refer
to relative frequency.

Similar to Niu et al.’s PL algorithm (2002), our al-
gorithm follows a divide-and-conquer strategy of ini-
tially estimating haplotype frequencies within short
blocks of consecutive loci (SNPs) before successively
combining estimates for adjacent blocks to obtain esti-
mates of haplotypes across the whole region under con-
sideration. Note that we are using the term “block” to
refer simply to a set of consecutive loci, with no impli-
cation about the patterns of linkage disequilibrium pre-
sent. Results from Niu et al. (2002) suggest that the way
in which the block boundaries are chosen is relatively
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unimportant: to encourage independence of results from
multiple runs of the algorithm, we randomly chose the
length of each block to be six, seven, or eight loci, with
probabilities 0.3, 0.3, and 0.4, respectively. To each
block we applied Algorithm 3 from Stephens et al.
(20014), with the following alterations:

1. We updated each individual in turn, in a random
order (with a different random order for each
sweep).

2. When updating an individual, we updated all am-
biguous loci in the block under consideration,
rather than choosing five at random (we consider
a locus to be ambiguous in a particular individual
if the individual either is heterozygous or is missing
one or both alleles at that locus).

3. To improve mixing during burn-in iterations, with
probability 8 (the value of which is specified below)
we computed the probability of each haplotype pair
as being proportional to the sum, rather than the
product, of the appropriate conditional probabili-
ties. This modification makes the algorithm more
likely to visit configurations in which only one of
the two haplotypes is similar to other haplotypes
in the sample, thus improving mixing of the
MCMC scheme.

The value of 8 was decreased linearly from 1.0 to 0.0
over 100 burn-in iterations (where one iteration means
updating every individual once) and was then fixed at
0.0 for 100 further iterations. During these 100 further
iterations, for each haplotype that could possibly occur
in the sample, we obtained a (Rao-Blackwellized) esti-
mate of the posterior mean of its frequency in the sample.

The above procedure results in an estimate of the hap-
lotype frequencies within each short block. We then ap-
ply a variant on the idea of progressive ligation from
Niu et al. (2002) to iteratively combine consecutive
blocks. Niu et al. (2002) suggest taking from each block
the B haplotypes with the highest estimated frequencies
and forming a list, L, of the B? possible concatenated
haplotypes (where B is some integer to be specified; Niu
et al. used B in the range 40-50). We follow this sug-
gestion, but rather than taking a fixed value of B (as
Niu et al. [2002] seem to suggest), we choose B sepa-
rately for each block, in such a way as to include all
haplotypes whose estimated sample frequency is f/27 or
greater, where # is the number of diploid individuals in
the sample and f is some constant to be specified. (We
used f = 0.001: bigger values of f result in shorter lists,
and hence faster runs, at the cost of a potential decrease
in the accuracy of the approximation to the posterior
distribution.) Once we have formed L, we obtain new
estimates for the haplotype frequencies within the newly
created block by applying the same MCMC algorithm
described above (including the burn-in with linearly de-
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creasing 3 from 1.0 to 0.0) to the new block, allowing
each individual to be made up only of pairs of haplotypes
in L. We then continue this ligation procedure, each time
concatenating the last-formed block with the adjacent
small block. When all blocks have been combined (into
a single final block containing all loci), we estimate each
individual’s pair of haplotypes by its posterior mode
obtained from the final 100 iterations.

The algorithm above includes several variables (par-
ticularly £, and the number of iterations) whose values
will affect both run times and the reliability of the ap-
proximation to the posterior distribution. The particular
values we used were chosen so that, in preliminary tests
on a few of the data sets, multiple runs of the algorithm
from different starting points typically gave similar hap-
lotype estimates. To aid in the comparison of results of
different runs, we monitored the value of a “pseudo-
likelihood” (Besag 1974), defined as

H E 2 Pr(h,,h,|H_)I((h,,h,) consistent with G,

i=1hyeLhyel

where H_, is the set of all haplotypes in the current
MCMC configuration, excluding the individual i, G, is
the genotype of the individual 7, and I(*) is the indicator
function.

