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Abstract. Given two time series, possibly of different lengths, time warping is a

method to construct an optimal alignment obtained by stretching or contracting

time intervals. Unlike pairwise alignment of amino acid sequences, classical time

warping, originally introduced for speech recognition, is not symmetric in the sense

that the time warping distance between two time series is not necessarily equal to

the time warping distance of the reversal of the time series. Here we design a new

symmetric version of time warping, and present a formal proof of symmetry for our

algorithm as well as for one of the variants of Aach and Church [1]. We additionally

design quadratic time dynamic programming algorithms to compute both the

forward and backward Boltzmann partition functions for symmetric time warping,

and hence compute the Boltzmann probability that any two time series points

are aligned. In the future, with the availability of increasingly long and accurate

time series gene expression data, our algorithm can provide a sense of biological
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significance for aligned time points – e.g. our algorithm could be used to provide

evidence that expression values of two genes have higher Boltzmann probability

(say) in the G1 and S phase than in G2 and M phases. Algorithms, source code

and web interface, developed by the first author, are made publicly available via

the Boltzmann Time Warping web server at bioinformatics.bc.edu/clotelab/.

1. Introduction

Functional genomics concerns the algorithmic determination of gene func-

tion, pursuant to high-throughput experimental assays, including methods

using oligo and cDNA array expression chips. An early contribution to this

field was made in 1998 by Eisen et al. [3], who used Pearson correlation

coefficient of time series expression data for two genes as a measure of their

similarity, and implemented average-linkage cluster analysis (a.k.a. the well-

known UPGMA1 phylogenetic tree construction algorithm, cf. text by Clote

and Backofen [2]), to cluster cDNA microarray from S. cerevisiae. In 1998

Cho et al. [5] used Affymetrix arrays containing oligonucleotide sequences

from 6218 genes of S. cerevisiae, and by measuring the logarithm of absolute

expression levels at times 0,10,20,. . . ,160 minutes, representing roughly two

yeast cell cycles, determined that 416 genes were regulated by cell cycle.

More than 25% of the 416 genes were found to be adjacent to other genes

induced in the same cell cycle phase. In 1998, using cDNA microarrays (in

contrast to oligonucleotide arrays) Spellman et al. [4] extended and refined

1 UPGMA is an acronym for unweighted pair group method with arithmetic

mean.
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the work of Cho et al. [5], by identifying 800 genes algorithmically deter-

mined to be regulated by cell cycle. Spellman et al. used procedures involv-

ing Fourier transform, Pearson correlation coefficient and average-linkage

analysis of Eisen et al. Prior to [5,4], only 104 yeast genes had been deter-

mined to be regulated by cell cycle, using traditional experimental methods.

Later, Cho et al. [6] used Affymetrix oligonucleotide arrays to determine hu-

man cell cycle-regulated genes, by measuring the logarithm of the absolute

expression levels at times 0,2,4,. . . ,24 hours, representing approximately two

cell cycles of H. sapiens.

It is common practice to compute the Pearson correlation coefficient be-

tween two gene expression time series sequences [4], in order to determine

putative functionally related genes. However, this requires that both se-

quences have the same length; in contrast, for sequences of unequal length,

time warping can be used, as first noticed by Aach and Church [1]. Time

warping is a kind of dynamic programming sequence alignment algorithm,

where unlike the algorithm of Needleman and Wunsch [11] for global align-

ment or of Smith and Waterman [12] for local alignment, the sequences

consist of real numbers instead of nucleotide or amino acid symbols. Aach

and Church [1] implemented several variants of time warping algorithms

first described in 1983 by Kruskal and Liberman [7] in the context of speech

recognition. While Aach and Church focused principally on investigating

the stability of time warping using the data set of Spellman et al. [4], in

this paper, we propose a method to quantify the biological significance of
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any two points from time series A and B, which are aligned in an optimal

global time warping of series A with series B.

Specifically, we introduce a new symmetric2 version of time warping,

by modifying the time warping algorithm of Kruskal and Liberman [7]. We

present a formal proof of symmetry for our algorithm, as well as that for

one of the variants of Aach and Church [1].3

A technical advantage of any symmetric version of time warping is that

it allows an unambiguous computation of the Boltzmann probability that

two time series points are aligned in an optimal global time warping of gene

expression values, given time series of possibly different lengths – this is

analogous to the case of sequence alignment [13,10,9]. Along these lines,

we design a dynamic programming algorithm to compute the forward and

backward partition functions for our version of time warping, thus yielding

the Boltzmann probability that any two time series points are aligned. We

illustrate our algorithm, using gene expression time series for S. cerevisiae

2 By symmetric, we mean that the time warping distance between series A and

B equals that between series Ar and Br, where Ar resp. Br denotes the reversal

of the series from last time point to first time point. While dynamic programming

sequence alignment [11] has this property, classical time warping does not.
3 Aach and Church [1] did not originally notice that the time warping algo-

rithm implemented by their software genewarp with flag -a 2 is symmetric; i.e.

genewarp.exe -i1 input1.txt -i2 input2.txt -a 2 -o out.txt . Since our

proof of symmetry for genewarp -a 2 is similar to, but notationally different than

the proof of symmetry for our new algorithm, for economy of space, we present

the proof of symmetry of [1] in the appendix.
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[5] and for H. sapiens [6], both approximately two cell cycles in duration.

While this paper focuses on the new time warping algorithm, the formal

proof of symmetry, and how to compute Boltzmann pair probabilities, a

sequel will focus on applications, and investigate the relation between time

warping, homology and function from the gene ontology (GO) database

www.geneontology.org.

2. Classical time warping algorithm

Time warping of two sequences a1, . . . , an and b1, . . . , bm, where each ai, bj ∈

Rk is a k-vector of features was introduced by Kruskal and Liberman in the

context of speech recognition, where in the 1980’s, k was chosen between

6 and 15, and the ith component (or feature) was taken to be the “power

present in a speech utterance in the ith frequency band at time t (using

a short-time spectral analysis)” [7].4 Time warping is reminiscent and al-

gorithmically similar, though distinct, to dynamic programming pairwise

sequence alignment [2], where compression resp. expansion are analogous

to sequence deletion resp. insertion. (One can easily imagine this situation

when comparing a Texan drawl with a British accent, where in the former

vowels may be drawn out while in the latter terminal syllables of words may

be inaudible.) In [1], Aach and Church implemented variants of the Kruskal-

Liberman algorithms for time warping and interpolated time warping for

gene expression data analysis, where in some applications, k was chosen to

4 In this paper, unlike the approach of [1], k will always be taken to be 1;

nevertheless, all of our results hold for arbitrary k.
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be large (e.g. 450), to accomodate a fixed sequence of genes taken together

as features.

Given time intervals τ, µ > 0, and sequences a = (a1, . . . , an) and b =

(b1, . . . , bm) of elements of Rk, where ai resp. bj is the time series value at

time (i−1)τ resp. (j−1)µ, consider functions u : {1, 2, . . . , T} → {1, . . . , n}

and v : {1, 2, . . . , T} → {1, . . . ,m}.5 Functions u, v are said to constitute a

(discrete) time warping of a, b, provided that:

1. the boundary conditions u(1) = 1 = v(1), u(T ) = n, v(T ) = m hold.

2. u, v are monotonically increasing, though not necessarily strictly increas-

ing, i.e. i ≤ j implies that u(i) ≤ u(j) and v(i) ≤ v(j).

3. u, v satisfy the continuity condition, i.e. u(i) ≤ u(i + 1) ≤ u(i) + 1,

v(j) ≤ v(j + 1) ≤ v(j) + 1.

For example, consider the time warping given in the left panel of Fig-

ure 1, where T = 9, n = 7, m = 6, and functions u, v are defined by the

Table 1. The right panel of this figure depicts the corresponding path graph,

which graphs the successive aligned positions {(u(i), v(i)) : 1 ≤ i ≤ T}.

Recalling that ai [resp. bj ] is the time series value at time (i− 1)τ [resp.

(j − 1)µ] for 1 ≤ i ≤ n, 1 ≤ j ≤ m, one can identify ai with bj if u(t) = i

5 The definition we give is for equal interval time series, used in our application.

A more general definition of time warping for unequal interval time series can

be found in [7] as well as in the algorithm of Aach and Church [1]; the latter is

explained in the appendix.
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t 1 2 3 4 5 6 7 8 9

u 1 1 2 3 4 5 5 6 7

v 1 2 3 3 3 4 5 6 6

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Table 1. (Left) Time warpings u : {1, 2, . . . , T} → {1, . . . , n} and v :

{1, 2, . . . , T} → {1, . . . ,m}. (Right) Path graph for alignment induced by these

time warpings. Figure 1 displays the corresponding trace.

and v(t) = j for some t ∈ {1, . . . , T}. For the example in Table 1, this yields

the alignment in Figure 1, which is reminiscent of a trace for a pairwise

sequence alignment. (See [14,2] for more on traces and sequence alignment.)

The difference between a time warping alignment and a trace lies in the fact

that in a time warping, there are no skipped sequence elements – instead,

multiple edges from the same sequence element indicate an expansion (e.g.

Texan drawl of a vowel). In a trace, there are no muliple edges from the

same element, and instead, skipped sequence elements correspond to gaps

(insertions or deletions). Finally, time warping handles sequences of features,

or elements of Rk, as opposed to sequences of amino acids or nucleotides.

Time warping distance was originally defined for the case of differentiable

functions, where u′ resp. v′ denotes the derivative of u resp. v with respect

to time. The discrete analogogue is defined as follows.
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a1  a2  a3  a4  a5  a6  a7

b1  b2  b3  b4  b5  b6

Fig. 1. A time warping of a1, . . . , a7 with b1, . . . , b6. Here, a1 is warped against

both b1 and b2, b3 is warped against a2, a3, a4, etc. Table 1 displays the time

warpings and path graph associated with this trace.

Definition 1 (Kruskal-Liberman [7]). Suppose that a = (a1, . . . , an) and

b = (b1, . . . , bm) are sequences of time series values in Rk, where ai resp.

bj is the value at time (i − 1)τ resp (j − 1)µ, and let ρ : Rk ×Rk → R+

be a given metric.6 If A is a time warping between a and b given by u :

{1, . . . , T} → {1, . . . , n} and v : {1, . . . , T} → {1, . . . ,m}, then the score of

A, denoted S(A), is

T
∑

t=1

ρ
(

au(t), bv(t))
) (u(t)− u(t− 1)) · τ + (v(t)− v(t− 1)) · µ

2
.

Time warping distance between a and b is the minimum score, over all possi-

ble time warpings u : {1, . . . , T} → {1, . . . , n}, v : {1, . . . , T} → {1, . . . ,m}

between a and b. More intuitively, the time warping distance is the minimum

score over all possible path graphs which satisfy the boundary, monotonicity

and continuity conditions. An optimal time warping A between a and b is a

time warping having minimum possible time warping score.

6 Recall that a metric, or distance function, ρ must satisfy the properties:

ρ(a, a) = 0, reflexivity ρ(a, b) = ρ(b, a), and triangle inequality ρ(a, c) ≤ ρ(a, b) +

ρ(b, c). For instance, ρ could be Euclidean distance in Rk.
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Notice that as in the case of sequence alignment, though time warping

distance is uniquely defined, there may be more than one optimal time

warping whose score equals the time warping distance.

Following Definition 1, adapted from [7], classic time warping distance is

computed by inductively computing Di,j to be the minimum time warping

distance between a1, . . . , ai and b1, . . . , bj , for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Let D1,1 = 0, Di+1,1 = Di,1 + τ
2ρ(ai, b1), D1,j+1 = D1,j +

µ
2 ρ(a1, bi), and

inductively define Di,j for 1 < i ≤ n, 1 < j ≤ m by

Di,j = min































Di−1,j−1 +
τ+µ

2 · ρ(ai, bj)

Di−1,j +
τ
2 · ρ(ai, bj)

Di,j−1 +
µ
2 · ρ(ai, bj)

It follows that Dn,m is the optimal time warping distance between sequences

a, b. Clearly, the corresponding dynamic programming algorithm requires

space and time O(n ·m).

As illustrated in the right panel of Figure 1, a path graph for a time warp-

ing A of time series a1, . . . , an and b1, . . . , bm as follows. Place 1, 2, . . . , n

along the x-axis and 1, 2, . . . ,m along the y-axis. Whenever ai is aligned

in A with bj , a point is placed at coordinate (i, j). These coordinates are

connected so that (i) if ai is aligned with both bj , bj+1 in A, then there is a

vertical line segment from (i, j) to (i, j +1), (ii) if ai, ai+1 are both aligned

with bj in A, then there is a horizontal line segment from (i, j) to (i+1, j),

(iii) if ai is aligned with bj and ai+1 is aligned with bj+1 in A, then there
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is a diagonal line segment from (i, j) to (i+ 1, j + 1). A path graph for the

time warping produced by Algorithm 1 is given in Figure 4.

a1 - a2 a3 a4 a5 - a6 a7

b1 b2 b3 - - b4 b5 b6 -

Fig. 2. A trace of a1, . . . , a7 with b1, . . . , b6, analogous to the time warping of

Figure 1.

The classical notion of time warping distance, just introduced, is not

symmetric, in the sense that time warping distance between a1, . . . , an

and b1, . . . , bm is not necessarily the same as that between an, . . . , a1 and

bm, . . . , b1.
7 In the context of speech recognition, which was the original con-

text for the development of time warping algorithms [7], symmetric time

warping is not reasonable because of the directionality of time in spoken

words (ie drawing out syllables). This lack of symmetry in time warping is

in contrast with ordinary sequence alignment, a feature used by [10,9] (inde-

pendently rediscovered by the first author) in order to define the Boltzmann

probability Pr[A] of sequence alignment A, as well as the Boltzmann proba-

bility of aligning amino acid ai with aj – the latter is given by the partition

function of all alignments in which ai is aligned with aj divided by the

partition function of all alignments. In this paper, by modifying classical

time warping, we give an algorithm to compute symmetric time warping

distance. After reading a preliminary version of this paper, J. Aach conjec-

7 i.e. time warping distance from left-to-right is not necessarily equal to that

from right-to-left.
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tured that his algorithm genewarp [1] with flag -a 2 is symmetric as well.

Here we prove the symmetry of our algorithm, and for economy of space,

we prove Aach’s conjecture in the appendix. Additionally, we exploit the

symmetry of our algorithm to design a dynamic programming algorithm to

compute the forward and backward partition function, which then allows

us to compute Boltzmann probabilities for the alignment of one time se-

ries point above another time series point. (Although we do not do so, one

can similarly implement the partition function for genewarp with flag -a

2. We believe that time points from time series A and B which have large

Boltzmann probability are biologically significant, in the same sense that

Vingron and Argos [13] claimed a biological significance for certain regions

of protein sequence alignments. Current gene expression data has far too

few points to envision this approach to yield biological insights of the form,

for instance, that certain yeast genes are better aligned in the G1 and S

phase with certain other human genes than in the G2 and M phase of cell

cycle. We feel that the design and implementation of our algorithm will

provide a resource in the future when gene expression time series data sets

are available with a greater number of time points.

3. Symmetric time warping

.

In this section, we describe a new symmetric time warping method in

Algorithm 1, for which an inductive proof of symmetry is given. Before

giving the pseudocode of the algorithm, we describe the underlying idea
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to ensure symmetry. Recall that a time warping algorithm is defined to be

symmetric if when given two numerical sequences a1, . . . , an and b1, . . . , bm,

time warping distance is the same when computed left to right (using Di,j)

as when computed right to left (using Ei,j defined below). Equivalently time

warping distance is the same between a1, . . . , an and b1, . . . , bm as between

an, . . . , a1 and bm, . . . , b1. Symmetry clearly holds for sequence alignment

distance as computed by the Needleman-Wunsch algorithm [11]; however,

symmetry does not hold for the classical time warping algorithm.