This pseudo-likelihood can be thought of as providing
a measure of the goodness of fit of the estimated hap-
lotypes to the underlying model. When different runs
give very different values for the goodness of fit, this
suggests that the runs may be too short to provide re-
liable results. Furthermore, among multiple runs on the
same data set, we would expect those with the highest
values of this pseudo-likelihood (averaged over the final
100 iterations, say) to provide the more accurate results.

Our preliminary tests suggested that, with the param-
eter values we used, multiple runs of the algorithm did
occasionally produce results with rather different values
of the pseudo-likelihood, suggesting that the algorithm
sometimes converged to a local, rather than global, mode
of the posterior distribution. In our first set of compar-
isons below, to alleviate this problem, we ran the whole
algorithm on each data set five times independently and
chose the solution corresponding to the run that max-
imized a pseudo-likelihood averaged over the final 100
iterations. In our second set of comparisons, to reduce
computation, we ran the algorithm on each data set only
once; we would expect a multiple-run strategy to slightly
improve average accuracy.

Our first set of comparisons is based on similar com-
parisons made by Niu et al. (2002), who ran PHASE
and HAPLOTYPER on several data sets, and found that
HAPLOTYPER performed more accurately in many
cases. We compared
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* Lin et al.’s algorithm (2002) (using code kindly pro-
vided by S. Lin), run at its default run-length;

« HAPLOTYPER, run at its default settings;

* PHASE v1.0 (which implements Algorithm 3 from
Stephens et al. [20014]), run at its default settings;
and

* the modified version of PHASE described here

on several data sets for which Niu et al. (2002) found
PHASE performed poorly.
We used two different criteria for assessing accuracy:

1. The error rate, as defined by Niu et al. (2002)—
namely, the proportion of individuals whose hap-
lotype estimates are not completely correct.

2. A more stringent measure of accuracy, which mea-
sures the similarity between the estimated haplo-
types and the true haplotypes. Specifically, we
counted how many individual nucleotides must be
changed in the estimated haplotypes to make them
the same as the known haplotypes and divided this
by the largest value it could possibly take (given
the genotype information) to obtain a number be-
tween 0 and 1.

We describe the second measure as “more stringent”
because it makes a more detailed comparison between
the estimated and true haplotypes, rather than simply
determining whether each estimate is correct or incor-
rect. This measure can thus discriminate between meth-
ods even in cases where it is unrealistic to expect a sta-
tistical method to completely determine haplotypes at
every site, as may be the case for many real data sets,
particularly those including low-frequency alleles or
sites/loci spread over a large genetic distance.

Table 1 gives, for each type of data and for each
method, the mean individual error rate (criterion 1 in
the list above). By this measure of accuracy, the modified
version of PHASE and HAPLOTYPER perform simi-
larly. PHASE v1.0, run at its default values, performs
considerably better than the results reported for PHASE
in Niu et al. (2002), but perhaps slightly less well than
the modified version. Note, however, that the apparently
large difference in error rates for the angiotensin-con-
verting—enzyme (ACE) data (0.18 vs. 0.28) actually cor-
responds to making an error on just one additional in-
dividual. Somewhat surprisingly, the algorithm of Lin et
al. (2002) performed consistently less well than the other
methods, most notably on the simulated data. Runs 100
times longer than the default settings produced almost
identical average performance for these simulated data
sets (results not shown). Nevertheless, computational
problems may still be (partly) responsible for the poor
performance of the algorithm in these data sets, and

Am. ]J. Hum. Genet. 73:1162-1169, 2003

Table 1

Mean Individual and Single-Site Error Rates

INDIVIDUAL ERROR RATE FOR DATA SET

ALGORITHM B,AR* ACE® CFTR¢ Simulated data’
Lin et al. (2002) 0.18 0.31 0.54 0.40
HAPLOTYPER 0.09 0.19 0.40 0.020
PHASE 0.04 0.28 0.46 0.068
Modified PHASE 0.05 0.18 0.47 0.045

SINGLE-SITE ERROR RATE FOR DATA SET

Lin et al. (2002) 0.19 0.11 0.43 0.30
HAPLOTYPER 0.11 0.11 0.66 0.031
PHASE 0.03 0.10 0.36 0.047

Modified PHASE  0.03 0.03 0.37 0.028

NoTE.—Each number in the table is an average over 100 (or,
for the last column, 20) data sets. The results for the best-per-
forming method in each column are in boldface/italics.

* These data (Drysdale et al. 2000) were used by Niu et al.
(2002) to explore sensitivity of methods to deviations from Hardy-
Weinberg equilibrium (HWE). We simulated 100 data sets, each
containing 15 individuals, by pairing randomly chosen haplotypes
according to the “strong heterozygote favoring” model used by
Niu and colleagues, as described in their paper (Niu et al. 2002).
Each of the 100 data sets contained either zero, one, or two ho-
mozygotes, which were the cases where Niu et al. (2002) saw the
poorest performance of PHASE compared with HAPLOTYPER.
Although Niu et al. (2002) suggest that excess heterozygosity
might result from a selective advantage for heterozygotes, selection
will not cause deviations from HWE unless the fitness differences
are very extreme (e.g., lethal recessives).

" These data (Rieder et al. 1999) were used by Niu et al. (2002)
to test the stability of algorithms. As in Niu et al. (2002), we ran
each algorithm 100 times on the known genotypes, each run using
a different initial value for the seed of the random number gen-
erator.

¢ Cystic fibrosis data from Kerem et al. (1989). As in Niu et al.
(2002), we randomly permuted the subset of 57 haplotypes with
no missing data 100 times, to generate 100 data sets, each con-
taining 28 hypothetical individuals.

4 Z. S. Qin kindly provided 20 data sets, each containing data
for 20 individuals at 20 loci, simulated under the bottleneck model
used by Niu et al. (2002). We understand (Z. S. Qin, personal
communication) that the bottleneck simulations of Niu et al.
(2002) made the assumption that in the bottleneck population all
loci were in complete linkage equilibrium. This is a nonstandard
assumption in this context and seems likely to produce simulated
haplotypes that exhibit very different patterns to those expected
under what we would consider more plausible assumptions.

performance might be improved by the use of a more
sophisticated computational scheme.

Table 1 also summarizes the performance of each al-
gorithm on the more stringent criterion (criterion 2 in
the list above), which we call the “single-site error rate.”
By this measure of accuracy, the modified version of
PHASE consistently and substantially outperforms both
HAPLOTYPER and Lin et al.’s algorithm (2002) on
these data sets. This indicates that when the methods
are unable to reconstruct the haplotypes completely, the
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Table 2
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Error Rate and Switch Error Rate for the Data Sets Considered by Lin et al. (2002)

ERROR RATE FOR DATA SET

ALGORITHM GLRA2 MAOA KCND1 ATR GLA TRPC5 BRS3 MECP2
Lin et al. (2002) .79 .61 .54 .62 .89 58 .72 .85
HAPLOTYPER .89 .76 .72 .72 .79 .72 .79 .64
Modified PHASE .76 54 46 45 .68 58 .67 .77
SwITCH ERROR RATE FOR DATA SET
Lin et al. (2002) .14 .10 22 29 22 .13 .14 23
HAPLOTYPER .16 12 27 .32 .16 .20 15 .19
Modified PHASE .10 .07 .13 .18 11 .13 .10 15

NOTE.—The results for HAPLOTYPER and the Lin et al. (2002) algorithm are taken from table
1 in Lin et al. (2002). The results for PHASE were obtained by us on 100 data sets simulated in
the same way as those used to produce table 1 in Lin et al. (2002) (i.e., by randomly pairing the
40 X-chromosome haplotypes used by Lin et al. [2002], kindly provided by D. Cutler). Each number
in the table is based on results for 100 data sets. For example, the error rates are the total number
of mistakes made across all 100 data sets, divided by the total number of ambiguous individuals
in all 100 data sets. The results for the best-performing method in each column are in boldface/

italics.