Given numerical sequences a = a1, . . . , an and b = b1, . . . , bm, sup-

pose that we have an optimal (partial) time warping of the subsequences

a1, . . . , ai and b1, . . . , bj , for fixed i, j. To extend the time warping to the

next number ai+1 and bj+1 from each sequence, three cases arise: (i) ai+1

is aligned with bj+1, (ii) ai+1 is warped against bj , (iii) bj+1 is warped

against ai. In particular, it can happen that the optimal time warping

of a and b involves warping (say) bm against an−1, leaving the last ele-

ment an which must then be aligned with bm. In this hypothetical case,

Dn,m = Dn−1,m + τ
2 · ρ(an, bm).

If we now consider time warping the sequences a and b from right to left,

the first term, which compares an with bm is given by ρ(an, bm). Compared

with the last sentence of the previous paragraph, we are missing a multi-

plicative factor of τ
2 . For this reason, in Algorithm 1, we pad a1, . . . , an both

on the left and on the right to produce a0, a1, . . . , an, an+1, where a0 = a1

and an = an+1, and similarly we pad the sequence b1, . . . , bm on the left
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and right to produce b0, b1, . . . , bm, bm+1, where b0 = b1 and bm = bm+1.

Additionally, in cases of time expansion and compression, we interpolate

values. Thus instead of the classical treatment of time expansion with term

Di−1,j + τ
2 · ρ(ai, bj), we consider the term Di−1,j + τ

2
ρ(ai,bj)+ρ(ai,bj+1)

2 .

Similarly, instead of the classical treatment of time compression with term

Di,j−1+
µ
2 ·ρ(ai, bj), we consider the term Di,j−1+

µ
2
ρ(ai,bj)+ρ(ai+1,bj)

2 , which

can be considered an attempt to interpolate or smooth out the transition.

Our algorithm follows.

Define D0,0 = 0 and for 1 ≤ i ≤ n and 1 ≤ j ≤ m, define

Di,0 = Di−1,0 +
τ

2
· ρ(ai, b0) (1)

and

D0,j = D0,j−1 +
µ

2
· ρ(a0, bj). (2)

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define

Di,j = min































Di−1,j−1 +
τ+µ

2 ρ(ai, bj)

Di−1,j +
τ
2
ρ(ai,bj)+ρ(ai,bj+1)

2

Di,j−1 +
µ
2
ρ(ai,bj)+ρ(ai+1,bj)

2 .

(3)

Define En+1,m+1 = 0 and for 1 ≤ i ≤ n and 1 ≤ j ≤ m, define

Ei,m+1 = Ei+1,m+1 +
τ

2
ρ(ai, bm+1) (4)

and

En+1,j = En+1,j+1 +
µ

2
ρ(an+1, bj) (5)
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and for 0 ≤ i < n and 0 ≤ j < m,

Ei,j = min































Ei+1,j+1 +
τ+µ

2 · ρ(ai, bj)

Ei+1,j +
τ
2 ·

ρ(ai,bj)+ρ(ai,bj−1)
2

Ei,j+1 +
µ
2 ·

ρ(ai,bj)+ρ(ai−1,bj)
2

(6)

Abstractly considered, any time warping algorithm finds the optimal

path graph with points {(au(1), bv(1)), . . . , (au(T ), bv(T ))} which minimizes

the score
∑T

i=1 wi ·ρ(au(i), bv(i)). Variants of time warping may handle base

cases differently and may consider different values for wi. Compared with

classic time warping, the Algorithm 1 initially pads each given sequence

a, b both on the left and right, assigns the same weight as in classical time

warping for diagonal transitions in the path graph, and assigns different

interpolated values for horizontal and vertical transitions in the path graph.

The time warping distance for Algorithm 1 is the minimum score, using

these new weights wi, over all path graphs which align the padded sequences

a, b.

We summarize the above in the following pseudocode for inputs a1, . . . , an

and b1, . . . , bm.

Algorithm 1 (Forward time warping)

D0,0 = 0; a0 = a1; b0 = b1; an+1 = an; bm+1 = bm

for i = 1 to n

Di,0 = Di−1,0 +
τ
2
· ρ(ai, b0)

for j = 1 to m

D0,j = D0,j−1 +
µ
2
· ρ(a0, bj)
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for i = 1 to n

for j = 1 to m

case1 = Di−1,j−1 +
τ+µ

2
· ρ(ai, bj)

case2 = Di−1,j +
τ
2
·
ρ(ai,bj)+ρ(ai,bj+1)

2

case3 = Di,j−1 +
µ
2
·
ρ(ai,bj)+ρ(ai+1,bj)

2

Di,j = min{case1, case2, case3}

Algorithm 2 (Backward time warping)

En+1,m+1 = 0; a0 = a1; b0 = b1; an+1 = an; bm+1 = bm

for i = n down to 1

Ei,m+1 = Ei+1,m+1 +
τ
2
· ρ(ai, bm+1)

for j = m down to 1

En+1,j = En+1,j+1 +
µ
2
· ρ(an+1, bj)

for i = n down to 1

for j = m down to 1

case1 = Ei+1,j+1 +
τ+µ

2
· ρ(ai, bj)

case2 = Ei+1,j +
τ
2
·
ρ(ai,bj)+ρ(ai,bj−1)

2

case3 = Ei,j+1 +
µ
2
·
ρ(ai,bj)+ρ(ai−1,bj)

2

Ei,j = min{case1, case2, case3}

The optimal forward [resp. reverse] time warping distance between a1, . . . , an

and b1, . . . , bm is Dn,m [resp. E1,1]. Algorithm 1 [resp. Algorithm 2] com-

putes the optimal forward [resp. reverse] time warping distances, but not

the optimal time warping itself. For this, analogous to the construction of an

optimal sequence alignment one must use tracebacks, proceeding from Dn,m

back to D0,0 [resp. E1,1 to En+1,m+1]. See the text by Clote and Backofen

[2] for more details on tracebacks for sequence alignment.



16 Peter Clote, Jürg Straubhaar

Claim A0: For 0 ≤ i ≤ n and 0 ≤ j ≤ m,

Di,m + Ei+1,m+1 ≥ Dn,m

Dn,j + En+1,j+1 ≥ Dn,m.

(7)

Proof. The first assertion is proved by reverse induction on i, proceeding

for values i = n, . . . , 0. Since En+1,m+1 is defined to be 0, the base case

of the assertion holds. Assume by the induction hypothesis that Di+1,m +

Ei+2,m+1 ≥ Dn,m By (4), Ei+1,m+1 = Ei+2,m+1 + τ
2ρ(ai+1, bm+1). Thus

Di,m + Ei+1,m+1 equals

= Di,m +
(

Ei+2,m+1 +
τ

2
· ρ(ai+1, bm+1)

)

= Ei+2,m+1 +
(

Di,m +
τ

2
· ρ(ai+1, bm+1)

)

= Ei+2,m+1 +

(

Di,m +
τ

2
·
ρ(ai+1, bm) + ρ(ai+1, bm+1)

2

)

≥ Ei+2,m+1 +Di+1,m = Di+1,m + Ei+2,m+1

≥ Dn,m

where the the third equality holds since bm = bm+1, the first inequality arises

from (3) and the second inequality is justified by the induction hypothesis.