PHASE-estimated haplotypes tend to be much more sim-
ilar to the true haplotypes—presumably because the true
haplotypes conform more closely to the assumptions of
the approximate coalescent prior than to those of the
Dirichlet prior. In particular, it seems that the apparently
inferior performance of PHASE in the comparisons of
Niu et al. (2002) was not due to its sensitivity to devi-
ations from the assumptions of the coalescent model (as
Niu et al. [2002] suggested) but rather to the fact that
the 5,000 updates they used (compared with the default
of 2,000,000 updates, which we used here) were insuf-
ficient for the algorithm to provide a reasonable ap-
proximation to the posterior distribution.

For our second set of comparisons, we examine the
performance of Lin et al.’s algorithm (2002), HAPLO-
TYPER, and the modified version of PHASE for the data
sets in Lin et al. (2002). (PHASE v1.0 is omitted from
these comparisons because of its high computational de-
mands for data sets of this size.) For ease of comparison,
we use two measures of accuracy based on those in Lin
et al. (2002):

1. The error rate, as defined by Stephens et al.
(2001a)—namely, the proportion of ambiguous in-
dividuals whose haplotype estimates are not com-
pletely correct. Note that, although this differs
from Niu et al.’s (2002) definition of error rate,
which was used above, methods that perform well
by one of these criterion will tend also to perform
well by the other.

2. The switch error, which measures the proportion
of heterozygote positions whose phase is wrongly

inferred relative to the previous heterozygote po-
sition. This differs qualitatively from the single-site
error rate used above, in that it does not depend
on the accuracy of a method in inferring longer-
range phase relationships, and so is perhaps most
appropriate where these longer-range phase rela-
tionships cannot be accurately inferred by statis-
tical means (which may be the case for some of
these data sets). Note that the switch error is 1 —
the switch accuracy defined by Lin et al. We make
this change from an accuracy measure to an error
rate, so that, like the other measures we use, small
values indicate accurate haplotype estimates.

Because these data sets have some missing genotypes,
not all the true haplotypes are completely known, and
s0, strictly, it is not actually possible to compute either
of these criteria. To finesse this problem, Lin et al. (2002)
scored phase calls in each individual only at sites where
neither allele was missing (S. Lin, personal communi-
cation). To allow comparisons with the results of Lin et
al. (2002), we take the same approach here. Table 2
shows the performance of each of the methods by both
criteria. The modified version of PHASE appreciably
outperforms the other two methods, again presumably
because of the greater accuracy of the approximate co-
alescent prior.

Finally, we note that Lin et al. (2002) made additional
comparisons between their method, HAPLOTYPER,
and the EM algorithm using only the common variants
(minor allele frequency > 0.2) on the same data sets and
found that their algorithm outperformed the others. For
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these data sets, which naturally contain many fewer
SNPs than the full data sets, all three algorithms perform
better in absolute terms, and the algorithms of PHASE
and Lin et al. (2002) perform more similarly (results not
shown).

The estimation of haplotypes from population data
for the sizes of data sets currently being generated, as
well as those likely in the context of the proposed Hap-
lotype Map Project, is a challenging problem that re-
quires sophisticated computational methods. It appears
that Bayesian approaches have much to offer, not only
in terms of accuracy of estimation but also in their ability
to incorporate, in a natural way, features such as ge-
notyping error, missing data, or additional information
(for example, from pedigrees) and to provide a coherent
framework in which to account for the uncertainty as-
sociated with estimates of haplotypes or haplotype fre-
quencies in later analyses. Among Bayesian approaches,
the comparisons reported here and elsewhere suggest
that PHASE provides the most accurate reconstructions.

The modified version of PHASE reported here very
substantially reduces the computational time involved in
running the method. For example, on our desktop ma-
chine with an 800-MHz Pentium III processor, the im-
plementation we used for our comparisons took roughly
30 min of central processing unit (CPU) time per data
set for the largest gene used in the second set of com-
parisons (TRPCS), which consisted of 20 diploid indi-
viduals typed at 165 SNPs. Shorter runs taking roughly
2 min each produced almost identical average accuracy
for this gene, suggesting that in this case our choice of
run-length was conservative. Although these times ex-
ceed the 10 s that Lin et al. (2002) quote for their al-
gorithm on the same data set and the 35 s it takes HAP-
LOTYPER (with “Rounds” set to 20) on our machine,
it is clear that even much larger problems will remain
well within the bounds of practicality. Furthermore, the
efficiency of our current implementation could be im-
proved in several ways, if necessary. However, in our
view, other aspects of the problem deserve more urgent
attention. For example, all three methods considered
here ignore the decay of linkage disequilibrium with dis-
tance between markers. Furthermore, in most applica-
tions, estimating haplotypes or even population haplo-
type frequencies will not be the ultimate goal. To fully
capitalize on Bayesian methods for haplotype recon-
struction, it is necessary to integrate the analysis of the
haplotypes—be it testing for association with a disease
phenotype or estimating recombination rates, for ex-
ample—with the haplotype estimation procedure, to
fully allow for uncertainty in the haplotype estimates. A
new version of PHASE developed by M.S. (v2.0, avail-
able from M.S.’s Web site) implements both the modified
version of PHASE described here and some of these ex-
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tensions, resulting in still more accurate haplotype es-
timates (details will be published elsewhere).
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Appendix A

Potential Pitfalls of Defining Posterior Distributions Im-
plicitly, and How They Are Avoided

In the text, we note that there are potential pitfalls
associated with the fact that the posterior distribution
sampled from by PHASE (both the version implementing
the algorithm from Stephens et al. [20014] and the new
version described here) is defined implicitly as the sta-
tionary distribution of a particular Markov chain, which
in turn is defined via a set of inconsistent conditional
distributions. Here, “inconsistent” means that there is
no joint distribution that has these conditional distri-
butions. The fact that these conditional distributions are
inconsistent is potentially problematic, as a Gibbs sam-
pler based on inconsistent conditional distributions is
not, in general, guaranteed to converge to a proper prob-
ability distribution. However, in this case, convergence
to a proper distribution is guaranteed, because the Mar-
kov chain has a finite state space (the space of all possible
haplotype reconstructions) and is irreducible and ape-
riodic. (All such Markov chains have a stationary dis-
tribution and converge to this stationary distribution;
e.g., Theorem 7.4 in Behrends [2000]).

A second potential technical problem with using in-
consistent conditional distributions in Gibbs sampling is
that, using the standard “fixed scan” approach to Gibbs
sampling, where each individual is updated in turn in
some fixed order, the stationary distribution could de-
pend on the order used. This seems undesirable, and so,
to avoid this, Stephens et al. (2001a) used a “random
scan” Gibbs sampler, in which, at each iteration, a ran-
dom individual is chosen for updating (with each indi-
vidual being equally likely). In this paper, we used a
different, and perhaps slightly preferable, random scan
strategy, in which, at each iteration, all individuals are
updated in a random order, with a different random
order for each iteration. Both schemes clearly ensure that
the stationary distribution is independent of the order
in which the individuals were input into the algorithm.
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Electronic-Database Information

Accession numbers and URLs for data presented herein are
as follows:

M.S.’s Web site, Software for Haplotype Estimation, http://
www.stat.washington.edu/stephens/software.html
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