The second assertion is proved by reverse induction on j, proceeding

for values j = m, . . . , 0. Since En+1,m+1 is defined to be 0, the base case

of the assertion holds. Assume by the induction hypothesis that Dn,j+1 +

En+1,j+2 ≥ Dn,m By (5), En+1,j+1 = En+1,j+2 + µ
2 · ρ(an+1, bj+1). Thus

Dn,j + En+1,j+1 is equal to

= Dn,j +
(

En+1,j+2 +
µ

2
· ρ(an+1, bj+1)

)

= En+1,j+2 +
(

Dn,j +
µ

2
· ρ(an+1, bj+1)

)
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= En+1,j+2 +

(

Dn,j +
µ

2
·
ρ(an, bj+1) + ρ(an+1, bj+1

2
)

)

≥ En+1,j+2 +Dn,j+1 = Dn,j+1 + En+1,j+2

≥ Dn,m

where the third equality holds because an = an+1, the first inequality arises

from (3) and the second inequality is justified by the induction hypothesis.

This establishes the Claim A0. Q.E.D.

Claim A: For 0 ≤ i ≤ n and 0 ≤ j ≤ m,

Di,j + Ei+1,j+1 ≥ Dn,m. (8)

Proof. By reverse induction on i + j, where 0 ≤ i ≤ n and 0 ≤ j ≤ m,

proceeding for values i + j = n + m, . . . , 0. Inequality (7) from Claim A0

establishes the base case when either i = n or j = m. Assume the induction

hypothesis

Di,j−1 + Ei+1,j ≥ Dn,m

Di−1,j + Ei,j+1 ≥ Dn,m.

(9)

Now by (6), Ei+1,j+1 is the minimum value over three cases.

Case 1: Ei,j = Ei+1,j+1 +
τ+µ

2 · ρ(ai, bj). In this case,

Di−1,j−1 + Ei,j = Di−1,j−1 +

(

Ei+1,j+1 +
τ + µ

2
· ρ(ai, bj)

)

= Ei+1,j+1 +

(

Di−1,j−1 +
τ + µ

2
· ρ(ai, bj)

)

≥ Ei+1,j+1 +Di,j = Di,j + Ei+1,j+1

≥ Dn,m
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where the first inequality arises from (3) and the second inequality is justi-

fied by the induction hypothesis.

Case 2: Ei,j = Ei+1,j +
τ
2 ·

ρ(ai,bj)+ρ(ai,bj−1)
2 . In this case,

Di−1,j−1 + Ei,j = Di−1,j−1 +

(

Ei+1,j +
τ

2
·
ρ(ai, bj) + ρ(ai, bj−1)

2

)

= Ei+1,j +

(

Di−1,j−1 +
τ

2
·
ρ(ai, bj) + ρ(ai, bj−1)

2

)

≥ Ei+1,j +Di,j−1 = Di,j−1 + Ei+1,j

≥ Dn,m

where the first inequality arises from (3) and the second inequality is justi-

fied by the induction hypothesis.

Case 3: Ei,j = Ei,j+1 +
µ
2 ·

ρ(ai,bj)+ρ(ai−1,bj)
2 . In this case,

Di−1,j−1 + Ei,j = Di−1,j−1 +

(

Ei,j+1 +
µ

2
·
ρ(ai, bj) + ρ(ai−1, bj)

2

)

= Ei,j+1 +

(

Di−1,j−1 +
µ

2
·
ρ(ai, bj) + ρ(ai−1, bj)

2

)

≥ Ei,j+1 +Di−1,j = Di−1,j + Ei,j+1

≥ Dn,m

where the first inequality arises from (3) and the second inequality is jus-

tified by the induction hypothesis. This establishes the Claim A. Q.E.D.

Claim B0: For 0 ≤ i ≤ n and 0 ≤ j ≤ m,

Di,0 + Ei+1,1 ≥ E1,1

D0,j +E1,j+1 ≥ E1,1.

(10)
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Proof. The first assertion is proved by induction on i, proceeding for values

i = 0, . . . , n. Since D0,0 is defined to be 0, the base case of the assertion

holds. Assume by the induction hypothesis that Di,0 + Ei+1,1 ≥ E1,1. By

(1), Di+1,0 = Di,0 +
τ
2 · ρ(ai+1, b0). Thus Di+1,0 + Ei+2,1 is equal to

=
(

Di,0 +
τ

2
· ρ(ai+1, b0)

)

+ Ei+2,1

= Di,0 +

(

Ei+2,1 +
τ

2

ρ(ai+1, b0) + ρ(ai+1, b1)

2

)

≥ Di,0 + Ei+1,1

≥ E1,1

where the second equality holds because b0 = b1, the first inequality arises

from (6) and the second inequality is justified by the induction hypothesis.

The second assertion is proved by induction on j, proceeding for values

j = 0, . . . ,m. Since D0,0 is defined to be 0, the base case of the assertion

holds. Assume by the induction hypothesis that D0,j + E1,j+1 ≥ E1,1. By

(2), D0,j+1 = D0,j +
µ
2 · ρ(a0, bj+1). Thus D0,j+1 + E1,j+2 is equal to

=
(

D0,j +
µ

2
· ρ(a0, bj+1)

)

+ E1,j+2

= D0,j +
(

E1,j+2 +
µ

2
· ρ(a0, bj+1)

)

= D0,j +

(

E1,j+2 +
µ

2
·
ρ(a0, bj+1) + ρ(a1, bj+1)

2

)

≥ D0,j + E1,j+1

≥ E1,1

where the third equality holds because a0 = a1, the first inequality arises

from (6) and the second inequality is justified by the induction hypothesis.

This establishes the Claim B0. Q.E.D.
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Claim B: For 0 ≤ i ≤ n and 0 ≤ j ≤ m,

Di,j + Ei+1,j+1 ≥ E1,1. (11)

Proof. By induction on i + j, where i + j takes values from 0 to n + m.

Inequality (10) from Claim B0 establishes the base case when either i = 0

or j = 0. Assume the induction hypothesis

Di,j−1 + Ei+1,j ≥ E1,1

Di−1,j + Ei,j+1 ≥ E1,1.

(12)

Now by (3) Di,j is the minimum value over three cases.

Case 1: Di,j = Di−1,j−1 +
τ+µ

2 ρ(ai, bj) In this case,

Di,j + Ei+1,j+1 =

(

Di−1,j−1 +
τ + µ

2
· ρ(ai, bj)

)

+ Ei+1,j+1

= Di−1,j−1 +

(

Ei+1,j+1 +
τ + µ

2
· ρ(ai, bj)

)

≥ Di−1,j−1 +Ei,j

≥ E1,1

where the first inequality arises from (6) and the second inequality arises

from the induction hypothesis.

Case 2: Di,j = Di−1,j +
τ
2 ·

ρ(ai,bj)+ρ(ai,bj+1)
2 . In this case,

Di,j + Ei+1,j+1 =

(

Di−1,j +
τ

2
·
ρ(ai, bj) + ρ(ai, bj+1)

2

)

+ Ei+1,j+1

= Di−1,j +

(

Ei+1,j+1 +
τ

2
·
ρ(ai, bj) + ρ(ai, bj+1)

2

)

≥ Di−1,j + Ei,j+1

≥ E1,1
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where the first inequality arises from (6) and the second inequality arises

from the induction hypothesis.

Case 3: Di,j = Di,j−1 +
µ
2 ·

ρ(ai,bj)+ρ(ai+1,bj)
2 .

In this case,

Di,j + Ei+1,j+1 =

(

Di,j−1 +
µ

2
·
ρ(ai, bj) + ρ(ai+1, bj)

2

)

+ Ei+1,j+1

= Di,j−1 +

(

Ei+1,j+1 +
µ

2
·
ρ(ai, bj) + ρ(ai+1, bj)

2

)

≥ Di,j−1 + Ei+1,j

≥ E1,1

where the first inequality arises from (6) and the second inequality arises

from the induction hypothesis. This establishes Claim B.

Theorem 3. Given sequences a1, . . . , an and b1, . . . , bm, we have Dn,m =

E1,1

In other words, time warping Algorithm 1 is symmetric; i.e. time warping

distance between sequences a = a1, . . . , an and b = b1, . . . , bm is the same

when computed from left to right as when computed from right to left, or

in other words, the output of Algorithm 1 is the same as that of Algorithm

2.

We can denote this as D(a, b) = E(a, b) or D(a1, . . . , an, b1, . . . , bm) =

E(a1, . . . , an, b1, . . . , bm).

Note that we do not claim that Di,j + Ei+1,j+1 = Dn,m. Indeed Di,j +

Ei+1,j+1 is the optimal time warping distance when aligning a1, . . . , ai with

b1, . . . , bj along with aligning ai+1, . . . , an with bj+1, . . . , bm.
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4. Examples

Using Algorithm 1, we computed the time warping distance between each

normalized8 yeast and each normalized human gene expression profile, using

Affymetrix time series data for S. cerevisiae with time intervals 0,10,20, . . . , 160

minutes [5] and Affymetrix time series data for H. sapiens with time inter-

vals 0, 2, 4, . . . , 24 hours [6].

Consider yeast protein YMR001C, which is a protein kinase of the

Ser/Thr family ascribed by Cho et al. [5] as related to DNA replication.

We computed that human U05340 has smaller time warping distance with

YMR001C (with the value 26.18), than any other human gene among the

set of 7077 human genes from data of Cho et al. [6]. Another name for

YMR001C is CDC5 and another name for U05340 is CDC20, and both

are CDC proteins (cell division control) proteins. U05340 is named CDC20

because it is homologous to the yeast protein CDC20.

In Figure 3(i), the time series for yeast gene YMR001C and human gene

U05340 are superposed, where it should be noted that YMR001C has 17

time points, at times 0,10,20,. . . ,160 minutes, and that U05340 has 13 time

points, at times 0,2,4,. . . ,24 hours (both series represent approximately two

cell cycles for each species). Note the obvious similarities in up- and down-

expression, though the two genes cannot be directly compared using, for

8 Normalization means that time series expression data for each gene x1, . . . , xn

is replaced by Z-scores z1, . . . , zn, where zi = xi−µ
σ

, µ =
∑n

i=1
xi/n, σ =

√
∑n

i=1
(xi − µ)2/n− 1.
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YMR001C and U05340 (no time warp)
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1
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3
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re YMR001C
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YMR001C and U05340 (time warp)

-2
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2
3
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Fig. 3. (i) Superposition of time series for YMR001C and U05340 (without time

warping). (ii) Time warping of YMR001C and U05340.

instance, Pearson correlation coefficient, because of the different number of

time points. In Figure 3(ii), an optimal (symmetric) time warping of U05340

with YMR001C is graphed, with time warp distance 26.18.
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In Figure 4(ii), the normalized time series data, i.e. Z-scores, are depicted

from those ten genes from human expression data of Cho et al. [6], whose

time warp distance to YMR001C is the least among human genes. In this

case, the time warp distances between YMR001C and those 10 human genes

having smallest time warp distance range from 26.18 to 50.99.

Scrutiny of the biology of YMR001C, U05340, and also yeast CDC20

leads to the conclusion that U05340 and YMR001, alias CDC5, are not

homologous proteins, as measured by BLAST sequence homology; addi-

tionally, since YRM001C is a kinase and U05340 is not, there is no likely

homology.9

The previous example suggests a cautionary tale, where small time warp

distances may indicate a role in the same or a related metabolic pathway,

rather than protein homology. This might be of promise when considering

time series expression data from two closely related species, one of which is

not yet annotated (e.g. among funghi which have potential medical interest

because of human yeast infections).

Human gene U05340 has the smallest symmetric time warp distance to

yeast gene YMR001C, among all human genes from [6], though YMR001C

is not homologous to U05340. However, yeast protein YGL116W is homol-

ogous to U05340, and U05340 has the 10-th smallest symmetric time warp

distance to YGL116W, that being 51.17 – see Figure 5.

9 Accessions for the yeast gene YMR001C are Genbank M84220, SwissProt

P32562, GI 172186, and accessions for human gene U05340 are GI 468032 (pro-

tein), GI 468031 (nucleotide), GB NM 001255, SwissProt Q12834.
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5. Boltzmann probability

The time warping partition function Z between sequences a = a1, . . . , an

and b = b1, . . . , bm is defined to be

Z =
∑

e−S(A)/kT (13)

where the sum is over all possible time warpings A of sequences a and b,

S(A) is the score of time warping A, k is the Boltzmann constant, and T

is temperature.10 Though the sum is over exponentially many time warp-

ings, Algorithm 4 allows the computation of Z in time O(n · m). This is

done by computing the forward partition function FZi,j , defined as the

sum of e−S(A)/kT over all time warpings A of a1, . . . , ai and b1, . . . , bj . Let

a1, . . . , an and b1, . . . , bm be given sequences of time series values, where ai

[resp. bj ] is the value at time τ · (i− 1) [resp. µ · (j − 1)].

Algorithm 4 (Forward partition function)

FZ0,0 = 1; a0 = a1; b0 = b1; an+1 = an; bm+1 = bm

for i = 1 to n

FZi,0 = FZi−1,0 · e
−( τ

2
·ρ(ai,b0))/kT

10 The Boltzmann probability of time warping A is defined as Pr[A] = e−S(A)/kT

Z
.

In the present setting, we can take kT to be any constant. If T is infinite, then

Z equals the total number of time warpings and the Boltzmann probability of

any time warping A equals 1
Z
. If T is positive, but close to 0, then the Boltz-

mann probability of any time warping A equals 0, if A is not optimal, and 1
M
, if

there exist M optimal time warpings. See Clote-Backofen [2] for proofs of these

assertions.
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for j = 1 to m

FZ0,j = FZ0,j−1 · e
−(

µ
2

·ρ(a0,bj))/kT

for i = 1 to n

for j = 1 to m

case1 = FZi−1,j−1 · e
−(

τ+µ
2

·ρ(ai,bj))/kT

case2 = FZi−1,j · e
−( τ

2
·
ρ(ai,bj)+ρ(ai,bj+1)

2
)/kT

case3 = FZi,j−1 · e
−(

µ
2

·
ρ(ai,bj)+ρ(ai+1,bj)

2
)/kT

FZi,j = case1 + case2 + case3

In a similar fashion, we compute the backwards partition function BZi,j ,

defined as the sum of e−A/kT over all reverse time warpings A between

ai, . . . , an and bj , . . . , bm.

Algorithm 5 (Backward time warping)

BZn+1,m+1 = 1; a0 = a1; b0 = b1; an+1 = an; bm+1 = bm

for i = n down to 1

BZi,m+1 = BZi+1,m+1 · e
−( τ

2
·ρ(ai,bm+1))/kT

for j = m down to 1

BZn+1,j = BZn+1,j+1 · e
−(

µ
2

·ρ(an+1,bj))/kT

for i = n down to 1

for j = m down to 1

case1 = BZi+1,j+1 · e
−(

τ+µ
2

·ρ(ai,bj))/kT

case2 = BZi+1,j · e
−( τ

2
·
ρ(ai,bj)+ρ(ai,bj+1)

2
)/kT

case3 = BZi,j+1 · e
−(

µ
2

·
ρ(ai,bj)+ρ(ai+1,bj)

2
)/kT

BZi,j = case1 + case2 + case3
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Straightforward modification of the proof of symmetry in Section 3 yields

an inductive proof of

FZi,j ·BZi+1,j+1 ≥ FZn,m

FZi,j ·BZi+1,j+1 ≥ BZ1,1

for all 0 ≤ i ≤ m, 0 ≤ j ≤ m, and hence FZn,m = Z = BZ1,1. We define

the Boltzmann probability Pr[A] of time warping A by

Pr[A] =
e−S(A)/kT

Z

It follows from the proof that FZi,j · BZi+2,j+2 is the sum of e−A/kT

over all time warpings A of a1, . . . , ai with b1, . . . , bj and of ai+2, . . . , an with

bj+2, . . . , bm. Since there are only three manners to extend time warpings of

a1, . . . , ai with b1, . . . , bj to time warpings of a1, . . . , ai+1 with b1, . . . , bj+1,

we can define the Boltzmann pair probability PrA[ai+1, bj+1] that ai+1 is

warped against bj+1.

Suppose that A is a time warping between a1, . . . , an with b1, . . . , bm.

To define PrA[ai+1, bj+1], we consider four cases.

1. Case 1: ai is aligned with bj in A, ai+1 is aligned with bj+1 in A and

ai+2 is aligned with bj+2 in A.

2. Case 2: ai is aligned with bj in A, ai+1 is aligned with bj+1 in A and

ai+1 is aligned with bj+2 in A.

3. Case 3: ai is aligned with bj in A, ai+1 is aligned with bj+1 in A and

ai+2 is aligned with bj+1 in A.

4. Case 4: ai+1 is not aligned with bj+1 in A.
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Then we define PrA[ai+1, bj+1] by

PrA[ai+1, bj+1] =















































FZi,j ·e
−(

τ+µ
2

·ρ(ai+1,bj+1))/kT )
·BZi+2,j+2

Z if Case 1

FZi,j ·e
−(

µ
2

·
ρ(ai,bj+1)+ρ(ai+1,bj+1)

2
)/kT

·BZi+1,j+2

Z if Case 2

FZi,j ·e
−( τ

2
·
ρ(ai+1,bj)+ρ(ai+1,bj+1)

2
)/kT

·BZi+2,j+1

Z if Case 3

0 if Case 4

Table 2 displays an optimal time warping A of gene expression data from

YGL116W (17 time points) and U05340 (13 time points) along with Boltz-

mann pair probabilities of time warping ai with bj with respect to A. This

time warping is graphically depicted in Figure 5. Dashes in the first two

columns of Table 2 mean that the gene expression value above the dash

in the same column is warped against the corresponding gene expression

value in the adjacent column. Though the optimal time warping does not

depend on values of parameters k, T (Boltzmann constant k, temperature

T ), the Boltzmann probabilities necessarily do depend on these parameters.

The sum
∑

X Pr[X ] over all exponentially many possible time warpings X

equals 1, regardless of choice of parameters k, T ; however, the pair prob-

abilities PrA[ai, bj ] depend on the time warping A as well as parameters

k, T .

Figure 6 graphs the Boltzmann probabilities given in Table 2 along with

those obtained by our algorithm when T = 0.5 and T = 1.

Some discussion of choice of temperature is necessary. In the context of

RNA secondary structure, Zuker’s algorithm [17,16] is a dynamic program-
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YGL116W U05340 k = 1,T = 0.1 k = 1, T = 2

-0.994588897451 -1.366 0.518910 0.193674

-0.976486101673 -1.4175 0.776216 0.104172

-0.867869327005 - 0.997866 0.382842

-0.885972122783 - 0.999523 0.565344

-0.777355348115 - 0.999989 0.486676

-0.252374270552 -0.4265 0.999986 0.273227

- 0.3265 0.999987 0.585945

1.30446616636 1.444 1.000000 0.872255

2.40873670882 1.999 0.999993 0.509778

1.64841928614 1.198 1.000000 0.678834

-0.0713463127722 -0.1625 1.000000 0.668327

-0.324785453665 - 1.000000 0.723832

-0.723046960781 -0.79 1.000000 0.373339

-0.632532981891 - 1.000000 0.551806

-0.578224594557 -0.472 0.999999 0.374425

0.254504011232 -0.0005 0.999882 0.402818

0.489840356347 0.441 0.999993 0.441802

0.978615842353 0.8285 0.998077 0.382370

Table 2. Optimal time warping A of gene expression data from YGL116W (17

time points) and U05340 (13 time points) along with Boltzmann pair probabilities

of time warping ai with bj with respect to A. Dashes in the first two columns mean

that the gene expression value above the dash in the same column is warped

against the corresponding gene expression value in the adjacent column. Column

3 [resp. 4] contains Boltzmann probabilities when k = 1, T = 0.1 [resp. k = 1,

T = 2]. Though the optimal time warping does not depend on values of k, T ,

the Boltzmann probabilities necessarily do depend on these parameters. The sum

∑

X
Pr[X ] over all exponentially many possible time warpings X always equals 1,

regardless of choice of parameters k, T ; however, the pair probabilities PrA[ai, bj ]

depend on the time warping A as well as parameters k, T .
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ming method which determines the optimal secondary structure for a given

RNA sequence with respect to the nearest neighbor model using experimen-

tally measured free energies at 37◦C [15]. The use of such experimentally

measured energies at specific temperatures ensures a natural significance for

temperature in the computation of Boltzmann probabilities for base pairs in

the low energy ensemble of RNA secondary structure, as computed by Mc-

Caskill’s algorithm [8]. In contrast to the natural significance of temperature

in RNA secondary structure determination, in the context of time warping

temperature has no intrinsic significance – indeed warping factors τ/2, µ/2

and (τ + µ)/2 depend on time, rather than experimentally measured ener-

gies at certain temperatures. For that reason, we compute Boltzmann pair

probabilities for several temperatures, from which the user can see the more

significant portions of the alignment.

6. Conclusion

In this paper, we develop a new symmetric time warping algorithm, which

yields the same time warp distance when computed from left to right as

from right to left, and prove the symmetry of Algorithm 1 as well as that

of Aach’s algorithm genewarp.exe with parameter -a 2. This symmetry

leads to a dynamic programming algorithm to compute the forward and

backwards partition function, and hence the Boltzmann probability Pr[A] of

time warping A, as well as the Boltzmann probability PrA[ai, bj ] of warping

ai with bj with respect to time warping A. A possible application of the
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Boltzmann probability is to indicate which portions of an optimal time

warping A may be biologically more significant than others.

We designed and implemented the forward and reverse time warping and

partition function Algorithms 1, 2, 4, 5 in Python on a Linux platform.
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Appendix

Symmetry of Aach-Church time warping

.

In this section, we make a change of notation. Time series a0, . . . , aN−1

[resp. b0, . . . , bM−1] consists of values ai [resp. bj ] measured at time t1(i)

[resp. t2(j)] for 0 ≤ i < N [resp. 0 ≤ j < M ]. Our goal in this section to

show that Aach’s time warping [1] algorithm is symmetric in the sense that

the time warping distance between a0, . . . , aN−1 with b0, . . . , bM−1 is the

same whether computed from left to right or right to left. Let’s look at the

pseudocode11 underlying the time warping algorithm [1] corresponding to

the command

genewarp.exe -i1 input1.txt -i2 input2.txt -a 2 -o out.txt

Here input1.txt and input2.txt are text files, whose first line consists of

>N|comment|, whose second line consists of tab separated time instances,

beginning with a tab, and all other lines consist of a gene name with gene

expression values, all tab separated, followed by a new line marker. Both

input1.txt and input2.txt are required to have precisely the same gene

names in the same order, although the time intervals and number of gene

expression values may differ between both files.

11 The pseudocode for this algorithm did not appear in either [1] or the cor-

responding web supplement. For that reason, we describe the pseudocode corre-

sponding to genewarp with parameter -a 2. We’d like to thank John Aach for

sharing his pseudocode.
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Given sequences a0, . . . , aN−1 and b0, . . . , bM−1, let t1(i) denote the time

value of time point i of first time series and t2(j) denote the time value of

time point j of second time series. Without loss of generality, we will assume

that t1(0) = 0 = t2(0). Let d(i, j) denote the Euclidean distance between

feature vectors of time point i in first series and time point j in second

series. In the following, we define the matrix

D = (D(i, j) : 0 ≤ i < N, 0 ≤ n < M)

where D(i, j) is the optimal time warping distance between a0, . . . , ai and

b0, . . . , bj , as measured by Aach’s algorithm. Let D(0, 0) = 0. For 1 ≤ j < M

define

D(0, j) = D(0, j − 1) +

(

t2(j)− t2(j − 1)

2
·
d(0, j) + d(0, j − 1)

2

)

(14)

and for 1 ≤ i < N define

D(i, 0) = D(i− 1, 0) +

(

t1(i)− t1(i− 1)

2
·
d(i, 0) + d(i− 1, 0)

2

)

. (15)

For 1 ≤ i < M and 1 ≤ j < N , define

D(i, j) = min































D(i− 1, j − 1) + ( (t1(i)−t1(i−1))+(t2(j)−t2(j−1))
2 · d(i−1,j−1)+d(i,j)

2 )

D(i− 1, j) + ( t1(i)−t1(i−1)
2 · d(i−1,j)+d(i,j)

2 )

D(i, j − 1) + ( t2(j)−t2(j−1)
2 · d(i,j−1)+d(i,j)

2 )

(16)

To investigate the symmetry of this version of time warping, we define

the matrix

E = (E(i, j) : 0 ≤ i < N, 0 ≤ j < M)
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by reverse induction. Let E(N − 1,M − 1) = 0. For 0 ≤ j < M − 1 define

E(N − 1, j) to be

E(N − 1, j + 1) +

(

t2(j + 1)− t2(j)

2
·
d(N − 1, j) + d(N − 1, j + 1)

2

)

(17)

and for 0 ≤ i < N − 1 define E(i,M − 1) to be

E(i+ 1,M − 1) +

(

t1(i+ 1)− t1(i)

2
·
d(i,M − 1) + d(i+ 1,M − 1)

2

)

.(18)

For 0 ≤ i < M − 1 and 0 ≤ j < N − 1, define

E(i, j) = min































E(i+ 1, j + 1) + ( (t1(i+1)−t1(i))+(t2(j+1)−t2(j))
2 · d(i,j)+d(i+1,j+1)

2 )

E(i+ 1, j) + ( t1(i+1)−t1(i)
2 · d(i,j)+d(i+1,j)

2 )

E(i, j + 1) + ( t2(j+1)−t2(j)
2 · d(i,j)+d(i,j+1)

2 ).

(19)

Notice that in (17), (18), and (19), we have expressions involving terms

t1(i + 1) − t1(i) [resp. t2(j + 1) − t2(j)] instead of expressions involving

terms t1(i)−t1(i+1) [resp. t2(j)−t2(j+1)]. With this definition, the reader

should see that E(i, j) is the optimal time warping distance, according to

Aach’s algorithm, when proceeding from left to right between sequences

aN−1, . . . , ai and bM−1, . . . , bj where time instances are t′1(N − 1) = 0, and

for i = N−2, . . . , 0 we have t′1(i) = t1(i+1)−t1(i), and similarly t′2(M−1) =

0, and for j = M − 2, . . . , 0 we have t′2(j) = t2(j + 1)− t2(j). Equivalently,

we consider E(i, j) to be the optimal time warping distance, according to

Aach’s algorithm, between ai, . . . , aN−1 and bj , . . . , bM−1 when proceeding

from right to left. We now would like to show that D(N−1,M−1) = E(0, 0).
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Claim C0: For 0 ≤ i ≤ N − 1,

D(i,M − 1) + E(i,M − 1) ≥ D(N − 1,M − 1)

D(i,M − 1) + E(i,M − 1) ≥ D(N − 1,M − 1).

(20)

Proof. The first assertion is proved by reverse induction on i. When i =

N − 1, by definition E(N − 1,M − 1) = 0 so the base case holds. Assume

by the induction hypothesis that D(i + 1,M − 1) + E(i + 1,M − 1) ≥

D(N − 1,M − 1). Then D(i,M − 1) + E(i,M − 1) equals

= D(i,M − 1) +

(

E(i+ 1,M − 1) + (
t2(i+ 1)− t2(i)

2
·
d(i,M − 1) + d(i+ 1,M − 1)

2
)

)

= E(i+ 1,M − 1) +

(

D(i,M − 1) + (
t2(i+ 1)− t2(i)

2
·
d(i,M − 1) + d(i+ 1,M − 1)

2
)

)

≥ E(i+ 1,M − 1) +D(i+ 1,M − 1) = D(i+ 1,M − 1) + E(i+ 1,M − 1)

≥ D(N − 1,M − 1)

where the first equality holds because of (18), the first inequality holds

because of (16) and the last inequality arises from the induction hypothesis.

The second assertion is proved by reverse induction on j. When j = M−

1, by definition E(N − 1,M − 1) = 0 so the base case holds. Assume by the

induction hypothesis that D(N−1, j+1)+E(N−1, j+1) ≥ D(N−1,M−1).

Then D(N − 1, j) + E(N − 1, j) equals

= D(N − 1, j) +

(

E(N − 1, j + 1) + (
t2(j + 1)− t2(j)

2
·
d(N − 1, j) + d(N − 1, j + 1)

2
)

)

= E(N − 1, j + 1) +

(

D(N − 1, j) + (
t2(j + 1)− t2(j)

2
·
d(N − 1, j) + d(N − 1, j + 1)

2
)

)

≥ E(N − 1, j + 1) +D(N − 1, j + 1) = D(N − 1, j + 1) + E(N − 1, j + 1)

≥ D(N − 1,M − 1)
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where the first equality holds because of (18), the first inequality holds be-

cause of (16) and the last inequality is justified by the induction hypothesis.

This establishes Claim C0. Q.E.D.

Claim C: For 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1,

D(i, j) + E(i, j) ≥ D(N − 1,M − 1). (21)

Proof. By reverse induction on i+ j. When either i = N −1 or j = M −1,

the assertion holds by (20) of Claim C0, so we may assume that i < N and

j < M − 1. Assume the induction hypothesis

D(i, j − 1) + E(i, j − 1) ≥ D(N − 1,M − 1)

D(i− 1, j) + E(i− 1, j) ≥ D(N − 1,M − 1).

(22)

Now by (19) E(i, j) is the minimum value over three cases.

Case 1: E(i, j) = E(i+1, j+1)+( (t1(i+1)−t1(i))+(t2(j+1)−t2(j))
2 ·d(i,j)+d(i+1,j+1)

2 ).

In this case, temporarily let ∆ denote (t1(i+1)−t1(i))+(t2(j+1)−t2(j))
2 . Then

D(i, j) + E(i, j) equals

= D(i, j) +

(

E(i+ 1, j + 1) + (∆ ·
d(i, j) + d(i+ 1, j + 1)

2
)

)

= E(i+ 1, j + 1) +

(

D(i, j) + (∆ ·
d(i, j) + d(i+ 1, j + 1)

2
)

)

≥ E(i+ 1, j + 1) +D(i+ 1, j + 1) = D(i+ 1, j + 1) + E(i+ 1, j + 1)

≥ D(N − 1,M − 1)

where the first inequality arises from (16) and the last inequality is justified

by the induction hypothesis.
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Case 2: Ei,j = E(i + 1, j) + ( t1(i+1)−t1(i)
2 · d(i,j)+d(i+1,j)

2 ). In this case,

D(i, j) + E(i, j) equals

= D(i, j) +

(

E(i+ 1, j) + (
t1(i+ 1)− t1(i)

2
·
d(i, j) + d(i+ 1, j)

2
)

)

= E(i+ 1, j) +

(

D(i, j) + (
t1(i+ 1)− t1(i)

2
·
d(i, j) + d(i+ 1, j)

2
)

)

≥ E(i+ 1, j) +D(i+ 1, j) = D(i+ 1, j) + E(i+ 1, j)

≥ D(N − 1,M − 1)

where the first inequality arises from (16) and the last inequality is justified

by the induction hypothesis.

Case 3: E(i, j) = E(i, j + 1) + ( t2(j+1)−t2(j)
2 · d(i,j)+d(i,j+1)

2 ). In this case,

D(i, j) + E(i, j) equals

= D(i, j) +

(

E(i, j + 1) + (
t2(j + 1)− t2(j)

2
·
d(i, j) + d(i, j + 1)

2
)

)

= E(i, j + 1) +

(

D(i, j) + (
t2(j + 1)− t2(j)

2
·
d(i, j) + d(i, j + 1)

2
)

)

≥ E(i, j + 1) +D(i, j + 1) = D(i, j + 1) + E(i, j + 1)

≥ D(N − 1,M − 1)

where the first inequality arises from (16) and the last inequality is justified

by the induction hypothesis. This establishes the Claim C. Q.E.D.

Claim D0: For 0 ≤ i ≤ N − 1 and 0 ≤ j ≤M − 1,

D(0, j) + E(0, j) ≥ E(0, 0)

D(i, 0) + E(i, 0) ≥ E(0, 0).

(23)

Proof. The first assertion is proved by induction on j. When j = 0, by

definition D(0, 0) = 0 so the base case holds. Assume by the induction
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hypothesis that D(0, j − 1) + E(0, j − 1) ≥ E(0, 0). Then D(0, j) + E(0, j)

equals

=

(

D(0, j − 1) + (
t2(j)− t2(j − 1)

2
·
d(0, j) + d(0, j − 1)

2
)

)

+ E(0, j)

= D(0, j − 1) +

(

(
t2(j)− t2(j − 1)

2
·
d(0, j) + d(0, j − 1)

2
) + E(0, j)

)

≥ D(0, j − 1) + E(0, j − 1)

≥ E(0, 0)

where the first equality holds because of (14), the first inequality holds

because of (19) and the last inequality arises from the induction hypothesis.

The second assertion is proved by induction on i. When i = 0, by defini-

tion D(0, 0) = 0 so the base case holds. Assume by the induction hypothesis

that D(i− 1, 0) + E(i− 1, 0) ≥ E(0, 0). Then D(i, 0) + E(i, 0) equals

=

(

D(i− 1, 0) + (
t1(i)− t1(i− 1)

2
·
d(i, 0) + d(i− 1, 0)

2
)

)

+ E(i, 0)

= D(i− 1, 0) +

(

(
t1(i)− t1(i− 1)

2
·
d(i, 0) + d(i− 1, 0)

2
) + E(i, 0)

)

≥ D(i− 1, 0) + E(i− 1, 0)

≥ E(0, 0)

where the first equality holds because of (15), the first inequality holds

because of (19) and the last inequality arises from the induction hypothesis.

This establishes Claim D0. Q.E.D.

Claim D: For 0 ≤ i ≤ N − 1 and 0 ≤ j ≤M − 1,

D(i, j) + E(i, j) ≥ E(0, 0). (24)
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Proof. By induction on i+j, where i+j takes values from 0 to N+M−2.

When either i = 0 or j = 0, the assertion holds by (23) of Claim D0. Thus

we may assume that 1 ≤ i, j. Assume the induction hypothesis

D(i, j − 1) + E(i, j − 1) ≥ E(0, 0)

D(i− 1, j) + E(i− 1, j) ≥ E(0, 0).

(25)

Now by (16), for 1 ≤ i < N , 1 ≤ j < M , it is the case that D(i, j) is the

minimum value over three cases.

Case 1: D(i, j) = D(i−1, j−1)+( (t1(i)−t1(i−1))+(t2(j)−t2(j−1))
2 ·d(i−1,j−1)+d(i,j)

2 ).

In this case, temporarily let ∆ denote (t1(i)−t1(i−1))+(t2(j)−t2(j−1))
2 . Then

D(i, j) + E(i, j) equals

=

(

D(i− 1, j − 1) + (∆ ·
d(i− 1, j − 1) + d(i, j)

2
)

)

+ E(i, j)

= D(i− 1, j − 1) +

(

E(i, j) + (∆ ·
d(i− 1, j − 1) + d(i, j)

2
)

)

≥ D(i− 1, j − 1) + E(i− 1, j − 1)

≥ E(0, 0)

where the first inequality arises from (16) and the second inequality is jus-

tified by the induction hypothesis.

Case 2: D(i, j) = D(i− 1, j) + ( t1(i)−t1(i−1)
2 · d(i−1,j)+d(i,j)

2 ).

In this case, D(i, j) + E(i, j) equals

=

(

D(i− 1, j) + (
t1(i)− t1(i− 1)

2
·
d(i− 1, j) + d(i, j)

2
)

)

+ E(i, j)

= D(i− 1, j) +

(

(
t1(i)− t1(i− 1)

2
·
d(i− 1, j) + d(i, j)

2
) + E(i, j)

)
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≥ D(i− 1, j) + E(i− 1, j)

≥ E(0, 0)

where the first inequality arises from (16) and the second inequality is jus-

tified by the induction hypothesis.

Case 3: D(i, j) = D(i, j − 1) + ( t2(j)−t2(j−1)
2 · d(i,j−1)+d(i,j)

2 ).

In this case, D(i, j) + E(i, j) equals

=

(

D(i, j − 1) + (
t2(j)− t2(j − 1)

2
·
d(i, j − 1) + d(i, j)

2
)

)

+ E(i, j)

= D(i, j − 1) +

(

(
t2(j)− t2(j − 1)

2
·
d(i, j − 1) + d(i, j)

2
) + E(i, j)

)

≥ D(i, j − 1) + E(i, j − 1)

≥ E(0, 0)

where the first inequality arises from (19) and the second inequality is jus-

tified by the induction hypothesis. This establishes Claim D. Q.E.D.

Theorem 6. Given sequences a0, . . . , aN−1 and b0, . . . , bM−1, we have D(N−

1,M − 1) = E(0, 0).

Proof. From Claims C0,C,D0,D it follows that for 0 ≤ i ≤ N − 1, 0 ≤ j ≤

M − 1, we have D(i, j) +E(i, j) ≥ D(N − 1,M − 1) and D(i, j) +E(i, j) ≥

E(0, 0). It follows that E(0, 0) ≥ D(N − 1,M − 1) and D(N − 1,M − 1) ≥

E(0, 0), hence D(N − 1,M − 1) = E(0, 0).

Theorem 6 asserts that Aach’s algorithm [1] with parameter -a 2 is

symmetric, in the sense that time warping distance (computed accord-

ing to Aach’s algorithm) between sequences a = a0, . . . , aN−1 and b =
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b0, . . . , bM−1 is the same when computed left to right as when computed

from right to left. We can denote this as D(a, b) = E(a, b), i.e.

D(a0, . . . , aN−1, b0, . . . , bM−1) = E(a0, . . . , aN−1, b0, . . . , bM−1).

Since Aach’s algorthm genewarp.exe with parameter -a 2 is symmetric,

following the approach of Section 5, it is possible to define forward and

backward partition functions and related Boltzmann probabilities with re-

spect to Aach’s approach. Since details are obvious and analogous to those

given in Section 5, we leave this to the reader.
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Fig. 4. (i) Path graph of YMR001C with U05340 produced by our algorithm, in-

dicating regions of contraction/expansion (vertical/horizontal lines) and matches

(diagonal lines). (ii) Ten human genes with smallest time warp distance to

YMR001C, as computed from expression data of Cho et al. [6]. Note that there

appears to be little correlation pairwise between these genes, although each has

small time warp distance to YMR001C.
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Fig. 5. (i) Superposition of time series for homologous genes YGL116W

and U05340 (without time warping). (ii) Time warping of homologous genes

YGL116W and U05340.
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Fig. 6. Boltzmann pair probabilities for alignment positions in optimal time

warping between YGL116W (17 time points) and U05340 (13 time points). Graphs

are displayed when Boltzmann probabilities are computed with k = 1 and for the

values 0.1, 0.5, 1.0 and 2.0 of T . With increasing values of T , the Boltzmann

probability values decrease; this enhances the depiction of presumed biological

significance of aligned positions in this optimal time warping.


